首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The city of Adapazarı — located in the Marmara Region of northwest Turkey — is situated on a deep sedimentary basin and was the city most heavily damaged by the strong ground motion of the 17 August 1999 Kocaeli earthquake (moment magnitude Mw = 7.4). This study determines site amplifications of the attenuation relationships for shallow earthquakes in the Adapazarı basin by using the previous ground motion prediction equations (GMPEs) and the traditional spectral ratio method. The site amplifications are determined empirically by averaging the residuals between the observed and predicted peak ground acceleration (PGA) and spectral acceleration (SA) values for various periods. Residuals are significantly correlated with the known characteristics of geological units. A new attenuation model has also been developed for 5% damped spectral acceleration to determine the dependence of strong ground motions on frequency.  相似文献   

2.
Near-field strong ground motions are useful for engineering seismology studies and seismic design, but dense observation networks of damaging earthquakes are still rare. In this study, based on the strong-motion data from the M w 6.6 Lushan earthquake, the ground motion parameters in different spatial regions are systematically analyzed, and the contributions from different effects, like the hanging-wall effect, directivity effect, and attenuation effect are separated to the extent possible. Different engineering parameters from the observed ground motions are compared with the local design response spectra and a new attenuation relation of Western China. General results indicate that the high frequency ground motion, like the peak ground acceleration, on two sides of the fault plane is sensitive to the hanging-wall effect, whereas the low frequency ground motion, like the long period spectral acceleration, in the rupture propagation direction is affected by the directivity effect. Moreover, although the M w 6.6 Lushan earthquake is not a large magnitude event, the spatial difference of ground motion is still obvious; thus, for a thrust faulting earthquake, in addition to the hanging effect, the directivity effect should also be considered.  相似文献   

3.
Using a random effects model that takes into consideration the correlation of data recorded by a single seismic event, a database consisting of 195 recordings from 17 recent events is employed to develop empirical attenuation relationships for the geometric mean of horizontal peak ground acceleration and 5-percent damped spectral acceleration (Sa). The recordings employed are obtained from strong motion stations operating in Northwestern Turkey and resulted from events that include the Kocaeli (Mw=7.4) and the Düzce (Mw=7.1) earthquakes and their aftershocks as well as other events. By studying differences in standard errors, the random effects model is compared with a fixed effects model that does not account for distinctions between intra- and inter-event variability. Effects of local site conditions are included in the empirical relationships developed. The dependence on frequency of the various model parameters is also studied. Frequency-dependent attenuation coefficients for the proposed random effects models developed are summarized in tables to facilitate their use.  相似文献   

4.
Predictive equations based on the stochastic approach are developed for earthquake ground motions from Garhwal Himalayan earthquakes of 3.5≤Mw≤6.8 at a distance of 10≤R≤250 km. The predicted ground motion parameters are response spectral values at frequencies from 0.25 to 20 Hz, and peak ground acceleration (PGA). The ground motion prediction equations (GMPEs) are derived from an empirically based stochastic ground motion model. The GMPEs show a fair agreement with the empirically developed ground motion equations from Himalaya as well as the NGA equation. The proposed relations also reasonably predict the observed ground motion of two major Himalayan earthquakes from Garhwal Himalayan region. For high magnitudes, there is insufficient data to satisfactorily judge the relationship; however it reasonably predicts the 1991 Uttarkashi earthquake (Mw=6.8) and 1999 Chamoli earthquake (Mw=6.4) from Garhwal Himalaya region.  相似文献   

5.
6.
Strong ground motions are estimated for the Pacific Northwest assuming that large shallow earthquakes, similar to those experienced in southern Chile, southwestern Japan, and Colombia, may also occur on the Cascadia subduction zone. Fifty-six strong motion recordings for twenty-five subduction earthquakes ofM s7.0 are used to estimate the response spectra that may result from earthquakesM w<81/4. Large variations in observed ground motion levels are noted for a given site distance and earthquake magnitude. When compared with motions that have been observed in the western United States, large subduction zone earthquakes produce relatively large ground motions at surprisingly large distances. An earthquake similar to the 22 May 1960 Chilean earthquake (M w 9.5) is the largest event that is considered to be plausible for the Cascadia subduction zone. This event has a moment which is two orders of magnitude larger than the largest earthquake for which we have strong motion records. The empirical Green's function technique is used to synthesize strong ground motions for such giant earthquakes. Observed teleseismicP-waveforms from giant earthquakes are also modeled using the empirical Green's function technique in order to constrain model parameters. The teleseismic modeling in the period range of 1.0 to 50 sec strongly suggests that fewer Green's functions should be randomly summed than is required to match the long-period moments of giant earthquakes. It appears that a large portion of the moment associated with giant earthquakes occurs at very long periods that are outside the frequency band of interest for strong ground motions. Nevertheless, the occurrence of a giant earthquake in the Pacific Northwest may produce quite strong shaking over a very large region.  相似文献   

