首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Water levels in cryoconite holes were monitored at high resolution over a 3‐week period on Austre Brøggerbreen (Svalbard). These data were combined with melt and energy balance modelling, providing insights into the evolution of the glacier's near‐surface hydrology and confirming that the hydrology of the near‐surface, porous ice known as the ‘weathering crust’ is dynamic and analogous to a shallow‐perched aquifer. A positive correlation between radiative forcing of melt and drainage efficiency was found within the weathering crust. This likely resulted from diurnal contraction and dilation of interstitial pore spaces driven by variations in radiative and turbulent fluxes in the surface energy balance, occasionally causing ‘sudden drainage events’. A linear decrease in water levels in cryoconite holes was also observed and attributed to cumulative increases in near‐surface ice porosity over the measurement period. The transport of particulate matter and microbes between cryoconite holes through the porous weathering crust is shown to be dependent upon weathering crust hydraulics and particle size. Cryoconite holes therefore yield an indication of the hydrological dynamics of the weathering crust and provide long‐term storage loci for cryoconite at the glacier surface. This study highlights the importance of the weathering crust as a crucial component of the hydrology, ecology and biogeochemistry of the glacier ecosystem and glacierized regions and demonstrates the utility of cryoconite holes as natural piezometers on glacier surfaces. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
Cold‐based polar glacier watersheds contain well‐defined supraglacial, ice‐marginal, and proglacial elements that differ in their degree of hydrologic connectivity, sources of water (e.g., snow, ice, and/or sediment pore water), meltwater residence times, allochthonous and autochthonous nutrient, and sediment loads. We investigated 11 distinct hydrological units along the supraglacial, ice marginal, and proglacial flow paths that drain Joyce Glacier in the McMurdo Dry Valleys of Antarctica. We found that these units play unique and important roles as sources and/or sinks for dissolved inorganic nitrogen and dissolved inorganic phosphorus and for specific fractions of dissolved organic matter (DOM) as waters are routed from the glacier into nutrient‐poor downstream ecosystems. Changes in nutrient export from the glacial system as a whole were observed as the routing and residence times of meltwater changed throughout the melt season. The concentrations of major ions in the proglacial stream were inversely proportional to discharge, such that there was a relatively constant “trickle” of these solutes into downstream ecosystems. In contrast, NO3? concentrations generally increased with discharge, resulting in delivery of episodic pulses of dissolved inorganic nitrogen‐rich water (“treats”) into those same ecosystems during high discharge events. DOM concentrations or fluorescence did not correlate with discharge rate, but high variability in DOM concentrations or fluorescence suggests that DOM may be exported downstream as episodic treats, but with spatial and/or temporal patterns that remain poorly understood. The strong, nutrient‐specific responses to changes in hydrology suggest that polar glacier drainage systems may export meltwater with nutrient compositions that vary within and between melt seasons and watersheds. Because nutrient dynamics identified in this study differ between glacier watersheds with broadly similar hydrology, climate, and geology, we emphasize the need to develop conceptual models of nutrient export that thoroughly integrate the biogeochemical and hydrological processes that control the sources, fate, and export of nutrients from each system.  相似文献   

3.
Bulk runoff and meteorological data suggest the occurrence of two meltwater outburst events at Finsterwalderbreen, Svalbard, during the 1995 and 1999 melt seasons. Increased bulk meltwater concentrations of Cl? during the outbursts indicate the release of snowmelt from storage. Bulk meltwater hydrochemical data and suspended sediment concentrations suggest that this snowmelt accessed a chemical weathering environment characterized by high rock:water ratios and long rock–water contact times. This is consistent with a subglacial origin. The trigger for both the 1995 and 1999 outbursts is believed to be high rates of surface meltwater production and the oversupply of meltwater to areas of the glacier bed that were at the pressure melting point, but which were unconnected to the main subglacial drainage network. An increase in subglacial water pressure to above the overburden pressure lead to the forcing of a hydrological connection between the expanding subglacial reservoir and the ice‐marginal channelized system. The purging of ice blocks from the glacier during the outbursts may indicate the breach of an ice dam during connection. Although subglacial meltwater issued continually from the glacier terminus via a subglacial upwelling during both melt seasons, field observations showed outburst meltwaters were released solely via an ice‐marginal channel. It is possible that outburst events are a seasonal phenomenon at this glacier and reflect the periodic drainage of meltwaters from the same subglacial reservoir from year to year. However, the location of this reservoir is uncertain. A 100 m high bedrock ridge traverses the glacier 6·5 km from its terminus. The overdeepened area up‐glacier from this is the most probable site for subglacial meltwater accumulation. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

4.
