首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Representative paleomagnetic collections of Lower Cambrian rocks from the northern and eastern regions of the Siberian platform are studied. New evidence demonstrating the anomalous character of the paleomagnetic record in these rocks is obtained. These data confidently support the hypothesis (Pavlov et al., 2004) that in the substantial part of the Lower Cambrian section of the Siberian platform there are two stable high-temperature magnetization components having significantly different directions, each of which is eligible for being a primary component that was formed, at the latest, in the Early Cambrian. The analysis of the world’s paleomagnetic data for this interval of the geological history shows that the peculiarities observed in Siberia in the paleomagnetic record for the Precambrian–Phanerozoic boundary are global, inconsistent with the traditional notion of a paleomagnetic record as reflecting the predominant axial dipole component of the geomagnetic field, and necessitates the assumption that the geomagnetic field at the Proterozoic–Phanerozoic boundary (Ediacaran–Lower Cambrian) substantially differed from the field of most of the other geological epochs. In order to explain the observed paleomagnetic record, we propose a hypothesis suggesting that the geomagnetic field at the Precambrian–Cambrian boundary had an anomalous character. This field was characterized by the presence of two alternating quasi-stable generation regimes. According to our hypothesis, the magnetic field at the Precambrian–Cambrian boundary can be described by the alternation of long periods dominated by an axial, mainly monopolar dipole field and relatively short epochs, lasting a few hundred kA, with the prevalence of the near-equatorial or midlatitude dipole. The proposed hypothesis agrees with the data obtained from studies of the transitional fields of Paleozoic reversals (Khramov and Iosifidi, 2012) and with the results of geodynamo numerical simulations (Aubert and Wicht, 2004; Glatzmayer and Olson, 2005; Gissinger et al., 2012).  相似文献   

2.
The data on the amplitude of variations in the direction and paleointensity of the geomagnetic field and the frequency of reversals throughout the last 50 Myr near the Paleozoic/Mesozoic and Mesozoic/Cenozoic boundaries, characterized by peaks of magmatic activity of Siberian and Deccan traps, and data on the amplitude of variations in the geomagnetic field direction relative to contemporary world magnetic anomalies are generalized. The boundaries of geological eras are not fixed in recorded paleointensity, polarity, reversal frequency, and variations in the geomagnetic field direction. Against the background of the “normal” field, nearly the same tendency of an increase in the amplitude of field direction variations is observed toward epicenters of contemporary lower mantle plumes; Greenland, Deccan, and Siberian superplumes; and world magnetic anomalies. This suggests a common origin of lower mantle plumes of various formation times, world magnetic anomalies, and the rise in the amplitude of geomagnetic field variations; i.e., all these phenomena are due to a local excitation in the upper part of the liquid core. Large plumes arise in intervals of the most significant changes in the paleointensity (drops or rises), while no correlation exists between the plume generation and the reversal frequency: times of plume formation correlate with the very diverse patterns of the frequency of reversals, from their total absence to maximum frequencies, implying that world magnetic anomalies, variations in the magnetic field direction and paleointensity, and plumes, on the one hand, and field reversals, on the other, have different sources. The time interval between magmatic activity of a plume at the Earth’s surface and its origination at the core-mantle boundary (the time of the plume rise toward the surface) amounts to 20–50 Myr in all cases considered. Different rise times are apparently associated with different paths of the plume rise, “delays” in the plume upward movement, and so on. The spread in “delay” times of each plume can be attributed to uncertainties in age determinations of paleomagnetic study objects and/or the natural remanent magnetization, but it is more probable that this is a result of the formation of a series of plumes (superplumes) in approximately the same region at the core-mantle boundary in the aforementioned time interval. Such an interpretation is supported by the existence of compact clusters of higher field direction amplitudes between 300 and 200 Ma that are possible regions of formation of world magnetic anomalies and plumes.  相似文献   

3.
A representative collection of Upper Cretaceous rocks of Georgia (530 samples from 24 sites) is used for the study of magnetic properties of the rocks and the determination of the paleodirection and paleointensity (H an) of the geomagnetic field. Titanomagnetites with Curie points of 200–350°C are shown to be carriers of natural remanent magnetization (NRM) preserving primary paleomagnetic information during heatings to 300–350°C. The characteristic NRM component of the samples is identified in the interval 120–350°C. The Thellier and Thellier-Coe methods are used for the determination of H an meeting modern requirements on the reliability of such results. New paleointensity determinations are obtained and virtual dipole magnetic moment (VDM) values are calculated for four sites whose stratigraphic age is the Upper Cretaceous (Cenomanian-Campanian). It is shown that, in the interval 99.6–70.6 Ma, the VDM value was two or more times smaller than the present value, which agrees with the majority of H an data available for this time period. According to our results, the H an value did not change at the boundary of the Cretaceous normal superchron.  相似文献   

