首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A list of volcanic eruption plumes observed to ascend into or near the stratosphere since 1883 shows that the volcanoes divide readily into two groups, one at low and one at higher latitudes. A model for the rise of a buoyant volcanic plume rise as applied to volcanic eruptions is corrected for realistic temperature profiles and for the finite vertical extent of the resultant debris clouds. The utility of the model can be questioned, however, owing to the highly uncertain and variable nature of the efficiency of use of heat energy of buoyant rise. The observed correlation of stratospheric plumes with climatic effects indicates that those plumes nearer the equator have the largest impact on surface temperatures. Analysis of the observations also suggests that injection of debris into the stratosphere is more important in determining the effect on climate than either the total volcanic explosivity of the eruption or the actual height reached within the stratosphere.  相似文献   

2.
Pore water testing and analysis: the good,the bad,and the ugly   总被引:8,自引:0,他引:8  
The increasingly common practice of collecting and assessing sediment pore water as a primary measure of sediment quality is reviewed. Good features of this practice include: pore water is a key exposure route for some organisms associated with sediments; pore water testing eliminates particle size effects; pore water analyses and tests can provide useful information regarding contamination and pollution. Bad features include: pore water is not the only exposure route; pore water tests lack chemical or biological realism: their "sensitivity" relative to other tests may be meaningless due to manipulation and laboratory artifacts; many sediment and surface dwelling organisms are not directly influenced by pore water. Bad features can become ugly if: other exposure pathways are not considered (for toxicity or bioaccumulation); manipulation techniques are not appropriate; pore water tests are inappropriately linked to population-level effects. Pore water testing and analyses can be effective tools provided their limitations are well understood by researchers and managers.  相似文献   

3.
4.
Concentrations of Cd, Cr, Cu, Ni and Pb were determined in filtered water, suspended particulate matter, and bottom sediments from a 2000 km section of the Ob and Irtysh Rivers. Dissolved Cd, Cr, Cu and Ni concentrations are similar to, or higher than, results from other Russian Arctic and large world river-estuaries. Concentrations of Cd, Cr, Cu, Ni and Pb in suspended particulate matter are generally comparable to results from other Russian Arctic and large world rivers and estuaries. Comparison of trace metal ratios in crustal material and suspended particulate matter and bottom sediment suggests that the source of Cr, Cu and Ni is continental weathering. Particulate Cd and Pb are elevated relative to their crustal abundance, suggesting a source of these metals to the Ob-Irtysh in addition to continental weathering.  相似文献   

5.
The earth's largest positive geoid height anomalies are associated with subduction zones and hotspots. Although the correlation with subduction has been noted for many years, the correlation with hotspots is fully evident only when the subduction-related geoid highs are removed from the observed field. Using the assumption that subducted lithospheric slabs are uncompensated and are thermally re-equilibrated with the asthenosphere at the maximum depth of earthquakes, the expected geoid anomaly over subduction zones is calculated. This field provides a satis-factory fit to the observed circum-Pacific high. Subtraction of this predicted anomaly leaves a residual field which is correlated, at greater than the 99% confidence level, with the distribution of hotspots. Broad residual geoid highs occur over the central Pacific and the Africa/eastern Atlantic regions, the same areas where the hotspots are concentrated. The mass anomalies associated with hotspots and subducted slabs apparently control the location of the earth's spin axis.  相似文献   

