首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Storage is a fundamental but elusive component of drainage basin function, influencing synchronization between precipitation input and streamflow output and mediating basin sensitivity to climate and land use/land cover (LULC) change. We compare hydrometric and isotopic approaches to estimate indices of dynamic and total basin storage, respectively, and assess inter-basin differences in these indices across the Oak Ridges Moraine (ORM) region of southern Ontario, Canada. Dynamic storage indices for the 20 study basins included the ratio of baseflow to total streamflow (baseflow index BFI), Q 99 flow and flow duration curve (FDC) slope. Ratios of the standard deviation of the streamflow stable isotope signal relative to that of precipitation were determined for each basin from a 1 year bi-weekly sampling program and used as indicators of total storage. Smaller ratios imply longer water travel times, smaller young water fractions (F yw, < ~2–3 months in age) in streamflow and greater basin storage. Ratios were inversely related to BFI and Q 99, and positively related to FDC slope, suggesting longer travel times and smaller F yw for basins with stable baseflow-dominated streamflow regimes. Inter-basin differences in all indices reflected topographic, hydrogeologic and LULC controls on storage, which was greatest in steep, forest-covered headwaters underlain by permeable deposits with thick and relatively uniform unsaturated zones. Nevertheless, differential sensitivity of indices to controls on storage indicates the value of using several indices to capture more completely how basin characteristics influence storage. Regression relationships between storage indices and basin characteristics provided reasonable predictions of aspects of the streamflow regime of test basins in the ORM region. Such relationships and the underlying knowledge of controls on basin storage in this landscape provide the foundation for initial predictions of relative differences in streamflow response to regional changes in climate and LULC.  相似文献   

2.
James M. Buttle 《水文研究》2016,30(24):4644-4653
The potential for dynamic storage to serve as a metric of basin behaviour was assessed using data from five drainage basins with headwaters on the thick sand and gravel deposits of the Oak Ridges Moraine in southern Ontario, Canada. Dynamic storage was directly correlated with the ratio of variability of δ2H in streamflow relative to that in precipitation. This ratio has previously been shown to be inversely related to basin mean transit time (MTT), suggesting an inverse relationship between dynamic storage and MTT for the study basins. Dynamic storage was also directly correlated with interannual variability in stream runoff, baseflow and baseflow:runoff ratio, implying that basins with smaller dynamic storage have less interannual variability in their streamflow regimes. These preliminary results suggest that dynamic storage may serve as a readily derived and useful metric of basin behaviour for inter‐basin comparisons. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
The spatial and temporal variations of precipitation and runoff for 139 basins in South Korea were investigated for 34 years (1968–2001). The Precipitation‐Runoff Modelling System (PRMS) was selected for the assessment of basin hydrologic response to varying climates and physiology. A non‐parametric Mann–Kendall's test and regression analysis are used to detect trends in annual, seasonal, and monthly precipitation and runoff, while Moran's I is adapted to determine the degree of spatial dependence in runoff trend among the basins. The results indicated that the long‐term trends in annual precipitation and runoff were increased in northern regions and decreased in south‐western regions of the study area during the study period. The non‐parametric Mann–Kendall test showed that spring streamflow was decreasing, while summer streamflow was increasing. April precipitation decreased between 15% and 74% for basins located in south‐western part of the Korean peninsula. June precipitation increased between 18% and 180% for the majority of the basins. Trends in seasonal and monthly streamflow show similar patterns compared to trends in precipitation. Decreases in spring runoff are associated with decreases in spring precipitation which, accompanied by rising temperatures, are responsible for reducing soil moisture. The regional patterns of precipitation and runoff changes show a strong to moderate positive spatial autocorrelation, suggesting that there is a high potential for severe spring drought and summer flooding in some parts of Korea if these trends continue in the future. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
Despite the significant role of precipitation in the hydrological cycle, few studies have been conducted to evaluate the impacts of the temporal resolution of rainfall inputs on the performance of SWAT (soil and water assessment tool) models in large-sized river basins. In this study, both daily and hourly rainfall observations at 28 rainfall stations were used as inputs to SWAT for daily streamflow simulation in the Upper Huai River Basin. Study results have demonstrated that the SWAT model with hourly rainfall inputs performed better than the model with daily rainfall inputs in daily streamflow simulation, primarily due to its better capability of simulating peak flows during the flood season. The sub-daily SWAT model estimated that 58 % of streamflow was contributed by baseflow compared to 34 % estimated by the daily model. Using the future daily and 3-h precipitation projections under the RCP (Representative Concentration Pathways) 4.5 scenario as inputs, the sub-daily SWAT model predicted a larger amount of monthly maximum daily flow during the wet years than the daily model. The differences between the daily and sub-daily SWAT model simulation results indicated that temporal rainfall resolution could have much impact on the simulation of hydrological process, streamflow, and consequently pollutant transport by SWAT models. There is an imperative need for more studies to examine the effects of temporal rainfall resolution on the simulation of hydrological and water pollutant transport processes by SWAT in river basins of different environmental conditions.  相似文献   

5.