4.
The paleomagnetic study of the Lower Ordovician and Cambrian sedimentary rocks exposed on the Narva River’s right bank revealed a multicomponent composition of natural remanent magnetization. Among four distinguished medium- and high-temperature magnetization components, the bipolar component, which carries the reversal test, is probably the primary component and reflects the geomagnetic field direction and variations during the Late Cambrian and Early Ordovician. The pole positions corresponding to this component have coordinates 22°N, 87°E (dp/dm = 5°/6°) for the Late Cambrian, and 18°N, 55°E (dp/dm = 5°/7°) for the Early Ordovician (Tremadocian and Arenigian). Together with the recently published paleomagnetic poles for the sections of the Early Ordovician in the Leningrad Region and the series of poles obtained when the Ordovician limestones were studied in Sweden, these poles form new key frameworks for the Upper Cambrian-Middle Ordovician segment of the apparent polar-wander path (APWP) for the Baltica. Based on these data, we propose a renewed version of the APWP segment: the model of the Baltica motion as its clockwise turn by 68° around the remote Euler pole. This motion around the great circle describes (with an error of A95 = 10°) both variations in the Baltic position from 500 to 456 Ma ago in paleolatitude and its turn relative to paleomeridians. According to the monopolar components of natural remanent magnetization detected in the Narva rocks, the South Pole positions are 2°S, 351°E (dp/dm = 5°/9°), 39°S, 327°E, (dp/dm = 4°/7°), and 42°S and 311°E (dp/dm = 9°/13°). It is assumed that these components reflect regional remagnetization events in the Silurian, Late Permian, and Triassic.  相似文献   

5.
Abstract

The geomagnetic field and its frequent polarity reversals are generally attributed to magnetohydrodynamic (MHD) processes in the Earth's metallic and fluid core. But it is difficult to identify convincingly any MHD timescales with that over which the reversals occur. Moreover, the geological record indicates that the intervals between the consecutive reversals have varied widely. In addition, there have been superchrons when the reversals have been frequent, and at least two, and perhaps three, 35-70 Myr long superchrons when they were almost totally absent. The evaluation of these long-term variations in the palaeogeophysical record can provide crucial constraints on theories of geomagnetism, but it has generally been limited to only the directional or polarity data. It is shown here that the correlation of the palaeogeomagnetic field strength with the field's protracted stability during a fixed polarity superchron provides such a constraint. In terms of a strong field dynamo model it leads to the speculation that the magnetic Reynolds number, and the toroidal field, increase substantially during a superchron of frequent reversals.  相似文献   

6.
A representative collection of Cretaceous rocks of Mongolia is used for the study of the magnetic properties of the rocks and for determination of the paleodirections and paleointensities H anc of the geomagnetic field. The characteristic NRM component in the samples is recognized in the temperature interval from 200 to 620–660°C. The values of H anc are determined by the Thellier-Coe method with observance of all present-day requirements regarding the reliability of such kind of results. Comparison of data in the literature on paleointensity in the Cretaceous superchron and in the Miocene supports the hypothesis of the inverse correlation between the average intensity of the paleofield and the frequency of geomagnetic reversals. The increase in the average intensities is accompanied by an appreciable increase in the variance of the virtual dipole moment (VDM). We suggest that the visible increase in the average VDM value in the superchron is due to the greater variability of VDM in this period compared to the Miocene.  相似文献   

7.
One of the reasons for performing paleomagnetic studies is to determine whether the geomagnetic field remains dipolar during a polarity transition. Data on 23 field reversals of Recent, Tertiary and Upper Mesozoic age are examined with regard to the longitudinal and latitudinal distribution of paleomagnetic poles during a polarity change. Both frequency distributions of the transitional pole positions are not random. The results suggest that some field reversals are characterized by the rotation of the dipole axis in the meridional plane and show that two preferential meridional bands of polarity transitions exist centered on planes through 40°E–140°W and 120°E–60°W respectively. The latitudinal distribution of transitional paleopoles shows that there is a decrease in the number of observed poles with decreasing latitude. This is interpreted as the result of an acceleration in the motion of the dipole axis when it approaches the equator. Comparison of transitional velocities and paleointensity magnitudes reveals that the dipole moment is very weak only for a short part of the transitional period when the paleopole position lies within the latitudes of 10°N and 10°S. The overall conclusion is that the geomagnetic field retains its dipolar character during polarity changes.  相似文献   