To improve our understanding of the interactions between hydrology and dynamics in mostly cold glaciers (in which water flow is limited by thermal regime), we analyse short‐term (every two days) variations in glacier flow in the ablation zone of polythermal John Evans Glacier, High Arctic Canada. We monitor the spatial and temporal propagation of high‐velocity events, and examine their impacts upon supraglacial drainage processes and evolving subglacial drainage system structure. Each year, in response to the rapid establishment of supraglacial–subglacial drainage connections in the mid‐ablation zone, a ‘spring event’ of high horizontal surface velocities and high residual vertical motion propagates downglacier over two to four days from the mid‐ablation zone to the terminus. Subsequently, horizontal velocities fall relative to the spring event but remain higher than over winter, reflecting channelization of subglacial drainage but continued supraglacial meltwater forcing. Further transient high‐velocity events occur later in each melt season in response to melt‐induced rising supraglacial meltwater inputs to the glacier bed, but the dynamic response of the glacier contrasts with that recorded during the spring event, with the degree of spatial propagation a function of the degree to which the subglacial drainage system has become channelized. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
Stable isotope variability and fractionation associated with transformation of precipitation/accumulation to firn to glacial river water is critical in a variety of climatic, hydrological and paleoenvironmental studies. This paper documents the modification of stable isotopes in water from precipitation to glacier runoff in an alpine catchment located in the central Tibetan Plateau. Isotopic changes are observed by sampling firnpack profiles, glacier surface snow/ice, meltwater on the glacier surface and catchment river water at different times during a melt season. Results show the isotopic fractionation effects associated with glacier melt processes. The slope of the δD‐δ18O regression line and the deuterium excess values decreased from the initial precipitation to the melt‐impacted firnpack (slope from 9.3 to 8.5 and average d‐excess from 13.4‰ to 7.4‰). The slope of the δD‐δ18O line further decreased to 7.6 for the glacier runoff water. The glacier surface snow/ice from different locations, which produces the main runoff, had the same δD‐δ18O line slope but lower deuterium excess (by 3.9‰) compared to values observed in the firnpack profile during the melt season. The δD‐δ18O regression line for the river water exhibited a lower slope compared to the surface snow/ice samples, although they were closely located on the δD‐δ18O plot. Isotope values for the river and glacier surface meltwater showed little scatter around the δD‐δ18O regression line, although the samples were from different glaciers and were collected on different days. Results indicate a high consistency of isotopic fractionation in the δD‐δ18O relationships, as well as a general consistency and temporal covariation of meltwater isotope values at the catchment scale. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
Thick supraglacial debris layers often have an undulating, hummocky topography that influences the lateral transport of debris and meltwater and provides basins for supraglacial ponds. The role of ablation and other processes associated with supraglacial debris in giving rise to this hummocky topography is poorly understood. Characterizing hummocky topography is a first step towards understanding the feedbacks driving the evolution of debris-covered glacier surfaces and their potential impacts on mass balance, hydrology and glacier dynamics. Here we undertake a geomorphological assessment of the hummocky topography on five debris-covered glaciers in the Everest region of the central Himalaya. We characterize supraglacial hummocks through statistical analyses of their vertical relief and horizontal geometry. Our results establish supraglacial hummocks as a distinct landform. We find that a typical hummock has an elongation ratio of 1.1:1 in the direction of ice flow, length of 214 ± 109 m and width of 192 ± 88 m. Hummocky topography has a greater amplitude across-glacier (15.4 ± 10.9 m) compared to along the glacier flow line (12.6 ± 8.3 m). Consequently, hummock slopes are steeper in the across-glacier direction (8.7 ± 4.3°) than in the direction of ice flow (5.6 ± 4.0°). Longer, wider and higher-amplitude hummocks are found on larger glaciers. We postulate that directional anisotropy in the hummock topography arises because, while the pattern of differential ablation driving topography evolution is moderated by processes including the gravitational redistribution of debris across the glacier surface, it also inherits an orientation preference from the distribution of englacial debris in the underlying ice. Our morphometric data inform future efforts to model these interactions, which should account for additional factors such as the genesis of supraglacial ponds and ice cliffs and their impact on differential ablation.  相似文献   

7.