6.
J.M. Buttle  M.C. Eimers   《Journal of Hydrology》2009,374(3-4):360-372
Relationships explaining streamflow behaviour in terms of drainage basin physiography greatly assist efforts to extrapolate streamflow metrics from gauged to ungauged basins in the same landscape. The Dorset Environmental Science Centre (DESC) has monitored streamflow from 22 small basins (3.4–190.5 ha) on the Precambrian Shield in south-central Ontario, in some cases since 1976. The basins exhibit regional coherence in their interannual response to precipitation; however, there is often a poor correlation between streamflow metrics from basins separated by as little as 1 km. This study assesses whether inter-basin variations in such metrics can be explained in terms of basin scale and physiography. Several characteristics (annual maximum, minimum and average flow) exhibited simple scaling with basin area, while magnitude, range and timing of annual maximum daily runoff showed scaling behaviour consistent with the Representative Elementary Area (REA) concept. This REA behaviour is partly attributed to convergence of fractional coverage of the two dominant and hydrologically-contrasting land cover types in the DESC region with increasing basin size. Three Principal Components (PCs) explained 82.4% of the variation among basin physiographic properties, and several runoff metrics (magnitude and timing of annual minimum daily runoff, mean number of days per year with 0 streamflow) exhibited significant relationships with one or more PC. Significant relationships were obtained between basin quickflow (QF) production and the PCs on a seasonal and annual basis, almost all of which were superior to simple area-based relationships. Basin physiography influenced QF generation via its control on slope runoff, water storage and hydrologic connectivity; however, this role was minimized during Spring when QF production in response to large rain-on-snow events was relatively uniform across the DESC basins. The PC-based relationships and inter-seasonal changes in their form were consistent with previous research conducted at point, slope and basin scales in the DESC region, and perceptions of key hydrological processes in these small basins may not have been as readily obtained from scaling studies using streamflow from larger basins. This process understanding provides insights into scaling behaviour beyond those derived from simple scaling and REA analyses. The physiography of the study area is representative of large portions of the Precambrian Shield, such that basin streamflow behaviour could potentially be extended across much of south-central Ontario. This would assist predictions of streamflow conditions at ungauged locations, development and testing of hydrological models for this landscape, and interpretation of inter-basin and intra-annual differences in hydrochemical behaviour on the southern Precambrian Shield.  相似文献   

7.
Low streamflow statistic estimators at ungauged river sites generally have large errors and uncertainties. This can be due to many reasons, including lack of data, complex hydrologic processes, and the inadequate or improper characterization of watershed hydrogeology. One potential solution is to take a small number of streamflow measurements at an ungauged site to either estimate hydrogeologic indices or transfer information from a nearby site using concurrent streamflow measurements. An analysis of four low streamflow estimation techniques, regional regression, regional plus hydrogeologic indices, baseflow correlation, and scaling, was performed within the Apalachicola–Chattahoochee–Flint watershed, a U.S. Geological Survey WaterSMART region in the south‐eastern United States. The latter three methods employ a nominal number of spot measurements at the ungauged site to improve low streamflow estimation. Results indicate that baseflow correlation and scaling methods, which transfer information from a donor site, can produce improved low streamflow estimators when spot measurements are available. Estimation of hydrogeologic indices from spot measurements improves regional regression models, with the baseflow recession constant having more explanatory power than the aquifer time constant, but these models are generally outperformed by baseflow correlation and scaling.  相似文献   

8.