7.
Attenuation modeling of recent earthquakes in Turkey   总被引:1,自引:0,他引:1  
This paper deals with the derivation of a consistent set of empiricalattenuation relationships for predicting free-field horizontal components ofpeak ground acceleration (PGA) and 5 percent damped pseudoacceleration response spectra (PSA) from 47 strong ground motion recordsrecorded in Turkey. The relationships for Turkey were derived in similarform to those previously developed by Boore et al. (1997) for shallowearthquakes in western North America. The used database was compiledfor earthquakes in Turkey with moment magnitudes (Mw) = 5 thatoccurred between 1976–1999, and consisted of horizontal peak groundacceleration and 5 percent damped response spectra of accelerogramsrecorded on three different site conditions classified as rock, soil and softsoil. The empirical equations for predicting strong ground motion weretypically fit to the strong motion data set by applying nonlinear regressionanalysis according to both random horizontal components and maximumhorizontal components. Comparisons of the results show that groundmotion relations for earthquakes in one region cannot be simply modifiedfor use in engineering analyses in another region. Our results, patternedafter the Boore et al. expressions and dominated by the Kocaeli andDüzce events in 1999, appear to underestimate predictions based ontheir curves for up to about 15 km. For larger distances the reverse holds.  相似文献   

8.
9.
2020年1月19日和2020年2月21日在新疆喀什地区先后发生MS6.4和MS5.1地震,针对新疆强震动台网收集到的128条强震动记录进行统计分析,研究2次地震记录的幅值及反应谱特性,并与两个现行规范设计反应谱进行对比,结果表明:(1)震级相同时,震中距越小加速度反应谱越大,且加速度反应谱衰减速度越慢;震中距相同时,震级越大加速度反应谱越大,且加速度反应谱衰减速度越慢;(2)震级越大加速度谱值、速度谱值、位移谱值越大;(3)MS6.4、MS5.1地震波加速度反应谱及其平均值曲线相近,与我国现行规范加速度反应谱相比差别很大。建议在新疆喀什地区采用基于当地强震记录的加速度反应谱进行结构抗震设计。  相似文献   

10.
Western Turkey has a long history of destructive earthquakes that are responsible for the death of thousands of people and which caused devastating damage to the existing infrastructures, and cultural and historical monuments. The recent earthquakes of Izmit (Kocaeli) on 17 August, 1999 (M w  = 7.4) and Düzce (M w  = 7.2) on 12 November, 1999, which occurred in the neighboring fault segments along the North Anatolian Fault (NAF), were catastrophic ones for the Marmara region and surroundings in NW Turkey. Stress transfer between the two adjacent fault segments successfully explained the temporal proximity of these events. Similar evidence is also provided from recent studies dealing with successive strong events occurrence along the NAF and parts of the Aegean Sea; in that changes in the stress field due to the coseismic displacement of the stronger events influence the occurrence of the next events of comparable size by advancing their occurrence time and delimiting their occurrence place. In the present study the evolution of the stress field since the beginning of the twentieth century in the territory of the eastern Aegean Sea and western Turkey is examined, in an attempt to test whether the history of cumulative changes in stress can explain the spatial and temporal occurrence patterns of large earthquakes in this area. Coulomb stress changes are calculated assuming that earthquakes can be modeled as static dislocations in elastic half space, taking into account both the coseismic slip in large (M ≥ 6.5) earthquakes and the slow tectonic stress buildup along the major fault segments. The stress change calculations were performed for strike-slip and normal faults. In each stage of the evolutionary model the stress field is calculated according to the strike, dip, and rake angles of the next large event, whose triggering is inspected, and the possible sites for future strong earthquakes can be assessed. A new insight on the evaluation of future seismic hazards is given by translating the calculated stress changes into earthquake probability using an earthquake nucleation constitutive relation, which includes permanent and transient effects of the sudden stress changes.  相似文献   