8.
The paper reviews several aspects of paleomagnetic research on Icelandic rocks in past decades, with emphasis on studies of remanence directions in composite lava sections of 1–15 Ma age. We first describe briefly the physical basis of this research and experimental techniques, and list the major studies carried out so far. This is followed by a discussion of the internal consistency of directional results, effects of alteration on magnetic properties, rates of buildup of the lava pile, and the use of paleomagnetic reversals and excursions in stratigraphic mapping. Another section of the paper discusses some contributions which paleomagnetic research in Iceland has made to knowledge of properties of the geomagnetic field.A final section is devoted to regional magnetic surveys over Iceland and the surrounding shelf, giving examples of how their results have revealed various features of geological structures in that area. Knowledge of the magnetization of basement rocks aids in the interpretation of the magnetic anomalies, but more detailed and comprehensive studies of these structures are needed.  相似文献   

9.
A statistical model for the quick reversals during a geomagnetic pole transition is put forward by combining the modern geomagnetic field and paleomagnetic field. The decrease of geomagnetic intensity determines the reversals, and the quick reversals are possibly caused by the interaction between g01 and the other geomagnetic components.  相似文献   

10.
The data that describe the long-term reversing behavior of the geodynamo show strong and sudden changes in magnetic reversal frequency. This concerns both the onset and the end of superchrons and most probably the occurrence of episodes characterized by extreme geomagnetic reversal frequency (>10–15 rev./Myr). To account for the complexity observed in geomagnetic reversal frequency evolution, we propose a simple scenario in which the geodynamo operates in three distinct reversing modes: i—a “normal” reversing mode generating geomagnetic polarity reversals according to a stationary random process, with on average a reversal rate of ~3 rev./Myr; ii—a non-reversing “superchron” mode characterizing long time intervals without reversal; iii—a hyper-active reversing mode characterized by an extreme geomagnetic reversal frequency. The transitions between the different reversing modes would be sudden, i.e., on the Myr time scale. Following previous studies, we suggest that in the past, the occurrence of these transitions has been modulated by thermal conditions at the core-mantle boundary governed by mantle dynamics. It might also be possible that they were more frequent during the Precambrian, before the nucleation of the inner core, because of a stronger influence on geodynamo activity of the thermal conditions at the core-mantle boundary.  相似文献   

11.
地球磁场多次发生南北(正负)磁极位置的变换和白垩纪超静磁带(CNS)的异常现象,这已为大家所公认.但造成这种异常现象的原因,则是迄今未能很好解答的一个难题. 应用非线性理论对地球磁极倒转和白垩纪超静磁带进行了分析, 认为超静磁带事件意味着地球核幔相互作用和外核流体运动可能处于能量最低的状态,地球磁场系统通过不断地与外界交换物质和能量,维持一种空间或时间的有序结构.在121~83Ma期间,无外星撞击地球引起地磁极性倒转,可能是白垩纪超静磁带出现的原因之一.地球磁场极性的随机倒转具有混沌运动的自逆转特性,混沌理论给地磁极性倒转提出了一个简明的动力机制解释.  相似文献   

12.
We present a detailed rock-magnetic and paleomagnetic survey from Autlan volcanic succession in western Mexico. The principal aim of this study is to extend paleomagnetic data from Autlan lavas in order to confirm vertical-axis rotation observed in reconnaissance study and to evaluate long-term variation of the geomagnetic field strength based on existing and global data. The mean inclination (44.7°) is in agreement with the expected inclination for 60 and 70 Ma, as derived from available reference poles for the North American craton. The declination (333.6°), however, is significantly different from those expected, which suggests a statistically significant counterclockwise tectonic rotation ranging between 10° ± 6° and 14° ± 7°. As a measure of paleosecular variation (PSV), we obtained a geomagnetic field dispersion of 9.6° (upper and lower limits: 7.2°–11.9°) in perfect agreement with the previously published PSV compilation of selected Cretaceous data from lavas. The mean virtual dipole moments available for Autlan lavas are about 65% of the present geomagnetic axial dipole but are in reasonably good agreement with other comparable quality determinations between 5 and 90 Ma. This reinforces the hypothesis that low geomagnetic field strengths persisted for the entire Jurassic extending into the Upper Cretaceous.  相似文献   