Supraglacial rivers on the Greenland Ice Sheet (GrIS) transport large volumes of surface meltwater toward the ocean, yet have received relatively little direct research. This study presents field observations of channel width, depth, velocity, and water surface slope for nine supraglacial channels on the south‐western GrIS collected between July 23 and August 20, 2012. Field sites are located up to 74 km inland and span 494–1485 m elevation, and contain measured discharges larger than any previous in situ study: from 0.006 to 23.12 m3/s in channels 0.20 to 20.62 m wide. All channels were deeply incised with near vertical banks, and hydraulic geometry results indicate that supraglacial channels primarily accommodate greater discharges by increasing velocity. Smaller streams had steeper water surface slopes (0.74–8.83%) than typical in terrestrial settings, yielding correspondingly high velocities (0.40–2.60 m/s) and Froude numbers (0.45–3.11) with supercritical flow observed in 54% of measurements. Derived Manning's n values were larger and more variable than anticipated from channels of uniform substrate, ranging from 0.009 to 0.154 with a mean value of 0.035 ± 0.027 despite the absence of sediment, debris, or other roughness elements. Ubiquitous micro‐depressions in shallow sections of the channel bed may explain some of these roughness values. However, we find that other, unobserved sources of flow resistance likely contributed to these elevated Manning's n values: future work should explicitly consider additional sources of flow resistance beyond bed roughness in supraglacial channels. We conclude that hydraulic modeling for these channels must allow for both subcritical and supercritical flow, and most importantly must refrain from assuming that all ice‐substrate channels exhibit similar hydraulic behavior, especially for Froude numbers and Manning's n. Finally, this study highlights that further theoretical and empirical work on supraglacial channel hydraulics is necessary before broad scale understanding of ice sheet hydrology can be achieved. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
The water storage and energy transfer roles of supraglacial ponds are poorly constrained, yet they are thought to be important components of debris‐covered glacier ablation budgets. We used an unmanned surface vessel (USV) to collect sonar depth measurements for 24 ponds to derive the first empirical relationship between their area and volume applicable to the size distribution of ponds commonly encountered on debris‐covered glaciers. Additionally, we instrumented nine ponds with thermistors and three with pressure transducers, characterizing their thermal regime and capturing three pond drainage events. The deepest and most irregularly‐shaped ponds were those associated with ice cliffs, which were connected to the surface or englacial hydrology network (maximum depth = 45.6 m), whereas hydrologically‐isolated ponds without ice cliffs were both more circular and shallower (maximum depth = 9.9 m). The englacial drainage of three ponds had the potential to melt ~100 ± 20 × 103 kg to ~470 ± 90 × 103 kg of glacier ice owing to the large volumes of stored water. Our observations of seasonal pond growth and drainage with their associated calculations of stored thermal energy have implications for glacier ice flow, the progressive enlargement and sudden collapse of englacial conduits, and the location of glacier ablation hot‐spots where ponds and ice cliffs interact. Additionally, the evolutionary trajectory of these ponds controls large proglacial lake formation in deglaciating environments. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

9.