6.
Monsoon and arid regions in the Asia-Africa-Australia(A-A-A) realm occupy more than 60% of the total area of these continents. Geological evidence showed that significant changes occurred to the A-A-A environments of the monsoon and arid regions, the land-ocean configuration in the Eastern Hemisphere, and the topography of the Tibetan Plateau(TP) in the Cenozoic. Motivated by this background, numerical experiments for 5 typical geological periods during the Cenozoic were conducted using a coupled ocean-atmosphere general circulation model to systemically explore the formations and evolutionary histories of the Cenozoic A-A-A monsoon and arid regions under the influences of continental drift and plateau uplift. Results of the numerical experiments indicate that the timings and causes of the formations of monsoon and arid regions in the A-A-A realm were very different. The northern and southern African monsoons existed during the mid-Paleocene, while the South Asian monsoon appeared in the Eocene after the Indian Subcontinent moved into the tropical Northern Hemisphere. In contrast, the East Asian monsoon and northern Australian monsoon were established much later in the Miocene. The establishment of the tropical monsoons in northern and southern Africa, South Asia, and Australia were determined by both the continental drift and seasonal migration of the Inter-Tropical Convergence Zone(ITCZ), while the position and height of the TP were the key factor for the establishment of the East Asian monsoon. The presence of the subtropical arid regions in northern and southern Africa,Asia, and Australia depended on the positions of the continents and the control of the planetary scale subtropical high pressure zones, while the arid regions in the Arabian Peninsula and West Asia were closely related to the retreat of the Paratethys Sea. The formation of the mid-latitude arid region in the Asian interior, on the other hand, was the consequence of the uplift of the TP.These results from this study provide insight to the important roles played by the earth's tectonic boundary conditions in the formations and evolutions of regional climates during geological times.  相似文献   

7.
Peaks in the Cascade Range in northern Washington State are on average ~800 m higher than in southern Washington. The influences of differential valley excavation and variations in hillslope length and average slope on these altitudinal trends were tested using a 3‐dimensional model for isostatic rock uplift and calculations of hillslope length and slope respectively. The magnitude of isostatic peak uplift calculated by the model is highly dependent on the flexural rigidity (D) and the related effective elastic thickness (Te) of the crust of this region. Crustal rigidity was constrained using published estimates and by estimating the depth of the seismogenic zone in the area (D > 1 × 1023 Nm and Te > 24 km). With these constraints, isostatic compensation due to differential erosion added < 700 m and 300 m, or < 25% overall, of height to peaks in the northern and southern Cascades, respectively. Deeper valley incision in the northern Cascades accounts for < 300 m of the 800 m difference in peak altitudes between north and south. Similarly, variation in valley spacing and slope account for < 350 m of the difference in mean altitude between northern and southern regions. Hence, at least several hundred m difference in altitude between the northern and southern regions of the Cascades in Washington must be due to tectonic, geologic, or geophysical factors rather than surficial and geomorphic effects like isostatic response to valley incision and hillslope geometry. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
9.
Before and after the Haicheng earthquake of magnitude 7.3 which occurred on February 4, 1975, five repeated gravimeter surveys were carried out, three before and two after the earthquake, along a northwest-southeast profile of about 250 km in length not far on the west of the epicenter. The mean-square error of the measurements of the gravity differences between two consecutive points on the profile is less than 40 μGal. From June, 1972 to May, 1973, within a period of about one year, the results of three surveys indicated a clear decrease of the gravity values at points on the southeastern portion of the profile, amounting to about 352 μGal. After the earthquake, the fourth survey, which was carried out in March, 1975, revealed that the gravity values had recovered to the levels of the first survey and continued to increase as was shown by a fifth survey carried out in July of the same year.Variations of gravity were also observed before and after the Tangshan earthquake of magnitude 7.8 which occurred on July 28, 1976, but in this case, gravity was increasing instead of decreasing before the earthquake. Along an east-west profile of about 270 km in length and not far on the north of the epicenter, two gravity surveys were made before and two after the earthquake. The results showed that after the main shock, the gravity values of the whole profile, especially at those points closer to Tangshan, tended to return gradually to their values of the first survey before the earthquake.From these results, there seems to be a close relationship between these gravity variations and the occurrences of earthquakes. Based on results of repeated levelling work done in these regions, the estimated amount of gravity change caused by the change of elevation of the ground surface is far too small to account for the observed value. Therefore we speculate that some large earthquakes might be associated with some sort of mass transfer under ground, within the crust or in the upper mantle. This transfer would cause a large part of the gravity variation observed. We have made a theoretical analysis of this effect and attempted to obtain some estimate of the magnitude of this mass transfer, even though we are not yet clear about the physics of it.  相似文献   