High‐elevation mountain catchments are often subject to large climatic and topographic gradients. Therefore, high‐density hydrogeochemical observations are needed to understand water sources to streamflow and the temporal and spatial behaviour of flow paths. These sources and flow paths vary seasonally, which dictates short‐term storage and the flux of water in the critical zone (CZ) and affect long‐term CZ evolution. This study utilizes multiyear observations of chemical compositions and water residence times from the Santa Catalina Mountains Critical Zone Observatory, Tucson, Arizona to develop and evaluate competing conceptual models of seasonal streamflow generation. These models were tested using endmember mixing analysis, baseflow recession analysis, and tritium model “ages” of various catchment water sources. A conceptual model involving four endmembers (precipitation, soil water, shallow, and deep groundwater) provided the best match to observations. On average, precipitation contributes 39–69% (55 ± 16%), soil water contributes 25–56% (41 ± 16%), shallow groundwater contributes 1–5% (3 ± 2%), and deep groundwater contributes ~0–3% (1 ± 1%) towards annual streamflow. The mixing space comprised two principal planes formed by (a) precipitation‐soil water‐deep groundwater (dry and summer monsoon season samples) and (b) precipitation‐soil water‐shallow groundwater (winter season samples). Groundwater contribution was most important during the wet winter season. During periods of high dynamic groundwater storage and increased hydrologic connectivity (i.e., spring snowmelt), stream water was more geochemically heterogeneous, that is, geochemical heterogeneity of stream water is storage‐dependent. Endmember mixing analysis and 3H model age results indicate that only 1.4 ± 0.3% of the long‐term annual precipitation becomes deep CZ groundwater flux that influences long‐term deep CZ development through both intercatchment and intracatchment deep groundwater flows.  相似文献   

9.
《Journal of Hydrology》2006,316(1-4):53-70
The North American Monsoon (NAM) system controls the warm season climate over much of southwestern North America. In this semi-arid environment, understanding the regional behavior of the hydroclimatology and its associated modes of variability is critically important to effectively predicting and managing perpetually stressed regional water resources. Equally as important is understanding the relationships through which warm season precipitation is converted into streamflow. This work explores the hydroclimatology of northwestern Mexico, i.e. the core region of the NAM, by (a) presenting a thorough review of recent hydroclimatic investigations from the region and (b) developing a detailed hydroclimatology of 15, unregulated, headwater basins along the Sierra Madre Occidental mountains in western Mexico. The present work is distinct from previous studies as it focuses on the intra-seasonal evolution of rainfall-runoff relationships, and contrasts the sub-regional behavior of the rainfall-runoff response. It is found that there is substantial sub-regional coherence in the hydrological response to monsoon precipitation. Three physically plausible regions emerge from a rotated Principal Components Analysis of streamflow and basin-averaged precipitation. Month-to-month streamflow persistence, rainfall-runoff correlation scores and runoff coefficient values demonstrate regional coherence and are generally consistent with what is currently known about sub-regional aspects of NAM precipitation character.  相似文献   

10.
The critical zone features that control run‐off generation, specifically at the regional watershed scale, are not well understood. Here, we addressed this knowledge gap by quantitatively and conceptually linking regional watershed‐scale run‐off regimes with critical zone structure and climate gradients across two physiographic provinces in the Southeastern United States. We characterized long‐term (~20 years) discharge and precipitation regimes for 73 watersheds with United States Geological Survey in‐stream gaging stations across the Appalachian Mountain and Piedmont physiographic provinces of North Carolina. Watersheds included in this analysis had <10% developed land and ranged in size from 14.1–4,390 km2. Thirty‐four watersheds were located in the Piedmont physiographic province, which is typically classified as a low relief landscape with deep, highly weathered soils and regolith. Thirty‐nine watersheds were located in the Appalachian Mountain physiographic province, which is typically classified as a steeper landscape with highly weathered, but shallower soils and regolith. From the United States Geological Survey daily mean run‐off time series, we calculated annual and seasonal baseflow indices (BFI), minimum, mean, and maximum daily run‐off, and Pearson's correlation coefficients between precipitation and baseflow. Our results showed that Appalachian Mountain watersheds systematically had higher minimum daily flows and BFI values. Piedmont watersheds displayed much larger deviations from mean annual BFI in response to year‐to‐year variability in precipitation. A series of linear regression models between 21 landscape metrics and annual BFIs showed non‐linear and complex terrestrial–hydrological relationships across the two provinces. From these results, we discuss how distinct features of critical zone architecture, with specific focus on soil depth and stratigraphy, may be dominating the regulation of hydrological processes and run‐off regimes across these provinces.  相似文献   

11.