Stable oxygen isotope analysis and measurement of several dissolved cations and anions of bulk meltwater samples have provided information about the hydrochemical environment of the glacial hydrological system at Imersuaq Glacier, an outlet tongue from the Greenland ice‐sheet, West Greenland. The samples were collected at frequent intervals during the period 20–28 July 2000 in a small (<20 L s?1) englacial meltwater outlet at the glacier margin. The results document the following findings: (i) a marked diurnal variation of δ18O is related to the composition of oxygen isotope provenances, mainly near‐marginal local superimposed ice and basal up‐sheared ice further up‐glacier; (ii) a relationship is seen between all base cations (Na+, K+, Ca2+, Mg2+), SO42? and δ18O, indicating that solute acquisition is provided by solid–solution contact with the up‐sheared ice—as the relationship with Cl? is weak the influence of seasalt‐derived solutes is small in the area; (iii) when the melt rate is high, two diurnal maxima of δ18O values and solute concentrations are measured, and it is suggested that a snow meltwater component is responsible for the second maximum of δ18O—a short residence time leads to a delayed decrease in ion concentrations. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

10.
Glaciological controls on debris cover formation are investigated from the perspective of primary dispersal of supraglacial debris across a melting ice surface. This involves the migration of angled debris septa outcrops across a melting, thinning glacier ablation zone. Three measures of a glacier's ability to evacuate supraglacial debris are outlined: (1) a concentration factor describing the focusing of englacial debris into specific supraglacial mass loads; (2) the rate of migration of a septum outcrop relative to the local ice surface; and (3) a downstream velocity differential between a slower septum outcrop and the faster ice surface velocity. Measures (1) and (2) are inversely related, while measure (3) increases down‐glacier to explain why slow‐moving, thinning ice rapidly becomes debris covered. Data from Glacier d'Estelette (Italian Alps) are used to illustrate these processes, and to explore the potential for debris cover formation and growth in different glaciological environments. The transition from a ‘clean’, transport‐dominated to a debris‐covered ablation‐dominated glacier is explained by the melting out of more closely‐spaced debris septa, in combination with the geometric interactions of angled septa and ice surface in a field of reducing flow and increasing ablation. The growth and shrinkage of debris covers are most sensitive to glaciological changes at glaciers with gently‐dipping debris‐bearing foliation, but less sensitive at high‐compression glaciers whose termini are constrained by moraine dams and other forms of obstruction. These findings show that a variety of debris‐covered glacier types will show a spectrum of response characteristics to negative mass balance. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
Snow and glaciers are known to be important sources for freshwater; nevertheless, our understanding of the hydrological functioning of glacial catchments remains limited when compared with lower altitude catchments. In this study, a temperate glacial region located in the southeast margin of the Tibetan Plateau is selected to analyse the characteristics of δ18O and δD in different water sources and the contribution of glacier–snow meltwater to streamflow. The results indicate that the δ18O of river water ranges from ?16.2‰ to ?10.2‰ with a mean of ?14.1‰ and that the δD values range from ?117.0‰ to ?68.0‰ with a mean of ?103.1‰. These values are more negative than those of glacier–snow meltwater but less negative than those of precipitation. The d ‐excess values are found to decrease from meltwater to river to lake/reservoir water as a result of evaporation. On the basis of hydrograph separation, glacier–snow meltwater accounts for 51.5% of river water in the Baishui catchment in the melting season. In the Yanggong catchment, snow meltwater contributes 47.9% to river water in the premonsoon period, and glacier meltwater contributes only 6.8% in the monsoon period. The uncertainty in hydrograph separation is sensitive to the variation of tracer concentrations of streamflow components. The input of meltwater to a water system varies with local climate and glacier changes. The results confirm that hydrograph separation using water isotopes is valuable for evaluating the recharge sources of rivers, especially in ungauged glacial regions. This study provides insights into the hydrological processes of glacial catchments on the Tibetan Plateau, which is important for water resource management.  相似文献   

12.