13.
The results of comparative analysis of the behavior of paleointensity and polarity (intervals between reversals) of the geomagnetic field for the last 167 Ma are presented. Similarities and differences in the behavior of these characteristics of the geomagnetic field are discussed. It is shown that bursts of paleointensity and long intervals between reversals occurred at high mean values of paleointensity in the Cretaceous and Paleogene. However, there are differences between the paleointensity behavior and the reversal regime: (1) the characteristic times of paleointensity variations are less than the characteristic times of the frequency of geomagnetic reversals, (2) the achievement of maximum values of paleointensity at the Cretaceous–Paleogene boundary and the termination of paleointensity bursts after the boundary of 45–40 Ma are not marked by explicit features in the geomagnetic polarity behavior.  相似文献   

14.
Detailed paleomagnetic studies have shown that the effusive Permian-Triassic traps in the Kotui River valley were formed as the result of volcanic activity, which occurred in the form of volcanic pulses and individual eruptions with net duration of at most 7000–8000 years, excluding the periods of volcanic quiescence. According to the analysis of the paleomagnetic data earlier obtained by Heunemann and his coauthors [2004b] on the Abagalakh and Listvyanka sections in the Norilsk region, those geological units were formed during 25 volcanic pulses and separate eruptions, which all lasted up to 8000 years altogether, whereas the total time of formation (including the periods of volcanic quiescence) exceeded 10000–100000 years for the Norilsk section and was probably a bit shorter for the Kotui section. Comparison of the positions of virtual geomagnetic poles calculated for the Norilsk and the Kotui sections provides no grounds to suggest that these sections were formed at different geological times. The scatter in the positions of the virtual geomagnetic poles (VGP) for the directional groups and individual directions (58 altogether) jointly for the two sections (more than 160 lava flows) indicates that the secular geomagnetic variations at the Permian-Triassic boundary had similar amplitudes to those that occurred in the past 5 Ma.  相似文献   

15.
Superchrons – long periods in the geomagnetic record when the Earth's magnetic field did not reverse its polarity – are a challenge to observers and theorists. Jack Jacobs outlines the problems and some possible solutions.
Reversals of polarity are a feature of the geomagnetic record for all the time it has been documented. Although not regular, reversals are sufficiently frequent for their absence to be noticeable. When the Earth's magnetic field retains the same polarity for over 20 million years, a superchron is established. Superchrons demand the attention of geophysicists concerned with the generation of the Earth's field: either they must result from an intrinsic feature of the geodynamo, or they reflect the influence of some external force. Here I discuss internal and external mechanisms for the formation of superchrons, including the role of the inner core, true polar wander, Earth's orbital variations and tides.  相似文献   

16.
 Outflow sheets of the Hiko tuff and the Racer Canyon tuff, which together extend over approximately 16 000 km2 around the Caliente caldera complex in southeastern Nevada, have long been considered to be products of simultaneous or near-simultaneous eruptions from inset calderas in the west and east ends, respectively, of the caldera complex. New high-precision 40Ar/39Ar geochronology and paleomagnetic data demonstrate that emplacement of the uppermost part of the Racer Canyon tuff at 18.33±0.03 Ma was nearly synchronous with emplacement of the single outflow cooling unit of the much larger overlying Hiko tuff at 18.32±0.04 Ma. Based on comparison with the geomagnetic polarity time scale derived from the sea-floor spreading record, we conclude that emplacement of the first of several outflow cooling units of the Racer Canyon tuff commenced approximately 0.5 m.y. earlier. Only one paleomagnetic polarity is found in the Hiko tuff, but at least two paleomagnetic reversals have been found in the Racer Canyon tuff. The two formations overlap in only one place, at and near Panaca Summit northeast of the center of the Caliente caldera complex; here the Hiko tuff is stratigraphically above the Racer Canyon tuff. This study demonstrates the power of combining 40Ar/39Ar and paleomagnetic data in conjunction with phenocryst compositional modes to resolve problematic stratigraphic correlations in complex ash-flow sequences where use of one method alone might not eliminate ambiguities. Received: 13 January 1997 / Accepted: 7 May 1997  相似文献   