The catchments in the Loess Plateau, in China's middle reaches of the Yellow River Basin, experienced unprecedented land use changes in the last 50 years as a result of large‐scale soil conservation measure to control soil erosion. The climate of the region also exhibited some levels of change with decreased precipitation and increased temperature. This study combined the time‐trend analysis method with a sensitivity‐based approach and found that annual streamflow in the Loess Plateau decreased significantly since the 1950s and surface runoff trends appear to dominate the streamflow trends in most of the catchments. Annual baseflow exhibited mostly downward trends, but significant upward trends were also observed in 3 out of 38 gauging stations. Mean annual streamflow during 1979?2010 decreased by up to 65% across the catchments compared with the period of 1957?1978, indicating significant changes in the hydrological regime of the Loess Plateau. It is estimated that 70% of the streamflow reduction can be attributed to land use change, while the remaining 30% is associated with climate variability. Land use change because of the soil conservation measures and reduction in precipitation are the key drivers for the observed streamflow trends. These findings are consistent with results of previous studies for the region and appear to be reasonable given the accelerated level of the soil conservation measures implemented since the late 1970s. Changes in sea surface temperature in the Pacific Ocean, as indicated by variations in El Niño–Southern Oscillation and phase shifts of the Pacific Decadal Oscillation, appear to have also affected the annual streamflow trends. The framework described in this study shows promising results for quantifying the effects of land use change and climate variability on mean annual streamflow of catchments within the Loess Plateau. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
The hydroclimatology of prairie‐dominated portions of the Lake Winnipeg watershed was investigated to determine the possible presence of trends and shifts in variables that may influence the streamflow regimes and water quality of Lake Winnipeg. The total annual streamflow, precipitation, runoff ratio and daily maximum streamflow in the two major tributaries of the Assiniboine River and Red River were analysed for a range of nonstationary behaviours. Each of these rivers has been gauged for more than 90 years. The methods used included a nonparametric Mann–Kendall test modified to account for diverse memory properties (i.e. short term versus long term) and a Bayesian change point detection model to identify possible segments of time series with inconsistent nonstationary behaviour. Although there is no evidence of statistically significant trends in precipitation and streamflow in the Assiniboine River watershed, a shift‐type nonstationarity in annual runoff and runoff ratio was observed in this area, which is manifested in the form of a sequence of wet and dry spells during the last century. Precipitation and runoff metrics in the American portion of the study area (i.e. Red River watershed) were characterised with both gradual and abrupt changes with an extremely increasing rate of streamflow beyond that of intensified precipitation. The nonproportional watershed runoff response is attributed to the dynamic nature of contributing areas that, together with the semiarid climate, leads to sudden changes of streamflow due to major or even some times minor changes in climate inputs. It is evident that streamflow in the depression‐dominated landscapes of the semiarid glaciated plains of North America is particularly sensitive and vulnerable to minor climate variability and change. This study provides valuable insights into the highly complex precipitation–runoff relationship in depression‐dominated landscapes and could have important implications for water management in this part of North America and comparable regions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
We apply an integrated hydrology‐stream temperature modeling system, DHSVM‐RBM, to examine the response of the temperature of the major streams draining to Puget Sound to land cover and climate change. We first show that the model construct is able to reconstruct observed historic streamflow and stream temperature variations at a range of time scales. We then explore the relative effect of projected future climate and land cover change, including riparian vegetation, on streamflow and stream temperature. Streamflow in summer is likely to decrease as the climate warms especially in snowmelt‐dominated and transient river basins despite increased streamflow in their lower reaches associated with urbanization. Changes in streamflow also result from changes in land cover, and changes in stream shading result from changes in riparian vegetation, both of which influence stream temperature. However, we find that the effect of riparian vegetation changes on stream temperature is much greater than land cover change over the entire basin especially during summer low flow periods. Furthermore, while future projected precipitation change will have relatively modest effects on stream temperature, projected future air temperature increases will result in substantial increases in stream temperature especially in summer. These summer stream temperature increases will be associated both with increasing air temperature, and projected decreases in low flows. We find that restoration of riparian vegetation could mitigate much of the projected summer stream temperature increases. We also explore the contribution of riverine thermal loadings to the heat balance of Puget Sound, and find that the riverine contribution is greatest in winter, when streams account for up to 1/8 of total thermal inputs (averaged from December through February), with larger effects in some sub‐basins. We project that the riverine impact on thermal inputs to Puget Sound will become greater with both urbanization and climate change in winter but become smaller in summer due to climate change. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