11.
The 2017 Guptkashi earthquake occurred in a segment of the Himalayan arc with high potential for a strong earthquake in the near future. In this context, a careful analysis of the earthquake is important as it may shed light on source and ground motion characteristics during future earthquakes. Using the earthquake recording on a single broadband strong-motion seismograph installed at the epicenter, we estimate the earthquake’s location (30.546° N, 79.063° E), depth (H?=?19 km), the seismic moment (M0?=?1.12×1017 Nm, M w 5.3), the focal mechanism (φ?=?280°, δ?=?14°, λ?=?84°), the source radius (a?=?1.3 km), and the static stress drop (Δσ s ~22 MPa). The event occurred just above the Main Himalayan Thrust. S-wave spectra of the earthquake at hard sites in the arc are well approximated (assuming ω?2 source model) by attenuation parameters Q(f)?=?500f0.9, κ?=?0.04 s, and fmax?=?infinite, and a stress drop of Δσ?=?70 MPa. Observed and computed peak ground motions, using stochastic method along with parameters inferred from spectral analysis, agree well with each other. These attenuation parameters are also reasonable for the observed spectra and/or peak ground motion parameters in the arc at distances ≤?200 km during five other earthquakes in the region (4.6?≤?M w ?≤?6.9). The estimated stress drop of the six events ranges from 20 to 120 MPa. Our analysis suggests that attenuation parameters given above may be used for ground motion estimation at hard sites in the Himalayan arc via the stochastic method.  相似文献   

12.

The great MS8.0 Wenchuan earthquake has been the most destructive earthquake since 1949 in China. The earthquake occurred no more than half a year after the establishment of the National Strong Motion Observation Network System (NSMONS) of China; what is more, the epicenter was located in the area with dense strong motion observation stations so that a large number of strong motion records of the main shock were obtained. In this paper, 501 strong motion records from 167 observation stations are utilized to establish the ground motion attenuation relations in three directions in the range of fault distance less than 600 km. The result shows the difference of seismic motion attenuation in two horizontal directions is insignificant. It is the first time that strong-motion records are used to establish the ground motion attenuation relations of the MS8.0 earthquake in China.

  相似文献   

13.
A representative attenuation relationship is one of the key components required in seismic hazard assessment of a region of interest. Attenuation relationships for peak ground acceleration, peak ground velocity and response spectral accelerations for Sumatran megathrust earthquakes, covering Mw up to 9.0, are derived based on synthetic seismograms obtained from a finite‐fault kinematic model. The relationships derived are for very hard rock site condition and for a long‐distance range between 200 and 1500 km. They are then validated with recorded data from giant earthquakes on the Sumatran megathrust occurring since year 2000. A close examination of the recorded data also shows that spectral shapes predicted by most of the existing attenuation relationships and that specified in the IBC code are not particularly suitable for sites where potential seismic hazard is dominated by large‐magnitude, distant, earthquakes. Ground motions at a remote site are typically signified by the dominance of long‐period components with periods longer than 1 s, whereas the predominant periods from most of the existing attenuation relationships and the IBC code are shorter than 0.6 s. The shifting of response spectrum towards longer period range for distant earthquakes should be carefully taken into account in the formulation of future seismic codes for Southeast Asia, where many metropolises are located far from active seismic sources. The attenuation relationship derived in the present study can properly reproduce the spectral shape from distant subduction earthquakes, and could hopefully give insights into the formulation of future seismic codes. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
The modified stochastic finite fault modelling technique based on dynamic corner frequency has been used to simulate the strong ground motions of M w 4.8 earthquake in the Kachchh region of Gujarat, India. The accelerograms have been simulated for 14 strong motion accelerographs sites (11 sites in Kachchh and three sites in Saurashtra) where the earthquake has been recorded. The region-specific source, attenuation and generic site parameters, which are derived from recordings of small to moderate earthquakes, have been used for the simulations. The main characteristics of the simulated accelerograms, comprised of peak ground acceleration (pga), duration, Fourier and response spectra, predominant period, are in general in good agreement with those of observed ones at most of the sites. The rate of decay of simulated pga values with distance is found to be similar with that of observed values. The successful modelling of the empirical accelerograms indicates that the method can be used to prepare wide range of scenarios based on simulation which provide the information useful for evaluating and mitigating the seismic hazard in the region.  相似文献   