10.
亚-非-澳洲季风区和干旱区的面积约占这三大洲陆地总面积的60%以上.基于新生代以来亚-非-澳洲季风和干旱环境以及东半球海陆分布和青藏高原等地形显著变化的地质事实,利用全球海-气耦合模式开展新生代5个特征地质时期气候模拟试验,系统探讨了新生代亚-非-澳洲季风区和干旱区形成演化及其受大陆漂移和高原隆升的影响.结果表明,亚-非-澳洲季风区和干旱区形成的时间和原因明显不同.北非与南非季风在古新世中期已经存在,南亚次大陆季风在始新世印度大陆移入北半球热带后开始出现,而东亚和澳大利亚北部季风在中新世才建立.北非、南非、南亚和澳大利亚热带季风的建立是大陆漂移的位置和热带辐合带季节性迁移共同决定的,而青藏高原的位置和高度则是东亚季风建立的关键因素.北非、南非、亚洲和澳大利亚副热带干旱区的存在取决于大陆的位置和行星尺度副热带高压的控制,阿拉伯半岛和西亚干旱区的发展与区域尺度海陆变迁,特别是古特提斯海的退缩密切相关,而亚洲内陆中纬度干旱区的形成则是青藏高原隆升的结果.这一研究揭示了地球构造边界条件在地质时期区域气候环境形成演化中的重要作用.  相似文献   

11.
Great things are expected of the GAIA Observatory, currently expected to launch in 2011. Gerry Gilmore explains how it will provide accurate measurements that will help us understand the formation of the Milky Way and the distribution of dark matter.
The GAIA Observatory, ESA's Cornerstone 6 mission, addresses the origin and evolution of our galaxy, and a host of other scientific challenges. GAIA will provide unprecedented positional and radial velocity measurements with the accuracies needed to produce a stereoscopic and kinematic census of about one billion stars in our galaxy and throughout the Local Group, about 1% of the galactic stellar population. Combined with astrophysical information for each star, provided by on-board multicolour photometry, these data will have the precision and depth necessary to address the three key questions which underlie the GAIA science case: l when did the stars in the Milky Way form? l when and how was the Milky Way assembled? l what is the distribution of dark matter in our galaxy? The accurate stellar data acquired for this purpose will also have an enormous impact on all areas of stellar astrophysics, including luminosity calibrations, structural studies, and the cosmic distance scale. Additional scientific products include detection and orbital classification of tens of thousands of extrasolar planetary systems, a comprehensive survey of objects ranging from huge numbers of minor bodies in our solar system, including near-Earth objects, through galaxies in the nearby universe, to some 500 000 distant quasars. GAIA will also provide several stringent new tests of general relativity and cosmology.  相似文献   

12.
A new analysis of the isotope systematics of sulphide common leads can be made on the basis of examining the deriations of the data from a simple single-stage evolution. Δt, the age discrepancy between the single-stage lead model age and the geologic age, increases systematically from 3.8 Ga to the present. This trend appears to reflect an increase in the μ of the primitive mantle due to incorporation of a large portion of the earth's lead into the core, early in the earth's evolution. Leads associated with shale-hosted lead-zinc deposits show a rapid increase in Δt beginning at 2.5 to 2.0 Ga. This deviation of shale-hosted leads from the general trend is interpreted as a response to concentration of uranium in organic-rich shales subsequent to the evolution of an oxidizing atmosphere. Comparison of common leads in alkali feldspars with the volcanogenic sulphide data suggests that they have a similar evolution of Δt with time. Numerical simulations reveal that even substantial increases in real μ over the last 2.0 Ga are not reflected in significant increases in the single-stage model μs.  相似文献   