Modelling melt and runoff from snow‐ and ice‐covered catchments is important for water resource and hazard management and for the scientific study of glacier hydrology, dynamics and hydrochemistry. In this paper, a distributed, physically based model is used to determine the effects of the up‐glacier retreat of the snowline on spatial and temporal patterns of melt and water routing across a small (0·11 km2) supraglacial catchment on Haut Glacier d'Arolla, Switzerland. The melt model uses energy‐balance theory and accounts for the effects of slope angle, slope aspect and shading on the net radiation fluxes, and the effects of atmospheric stability on the turbulent fluxes. The water routing model uses simplified snow and open‐channel hydrology theory and accounts for the delaying effects of vertical and horizontal water flow through snow and across ice. The performance of the melt model is tested against hourly measurements of ablation in the catchment. Calculated and measured ablation rates show a high correlation (r2 = 0·74) but some minor systematic discrepancies in the short term (hours). These probably result from the freezing of surface water at night, the melting of the frozen layer in the morning, and subsurface melting during the afternoon. The performance of the coupled melt/routing model is tested against hourly discharge variations measured in the supraglacial stream at the catchment outlet. Calculated and measured runoff variations show a high correlation (r2 = 0·62). Five periods of anomalously high measured discharge that were not predicted by the model were associated with moulin overflow events. The radiation and turbulent fluxes contribute c. 86% and c. 14% of the total melt energy respectively. These proportions do not change significantly as the surface turns from snow to ice, because increases in the outgoing shortwave radiation flux (owing to lower albedo) happen to be accompanied by decreases in the incoming shortwave radiation flux (owing to lower solar incidence angles) and increases in the turbulent fluxes (owing to higher air temperatures and vapour pressures). Model sensitivity experiments reveal that the net effect of snow pack removal is to increase daily mean discharges by c. 50%, increase daily maximum discharges by >300%, decrease daily minimum discharges by c. 100%, increase daily discharge amplitudes by >1000%, and decrease the lag between peak melt rates and peak discharges from c. 3 h to c. 50 min. These changes have important implications for the development of subglacial drainage systems. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

13.
Rock glaciers are slowly flowing mixtures of debris and ice occurring in mountains. They can represent a reservoir of water, and melting ice inside them can affect surface water hydrochemistry. Investigating the interactions between rock glaciers and water bodies is therefore necessary to better understand these mechanisms. With this goal, we elucidate the hydrology and structural setting of a rock glacier–marginal pond system, providing new insights into the mechanisms linking active rock glaciers and impounded surface waters. This was achieved through the integration of waterborne geophysical techniques (ground penetrating radar, electrical resistivity tomography and self‐potentials) and heat tracing. Results of these surveys showed that rock glacier advance has progressively filled the valley depression where the pond is located, creating a dam that could have modified the level of impounded water. A sub‐surface hydrological window connecting the rock glacier to the pond was also detected, where an inflow of cold and mineralised underground waters from the rock glacier was observed. Here, greater water contribution from the rock glacier occurred following intense precipitation events during the ice‐free season, with concomitant increasing electrical conductivity values. The outflowing dynamic of the pond is dominated by a sub‐surface seepage where a minor fault zone in bedrock was found, characterised by altered and highly‐fractured rocks. The applied approach is evaluated here as a suitable technique for investigating logistically‐complex hydrological settings which could be possibly transferred to wider scales of investigation. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

14.
王欣  丁永建  张勇 《湖泊科学》2019,31(3):609-620
冰川融水通过热量、水、物质传输对山地冰冻圈冰湖水文效应产生影响,引起广泛关注.本文从山地冰冻圈冰湖的水量、物理化学性质、生物等方面系统总结冰川融水对冰湖水文效应的影响.冰川融水被冰湖滞留能在一定程度上延缓区域冰川水资源的亏损,但也直接导致了潜在危险性冰湖数量和危险程度增大.冰川融水对冰湖物理性质的影响主要表现在降低湖水温度、影响透明度/浊度、改变湖水密度、造成湖水热力分层现象等方面,对冰湖化学性质的影响主要表现在增加湖水中的氮素、溶解有机物、持久性有机污染物、各类离子和重金属等,进而影响冰湖生物的分布、组成、结构和功能.深入系统地开展冰川融水及其变化对冰湖水文效应研究,对冰川水文与水资源、山地冰冻圈生态环境研究具有重要意义.  相似文献   

15.