Tropical river basins are experiencing major hydrological alterations as a result of climate variability and deforestation. These drivers of flow changes are often difficult to isolate in large basins based on either observations or experiments; however, combining these methods with numerical models can help identify the contribution of climate and deforestation to hydrological alterations. This paper presents a study carried out in the Tapaj?s River (Brazil), a 477,000 km2 basin in South‐eastern Amazonia, in which we analysed the role of annual land cover change on daily river flows. Analysis of observed spatial and temporal trends in rainfall, forest cover, and river flow metrics for 1976 to 2008 indicates a significant shortening of the wet season and reduction in river flows through most of the basin despite no significant trend in annual precipitation. Coincident with seasonal trends over the past 4 decades, over 35% of the original forest (140,000 out of 400,000 km2) was cleared. In order to determine the effects of land clearing and rainfall variability to trends in river flows, we conducted hindcast simulations with ED2 + R, a terrestrial biosphere model incorporating fine scale ecosystem heterogeneity arising from annual land‐use change and linked to a flow routing scheme. The simulations indicated basin‐wide increases in dry season flows caused by land cover transitions beginning in the early 1990s when forest cover dropped to 80% of its original extent. Simulations of historical potential vegetation in the absence of land cover transitions indicate that reduction in rainfall during the dry season (mean of ?9 mm per month) would have had an opposite and larger magnitude effect than deforestation (maximum of +4 mm/month), leading to the overall net negative trend in river flows. In light of the expected increase in future climate variability and water infrastructure development in the Amazon and other tropical basins, this study presents an approach for analysing how multiple drivers of change are altering regional hydrology and water resources management.  相似文献   

15.
Relative baseflow volume and streamflow flashiness indices were used to assess relationships between land use/cover and streamflow regime in nine New Jersey (NJ) Pinelands streams. Baseflow index (BFI) and Richards–Baker flashiness index (RBI) were estimated on an October–September water year, with period‐of‐record changes assessed by trend analysis and differences between watersheds assessed by examining index versus land‐use/cover relationships using a data period common to all study sites. Four streams, among the more urbanized watersheds of the nine study sites, were found to have significant (α = 0·05) trends in both indices. The two most urbanized study sites showed decreasing baseflow and increasing flashiness; however, the other two streams showed the opposite trends. An apparent slowdown in urbanization towards the second half of the streamflow period of record, along with potential changes in wetland agricultural practices in the latter two watersheds, may explain their trend results. A marginally significant (α = 0·10) decreasing relationship was found between mean annual BFI and wetland agriculture, whereas a significant (α = 0·05) increasing relationship was determined between mean annual RBI and artificial lakes/reservoirs. Principal component analysis showed an association between wetland agriculture and artificial lakes/reservoirs which suggested that both of the significant index versus land‐use/cover relationships reflect wetland agricultural activities. Because these significant relationships involved land uses/covers with small spatial extents (?5%), they demonstrated that land‐use practices can have a greater impact than spatial extent on stream hydrology. This study is the first step in assessing the effect on the NJ Pinelands stream ecology by streamflow alteration due to wetland agricultural activities. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
The Oak Ridges Moraine (ORM) is a key hydrogeologic feature in southern Ontario. Previous research has emphasized the importance of depression‐focused recharge (DFR) for the timing and location of water recharge to the ORM's aquifers. However, the significance of DFR has not been empirically demonstrated, and the ORM's permeable surficial deposits imply that rainfall and snowmelt will largely recharge vertically rather than move laterally to topographic depressions. The exception may be during winter and spring, when concrete soil frost limits infiltration and encourages overland flow. The potential for DFR was examined for closed depressions under forest and agricultural land covers with similar soils and surficial geology. Air temperatures, precipitation, snow depth and water equivalent, soil water contents, soil freezing, and depression surface‐water levels were monitored during the winter and spring of 2012–2013 and 2013–2014. Recharge (R) was estimated at the crest and base of each depression using a 1‐dimensional water balance approach and surface‐applied Br? tracing. Both forest and agricultural land covers experienced soil freezing; however, forest soils did not develop concrete frost. Conversely, agricultural fields saw concrete frost, overland flow, episodic ponding, and subsequent drainage of rain‐on‐snow and snowmelt inputs in open depressions. Recharge at the base of open depressions exceeded that in surrounding areas by an order of magnitude, suggesting that DFR is a significant hydrologic process during winter and spring under agricultural land cover on the ORM. Closed topographic depressions under agricultural land cover on the ORM crest may serve as critical recharge “hot spots” during winter and spring, and the ability of the unsaturated zone beneath these depressions to modify the chemistry of recharging water deserves further attention.  相似文献   

17.