13.
The state of an Earth surface system (ESS) is determined by three sets of factors: laws, place, and history. Laws ( L = L1, L2, . . . , Ln) are the n general principles applicable to any such system at any time. Place factors ( P = P1, P2, . . . , Pm) are the m relevant characteristics of the local or regional environment. History factors ( H = H1 , H2, . . . , Hq) include the previous evolutionary pathway of the ESS, its stage of development, past disturbance, and initial conditions. Geoscience investigation may focus on laws, place, or history, but ultimately all three are necessary to understand and explain ESS. The LPH triad is useful as a pedagogical device, illustrated here via application to explaining the world's longest cave (Mammoth Cave, KY). Beyond providing a useful checklist, the LPH framework provides analytical traction to some difficult research problems. For example, studies of the avulsions of three southeast Texas rivers showed substantial differences in avulsion regimes and resulting alluvial morphology, despite the proximity and superficial similarity of the systems. Avulsions are governed by the same laws in all cases [ L (A) = L (B) = L (C)], and the three rivers have undergone the same sea‐level, climate, and tectonic histories, as well as the same general anthropic impacts [ H (A) ≈ H (B) ≈ H (C)]. Though regional environmental controls are similar, local details such as the location of the modern main channel relative to Pleistocene meander channels differ, and thus these place factors explain the differences between the rivers. The LPH framework, or similar types of reasoning, is implicit in many types of geoscience analysis. Explicit attention to the triad can help solve or address many specific problems and remind us of the importance of all three sets of factors. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
We consider an unforced, incompressible, turbulent magnetofluid constrained by concentric inner and outer spherical surfaces. We define a model system in which normal components of the velocity, magnetic field, vorticity, and electric current are zero on the boundaries. This choice allows us to find a set of Galerkin expansion functions that are common to both velocity and magnetic field, as well as vorticity and current. The model dynamical system represents magnetohydrodynamic (MHD) turbulence in a spherical domain and is analyzed by the methods similar to those applied to homogeneous MHD turbulence. We find a statistical theory of ideal (i.e. no dissipation) MHD turbulence analogous to that found in the homogeneous case, including the prediction of coherent structure in the form of a large-scale quasistationary magnetic field. This MHD dynamo depends on broken ergodicity, an effect that is enhanced when total magnetic helicity is increased relative to total energy. When dissipation is added and large scales are only weakly damped, quasiequilibrium may occur for long periods of time, so that the ideal theory is still pertinent on a global scale. Over longer periods of time, the selective decay of energy over magnetic helicity further enhances the effects of broken ergodicity. Thus, broken ergodicity is an essential mechanism and relative magnetic helicity is a critical parameter in this model MHD dynamo theory.  相似文献   

15.
We examine the impact of the Atmospheric Brown Clouds on the direct radiative forcing of the Himalayan foothills and the Indo-Gangetic Plains (IGP) regions, home for over 500 million S. Asians. The NASA-Terra MODIS satellite data reveal an extensive layer of aerosols covering the entire IGP and Himalayan foothills region with seasonal mean AODs of about 0.4 to 0.5 in the visible wavelengths (0.55 micron), which fall among the largest seasonal mean dry season AODs for the tropics. We show new surface data which reveal the presence of strongly absorbing aerosols that lead to a large reduction in solar radiation fluxes at the surface during the October to May period. The three-year mean (2001 to 2003) October to May seasonal and diurnal average reduction in surface solar radiation for the IGP region is about 32 (±5) W m−2 (about 10% of TOA insolation or 20% of surface insolation). The forcing efficiency (forcing per unit optical depth) is as large as −27% (note that the forcing is negative) of top-of-atmosphere (TOA) solar insolation, and exceeds the forcing efficiency that has been observed for other polluted regions in America, Africa, East Asia, and Europe. General circulation model sensitivity studies suggest that both the local and remote influence of the aerosol induced radiative forcing is to strengthen the lower atmosphere inversion, stabilize the boundary layer, amplify the climatological tendency for a drier troposphere, and decrease evaporation. These aerosol-induced changes could potentially increase the life times of aerosols, make them more persistent, and decrease their single scattering albedos, thus potentially leading to a detrimental positive feedback between aerosol concentrations, aerosol forcing, and aerosol persistence. In addition, both the model studies and observations of pan evaporation suggest that the reduction in surface solar radiation may have led to a reduction in surface evaporation of moisture. These results suggest the vulnerability of this vital region to air pollution related direct and indirect (through climate changes) impacts on agricultural productivity of the region.  相似文献   