17.
The frequency distribution of intervals between Cenozoic geomagnetic reversals approximates a power law, while their occurrence over time shows temporal clustering of short and long intervals. Application of the Aggregate Variance and Absolute Value methods suggest long-range dependence in this time series, a possible indication that the geodynamo operates as a self-organised complex system. This hypothesis may allow the Cretaceous superchron to be considered as an integral part of the ordinary reversal regime attested in the Cenozoic record.  相似文献   

18.
We present new 40Ar/39Ar ages and paleomagnetic data for São Miguel island, Azores. Paleomagnetic samples were obtained for 34 flows and one dike; successful mean paleomagnetic directions were obtained for 28 of these 35 sites. 40Ar/39Ar age determinations on 12 flows from the Nordeste complex were attempted successfully: ages obtained are between 0.78 Ma and 0.88 Ma, in contrast to published K–Ar ages of 1 Ma to 4 Ma. Our radiometric ages are consistent with the reverse polarity paleomagnetic field directions, and indicate that the entire exposed part of the Nordeste complex is of a late Matuyama age. The duration of volcanism across São Miguel is significantly less than previously believed, which has important implications for regional melt generation processes, and temporal sampling of the geomagnetic field. Observed stable isotope and trace element trends across the island can be explained, at least in part, by communication between different magma source regions at depth. The 40Ar/39Ar ages indicate that our normal polarity paleomagnetic data sample at least 0.1 Myr (0–0.1 Ma) and up to 0.78 Myr (0–0.78 Ma) of paleosecular variation and our reverse polarity data sample approximately 0.1 Myr (0.78–0.88 Ma) of paleosecular variation. Our results demonstrate that precise radiometric dating of numerous flows sampled is essential to accurate inferences of long-term geomagnetic field behavior. Negative inclination anomalies are observed for both the normal and reverse polarity time-averaged field. Within the data uncertainties, normal and reverse polarity field directions are antipodal, but the reverse polarity field shows a significant deviation from a geocentric axial dipole direction.  相似文献   

19.
A detailed analysis of the data on the intensity of the geomagnetic dipole and frequency of its reversals presented in the world’s paleointensity databases provided the arguments in favor of the hypothesis of the negative correlation between the average virtual dipole moment (VDM) and the frequency of the reversals on the interval from 5 Ma to 100 Ma ago. However, the statistical confidence level of this hypothesis is only 60–70%, which is far below 95%, the standard required confidence level of a hypothesis to be considered statistically reliable. At a high level of confidence (above 99%), the presence of a positive correlation between the mean value and variance of VDM for a number of intervals of stable polarity in the Cenozoic and Mesozoic is confirmed. This finding means that the distribution of VDM on these time intervals is certainly non-Gaussian and is rather described by the gamma- or lognormal law. At the same time, in contrast to the earlier intervals, the histogram of VDM for the Brunhes epoch is closer to the normal distribution. Compared our conclusions with the published results on the numerical modeling of the geodynamo, we found that they are consistent in terms of a probable negative correlation between the average VDM and reversal frequency, as well as the lack of correlation between the average VDM and the length of the interval of stable polarity.  相似文献   

20.
We carried out an integrated paleomagnetic, rock-magnetic and paleointensity study of Miocene volcanic succession from the trans-Mexican volcanic belt (TMVB) north of Guadalajara. A total of 37 consecutive basaltic lava flows (326 oriented standard paleomagnetic cores) were collected at Lazo locality. Continuous susceptibility measurements with temperature and hysteresis experiments yield in most cases reasonably reversible curves with Curie points close to that of pseudo-single-domain magnetite. Two geomagnetic reversals were observed in the 300 m thick composite section. Paleosecular variation was lower than the one observed in general during Miocene. It appears that the volcanic units have been emplaced during a relatively short time span of about 1 Ma. The mean paleomagnetic directions obtained from this study do not differ significantly from that expected for the middle Miocene. The mean paleomagnetic direction calculated from all data is I=31.1°, D=354.6°, k=124 and 95=2.1°, N=37. Seventy-two samples with apparently preserved primary magnetic mineralogy and without secondary magnetization, mostly belonging to reverse polarity chron were pre-selected for Thellier paleointensity determination. The flow-mean paleointensity values are ranging from 22.4±3.4 to 53.8±6.0 μT and the corresponding virtual dipole moments (VDMs) are ranging from (5.4±0.8) to (12.0±1.4)×1022 A m2. This corresponds to mean value of (7.7±2.2)×1022 A m2, which is close to present day geomagnetic field strength. Altogether, our data suggest the existence of relatively high geomagnetic field strength undergoing low fluctuations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号