15.
This paper examines the observed directionality of ground motions in the Christchurch urban area during the 2010–2011 Canterbury, New Zealand earthquakes. A dataset of ground motions recorded at 20 strong motion stations over 10 different earthquake events is utilized to examine the ratios of various response spectral directionality definitions and the orientation of the maximum direction. Because the majority of previous related studies have utilized overlapping ground motion datasets from the NGA database, the results of this study provide a largely independent assessment of these ground motion aspects. It is found that the directionality ratio between the maximum (100th percentile) and 50th percentile orientation‐independent spectral acceleration is similar to that obtained from recent studies. Ground motions from the 4 September 2010 Darfield earthquake are shown to exhibit strong directionality for source‐to‐site distances up to Rrup = 30 km, notably further than results from a previous study, which suggests that such effects are generally limited to Rrup < 5 km. The adopted dataset also offers the unique potential to consider site‐specific effects on directionality ratios and maximum direction orientations; however, in both cases, site‐specific effects are found not to be significant in the observed empirical results. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
The 1999 earthquakes in Turkey and Taiwan, offering a variety of case histories with structures subjected to large tectonic displacements, have refueled the interest of the earthquake engineering community on the subject. While several structures were severely damaged or even collapsed, there were numerous examples of satisfactory performance. Even more astonishingly, in specific cases the surface fault rupture was effectively diverted due to the presence of a structure. For the purpose of developing deeper insights into the main mechanisms controlling this fascinating interplay, this article documents selected field case histories of fault rupture–foundation interaction from (a) the Mw 7.4 Kocaeli (August 17) 1999 earthquake in Turkey, (b) the Mw 7.1 Düzce-Bolu (November 12) 1999 earthquake in Turkey, (c) the Mw 7.6 Chi–Chi (September 21) 1999 earthquake in Taiwan, and (d) surface faulting in Mount Etna. A subset of the case histories presented herein is analysed numerically, using the methods developed in the companion paper. It is shown that relatively “heavy” or stiff structures supported by continuous and rigid foundations may divert the fault rupture. Such structures are subjected to rigid body rotation, without substantial structural distress. In contrast, structures on structurally–resilient foundation systems or on isolated supports are prone to substantial damage.  相似文献   

17.
The Algiers–Boumerdes region has been struck by a destructive magnitude 6.8 (Mw) earthquake on May 21, 2003. The study presented in this paper is based on main shock strong motions from 13 stations of the Algerian accelerograph network. A maximum 0.58g peak ground acceleration (PGA) has been recorded at 20 km from the epicenter, only about 150 m away from a PGA of 0.34g, with both a central frequency around 5 Hz, explained by a strong very localized site effect, confirmed by receiver function technique results showing peaks at 5 Hz with amplitudes changing by a factor of 2. Soil amplifications are also evidenced at stations located in the quaternary Mitidja basin, explaining the higher PGA values recorded at these stations than at stations located on firm soil at similar distances from the epicenter. A fault-related directionality effect observed on the strong motion records and confirmed by the study of the seismic movement anisotropy, in agreement with the N65 fault plan direction, explains the SW–NE orientation of the main damage zone. In the near field, strong motions present a high-frequency content starting at 3 Hz with a central frequency around 8 Hz, while in the far field their central frequency is around 3 Hz, explaining the high level of damage in the 3- to 4-story buildings in the epicentral zone. The design spectra overestimate the recorded mean response spectra, and its high corner frequency is less than the recorded one, leading to a re-examination of the seismic design code that should definitively integrate site-related coefficient, to account for the up to now neglected site amplification, as well as a re-modeling of the actual design spectra. Finally, both the proposed Algerian attenuation law and the worldwide laws usually used in Algeria underestimate the recorded accelerations of the 6.8 (Mw) Boumerdes earthquake, clearly showing that it is not possible to extrapolate the proposed Algerian law to major earthquakes.  相似文献   