Proglacial icings are one of the most common forms of extrusive ice found in the Canadian Arctic. However, the icing adjacent to Fountain Glacier, Bylot Island, is unique due to its annual cycle of growth and decay, and perennial existence without involving freezing point depression of water due to chemical characteristics. Its regeneration depends on the availability of subglacial water and on the balance between ice accretion and hydro‐thermal erosion. The storage and conduction of the glacial meltwater involved in the accretion of the icing were analyzed by conducting topographic and ground penetrating radar surveys in addition to the modelling of the subglacial drainage network and the thermal characteristics of the glacier base. The reflection power analysis of the geophysical data shows that some areas of the lower ablation zone have a high accumulation of liquid water, particularly beneath the centre part of the glacier along the main supraglacial stream. A dielectric permittivity model of the glacier – sediment interface suggests that a considerable portion of the glacier is warm based; allowing water to flow through unfrozen subglacial sediments towards the proglacial outwash plain. All these glacier‐related characteristics contribute to the annual regeneration of the proglacial icing and allow for portions of the icing to be perennial. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
The molecular characteristics of dissolved organic matter (DOM) reflect both its source material and its biogeochemical history. In glacial systems, DOM characteristics might be expected to change over the course of a melt season as changes in the glacier drainage system cause the mobilization of DOM from different OM pools. To test this hypothesis we used Principal Components Analysis (PCA) of synchronous fluorescence spectra to detect and describe changes in the DOM in meltwater from a glacier system in the Coast Mountains of northern British Columbia, Canada. For most of the melt season, the dominant component of subglacially routed meltwater DOM is characterized by a tyrosine‐like fluorophore. This DOM component is most likely derived from supraglacial snowmelt. During periods of high discharge, a second component of DOM is present which is humic in character and similar to DOM sampled from a nearby non‐glacial stream. This DOM component is inferred to be derived from a moss‐covered soil environment that has been glacially overrun. It is probably entrained into glacial melt waters when the supraglacial meltwater flux exceeds the capacity of the principal subglacial drainage channels and water floods areas of the glacier bed that are normally isolated from the subglacial drainage system. Another source of DOM also appears to be mobilized during periods of high air temperatures. It is characterized by both humic and proteinaceous fluorophores and may be derived from the drainage of supraglacial cryoconite holes. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
In high elevation cold regions of the Tibetan Plateau, suspended sediment transfer from glacier meltwater erosion is one of the important hydrological components. The Zhadang glacier is a typical valley‐type glacier in the Nyainqentanglha Mountains on the Tibetan Plateau. To make frequent and long period records of meltwater runoff and sediment processes in the very high elevation and isolated regions, an automatic system was installed near the glacier snout (5400 m a.s.l) in August 2013, to measure the transient discharge and sediment processes at 5‐min interval, which is shorter than the time span for the water flow to traverse the catchment from the farthest end to the watershed outlet. Diurnal variations of discharge, and suspended sediment concentration (SSC) were recorded at high frequency for the Zhadang glacier, before suspended sediment load (SSL) was computed. Hourly SSC varied from the range of 0.2 kg/m3 to 0.5 kg/m3 (at 8:00–9:00) to the range of 2.0 kg/m3 to 4.0 kg/m3 (at 17:00–18:00). The daily SSL was 32.24 t during the intense ablation period. Hourly SSC was linearly correlated with discharge (r = 0.885**, n = 18, p < 0.01). A digit‐eight hysteresis loop was observed for the sediment transport in the glacier area. Air temperature fluctuations influence discharge, and then result in the sediment variations. The results of this study provide insight into the responses of suspended sediment delivery processes with a high frequency data in the high elevation cold regions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