16.
This paper explores the influence of the local meteoric conditions,the overlying soil on the concentrations of Ca,Mg,and Sr,and the ratios of Mg/Ca,Sr/Ca,and Mg/Sr in soil infiltrating water(SIW).An in situ monitoring program was carried out above the Furong Cave throughout 2010 to collect data on SIW,monthly temperature and rainfall,and the geochemical composition and granularity of soils.The discharge of SIW responded quickly to the local rainfall,and its residence time was the primary factor affecting the Ca,Mg,and Sr content of the SIW.The high concentrations of Ca,Mg,and Sr in the SIW during April should be attributed primarily to the prolonged residence of SIW in the soil during the local dry seasons of winter and early spring.The maximum Mg/Sr ratio also occurred in April.The ratio of Mg/Ca in SIW is positively correlated with prolonged residence time and with high temperatures,which do not strongly affect the ratio of Sr/Ca.The Mg/Ca ratio was lowest when the Sr/Ca ratio was highest because plant metabolism increased the absorption of Ca and Mg,but not Sr,and also because higher temperatures enhanced the dissolution of Mg more than that of Sr.These different responses of Mg and Sr to temperature increases resulted in high Mg/Sr ratios during July and August.  相似文献   

17.
The McDougall and Despina faults of the central Noranda volcanic complex cut subaqueous volcanic rocks in the Archean Abitibi greenstone belt. Rhyodacitic dikes occupy the faults, along with lesser amounts of andesitic, dioritic and a mixed basaltic-rhyodacitic dike. There are two types of rhyodacitic dikes, one massive the other brecciated. Massive dikes are homogeneous and spherulitic; brecciated dikes are dominated by curved, angular fragments with a few vesicles. Both occur either alone or together in the faults. Where the two occur together they are commonly interlayered in concentric layered lobes.The faults are interpreted as fissures for pulses of nonexplosive rhyodacitic lava. Many intrusive pulses interacted with an external fluid which occupied the faults. This interaction resulted in brecciated, glassy margins and massive, crystalline pulse interiors. Magma/fluid interaction is thus invoked as the mechanism responsible both for dike brecciation and the concentric layering. The dikes are considered as intrusive analogs of extrusive rhyolitic lobe lava observed in Iceland and in Noranda.  相似文献   

18.
Reliable use of strain data in geophysical studies requires their preliminary correction for ocean loading and various local distortions. These effects, in turn, can be estimated from the tidal records which are contributed by solid and oceanic loading. In this work, we estimate the oceanic tidal loading at two European strain stations (Baksan, Russia, and Gran Sasso, Italy) by analyzing the results obtained with the different Earth and ocean models. The influence of local distortions on the strain measurements at the two stations is estimated.  相似文献   

19.
Mean atomic weight profiles for the lunar mantle have been calculated from velocity-density systematic relations using lunar density and seismic velocity models. Despite large variability among the models, the calculation including Poisson's ratio yields a range of mean atomic weight values between 22 and 23 g mol?1 below 150 km. A similar calculation for the Earth's mantle produces a mean atomic weight of 21.1 ±0.4 g mol?1. This suggests that the Moon cannot be derived directly from the Earth's mantle, or that it has had a differentiation history different from the Earth's. The lunar m's require an Fe mole fraction between 0.25 and 0.33 for a pure olivine mantle, or between 0.33 and 0.45 for pure pyroxene.The present profiles are 0.5–3.0 g mol?1 higher than those calculated from lunar compositional models based on lunar rock compositions and petrology and assumed lunar histories, indicating inadequacies in either the seismic or compositional models, or in both. The mean atomic weight approach provides a method of comparing the consistency of seismic and compositional models of planetary interiors.  相似文献   

20.
Both “hot-spot” type and possibly island-arc volcanoes may form at the intersections of fractures whose spacing is near the thickness of the lithosphere and increases with increasing thickness. An approximate equality between layer thickness and spacing of major fractures observed in some sedimentary rocks and clay cake models may thus extend to the “mega-joints” that have fractured the lithosphere and controlled volcano spacing on the earth, and possibly on Mars. If the hot-spot fractures are interpreted as due to shear, many hot-spot fracture systems suggest roughly north-south least principal stress, or, alternatively in some instances, a 90° rotation of this pattern.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号