18.
The 2003 Bam, Iran, earthquake caused catastrophic damage to the city of Bam and neighboring villages. Given its magnitude (M w ) of 6.5, the damage was remarkably large. Large-amplitude ground motions were recorded at the Bam accelerograph station in the center of Bam city by the Building and Housing Research Center (BHRC) of Iran. We simulated the Bam earthquake acceleration records at three BHRC strong-motion stations—Bam, Abaraq, and Mohammad-Abad—by the empirical Green’s function method. Three aftershocks were used as empirical Green’s functions. The frequency range of the empirical Green’s function simulations was 0.5–10 Hz. The size of the strong motion generation area of the mainshock was estimated to be 11 km in length by 7 km in width. To estimate the parameters of the strong motion generation area, we used 1D and 2D velocity structures across the fault and a combined source model. The empirical Green’s function method using a combination of aftershocks produced a source model that reproduced ground motions with the best fit to the observed waveforms. This may be attributed to the existence of two distinct rupture mechanisms in the strong motion generation area. We found that the rupture starting point for which the simulated waveforms best fit the observed ones was near the center of the strong motion generation area, which reproduced near-source ground motions in a broadband frequency range. The estimated strong motion generation area could explain the observed damaging ground motion at the Bam station. This suggests that estimating the source characteristics of the Bam earthquake is very important in understanding the causes of the earthquake damage.  相似文献   

19.
This article explores the possibility to measure deformations of building foundations from measurements of ambient noise and strong motion recordings. The case under study is a seven-storey hotel building in Van Nuys, California. It has been instrumented by strong motion accelerographs, and has recorded several earthquakes, including the 1971 San Fernando (ML=6.6, R=22 km), 1987 Whittier–Narrows (ML=5.9, R=41 km), 1992 Landers (ML=7.5, R=186 km), 1992 Big Bear (ML=6.5, R=149 km), and 1994 Northridge (ML=6.4, R=1.5 km) earthquake and its aftershocks (20 March: ML=5.2, R=1.2 km; 6 December, 1994: ML=4.3, R=11 km). It suffered minor structural damage in 1971 earthquake and extensive damage in 1994. Two detailed ambient vibration tests were performed following the Northridge earthquake, one before and the other one after the 20 March aftershock. These included measurements at a grid of points on the ground floor and in the parking lot surrounding the building, presented and analyzed in this article. The analysis shows that the foundation system, consisting of grade beams on friction piles, does not act as a “rigid body” but deforms during the passage of microtremor and therefore earthquake waves. For this geometrically and by design essentially symmetric building, the center of stiffness of the foundation system appears to have large eccentricity (this is seen both from the microtremor measurements and from the earthquake recordings). This eccentricity may have contributed to strong coupling of transverse and torsional responses, and to larger than expected torsional response, contributing to damage during the 1994 Northridge, earthquake.  相似文献   

20.
Records of the Niigata Chuetsu-Oki earthquake (July, 16, 2007, M w?=?6.6, depth ~17?km) and its aftershocks from seismic vertical arrays deployed at the territory of the Kashiwazaki-Kariwa nuclear power plant (~15?km from the fault) are used to study the soil behavior down to ~250?m during strong ground motion. Nonlinear models of soil behavior during the main shock and six aftershocks are constructed, and stresses and strains induced by the strong motion in the soil layers at various depths are estimated. The data are processed using the method developed by Pavlenko and Irikura (Bull Seismol Soc Am 96(6): 2131–2145, 2003) and previously applied for studying the soil behavior in near-fault zones during the 1995 Kobe and 2000 Tottori earthquakes. A rather good agreement between the recorded and simulated acceleration time histories testifies to the validity of the obtained vertical distributions of stresses and strains in soil layers. In the upper, softer layers (~45?m) at the territory of the plant, the shear moduli were reduced by ~30–35% during the main shock and by ~1.5–3% during the aftershocks. The constructed models of soil behavior can be used in scenario earthquake shaking maps of Japan where, based on source modeling parameters, the level of strong motion can be evaluated for the territory of the power plant in future earthquakes with various magnitudes and fault planes. Using methods of stochastic finite-fault modeling of ground motions from the Chuetsu-Oki earthquake, we estimated input motion to the soil layers during the main shock and found that it differs from the imposed motion (recorded by the deepest sensor of the vertical array) by slightly decreased (by a factor of ~1.2) low-frequency (f?<?10?Hz) spectral components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号