There has been increasing attention over the last decade to the potential effects of glacier retreat on downstream discharge and aquatic habitat. This study focused on streamflow variability downstream of Bridge Glacier in the southern Coast Mountains of BC between 1979 and 2014, prior to and during a period in which the glacier experienced enhanced calving and rapid retreat across a lake‐filled basin. Here we combined empirical trend detection and a conceptual‐parametric hydrological model to address the following hypotheses: (1) streamflow trends in late summer and early autumn should reflect the opposing influences of climatic warming (which would tend to increase unit‐area meltwater production) and the reduction in glacier area (which would tend to reduce the total volume of meltwater generated), and (2) winter streamflow should increase because of displacement of lake water as ice flows past the grounding line and calves into the lake basin. In relation to the first hypothesis, we found no significant trends in monthly discharge during summer. However, applying regression analysis to account for air temperature and precipitation variations, weak but statistically significant negative trends were detected for August and melt season discharge. The HBV‐EC model was applied using time‐varying glacier cover, as derived from Landsat imagery. Relative to simulations based on constant glacier extent, model results indicated that glacier recession caused a decline in mean monthly streamflow of 9% in August and 11% in September. These declines in late‐summer streamflow are consistent with the results from our empirical analysis. The second hypothesis is supported by the finding of positive trends for December, January, and February discharge. Despite the modelled declines in late‐summer mean monthly streamflow, recorded discharge data exhibited neither positive nor negative trends during the melt season, suggesting that Bridge Glacier may currently be at or close to the point of peak water. Further analysis of the impact of lake‐terminating glaciers on downstream discharge is needed to refine the peak water model. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
In recent years, ground‐penetrating radar (GPR) has been increasingly used for characterization of subglacial and englacial environments at polythermal glaciers. The geophysical method is able to exploit the dielectric difference between water, air, sediment and ice, allowing delineation of subsurface hydrological, thermal and structural conditions. More recent GPR research has endeavoured to examine temporal change in glaciers, in particular the distribution of the cold ice zone at polythermal glaciers. However, the exact nature of temporal change that can be identified using GPR has not been fully examined. This research presents the results of three GPR surveys conducted over the course of a summer ablation season at a polythermal glacier in the Canadian Arctic. A total of approximately 30 km of GPR profiles were collected in 2002 repeatedly covering the lower 2 km of Stagnation Glacier, Bylot Island (72°58′ N 78°22′ W). Comparison between profiles indicated changes in the radar signature, including increased noise, appearance and disappearance of englacial reflections, and signal attenuation in the latter survey. Further, an area of chaotic returns in up‐glacier locations, which was interpreted to be a wet temperate ice zone, showed marked recession over the course of the ablation season. Combining all the temporal changes that were detected by GPR, results indicate that a polythermal glacier may exhibit strongly seasonal changes in hydrological and thermal characteristics throughout the ice body, including the drainage of 17 000 m3 of temporarily stored intra‐glacial meltwater. It is also proposed that the liquid water content in the temperate ice zone of polythermal glaciers can be described as a fraction of a specific retention capacity. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
A one‐dimensional energy and mass balance snow model (SNTHERM) has been modified for use with supraglacial snowpacks and applied to a point on Haut Glacier d'Arolla, Switzerland. It has been adapted to incorporate the underlying glacier ice and a site‐specific, empirically derived albedo routine. Model performance was tested against continuous measurements of snow depth and meltwater outflow from the base of the snowpack, and intermittent measurements of surface albedo and snowpack density profiles collected during the 1993 and 2000 melt seasons. Snow and ice ablation was simulated accurately. The timing of the daily pattern of meltwater outflow was well reproduced, although magnitudes were generally underestimated, possibly indicating preferential flow into the snowpack lysimeter. The model was used to assess the quantity of meltwater stored temporally within the unsaturated snowpack and meltwater percolation rates, which were found to be in agreement with dye tracer experiments undertaken on this glacier. As with other energy balance studies on alpine valley glaciers, the energy available for melt was dominated by net radiation (64%), with a sizable contribution from sensible heat flux (36%) and with a negligible latent heat flux overall, although there was more complex temporal variation on diurnal timescales. A basic sensitivity analysis indicated that melt rates were most sensitive to radiation, air temperature and snowpack density, indicating the need to accurately extrapolate/interpolate these variables when developing a spatially distributed framework for this model. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号