Land‐cover/climate changes and their impacts on hydrological processes are of widespread concern and a great challenge to researchers and policy makers. Kejie Watershed in the Salween River Basin in Yunnan, south‐west China, has been reforested extensively during the past two decades. In terms of climate change, there has been a marked increase in temperature. The impact of these changes on hydrological processes required investigation: hence, this paper assesses aspects of changes in land cover and climate. The response of hydrological processes to land‐cover/climate changes was examined using the Soil and Water Assessment Tool (SWAT) and impacts of single factor, land‐use/climate change on hydrological processes were differentiated. Land‐cover maps revealed extensive reforestation at the expense of grassland, cropland, and barren land. A significant monotonic trend and noticeable changes had occurred in annual temperature over the long term. Long‐term changes in annual rainfall and streamflow were weak; and changes in monthly rainfall (May, June, July, and September) were apparent. Hydrological simulations showed that the impact of climate change on surface water, baseflow, and streamflow was offset by the impact of land‐cover change. Seasonal variation in streamflow was influenced by seasonal variation in rainfall. The earlier onset of monsoon and the variability of rainfall resulted in extreme monthly streamflow. Land‐cover change played a dominant role in mean annual values; seasonal variation in surface water and streamflow was influenced mainly by seasonal variation in rainfall; and land‐cover change played a regulating role in this. Surface water is more sensitive to land‐cover change and climate change: an increase in surface water in September and May due to increased rainfall was offset by a decrease in surface water due to land‐cover change. A decrease in baseflow caused by changes in rainfall and temperature was offset by an increase in baseflow due to land‐cover change. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
Among other sources of uncertainties in hydrologic modeling, input uncertainty due to a sparse station network was tested. The authors tested impact of uncertainty in daily precipitation on streamflow forecasts. In order to test the impact, a distributed hydrologic model (PRMS, Precipitation Runoff Modeling System) was used in two hydrologically different basins (Animas basin at Durango, Colorado and Alapaha basin at Statenville, Georgia) to generate ensemble streamflows. The uncertainty in model inputs was characterized using ensembles of daily precipitation, which were designed to preserve spatial and temporal correlations in the precipitation observations. Generated ensemble flows in the two test basins clearly showed fundamental differences in the impact of input uncertainty. The flow ensemble showed wider range in Alapaha basin than the Animas basin. The wider range of streamflow ensembles in Alapaha basin was caused by both greater spatial variance in precipitation and shorter time lags between rainfall and runoff in this rainfall dominated basin. This ensemble streamflow generation framework was also applied to demonstrate example forecasts that could improve traditional ESP (Ensemble Streamflow Prediction) method.  相似文献   

19.
Using a nonstationary flood frequency model, this study investigates the impact of trends on the estimation of flood frequencies and flood magnification factors. Analysis of annual peak streamflow data from 28 hydrological stations across the Pearl River basin, China, shows that: (1) northeast parts of the West and the North River basins are dominated by increasing annual peak streamflow, whereas decreasing trends of annual peak streamflow are prevailing in other regions of the Pearl River basin; (2) trends significantly impact the estimation of flood frequencies. The changing frequency of the same flood magnitude is related to the changing magnitude or significance/insignificance of trends, larger increasing frequency can be detected for stations with significant increasing trends of annual peak streamflow and vice versa, and smaller increasing magnitude for stations with not significant increasing annual peak streamflow, pointing to the critical impact of trends on estimation of flood frequencies; (3) larger‐than‐1 flood magnification factors are observed mainly in the northeast parts of the West River basin and in the North River basin, implying magnifying flood processes in these regions and a higher flood risk in comparison with design flood‐control standards; and (4) changes in hydrological extremes result from the integrated influence of human activities and climate change. Generally, magnifying flood regimes in the northeast Pearl River basin and in the North River basin are mainly the result of intensifying precipitation regime; smaller‐than‐1 flood magnification factors along the mainstream of the West River basin and also in the East River basin are the result of hydrological regulations of water reservoirs. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
Changes in monthly baseflow across the U.S. Midwest   总被引:1,自引:0,他引:1  
Characterizing streamflow changes in the agricultural U.S. Midwest is critical for effective planning and management of water resources throughout the region. The objective of this study is to determine if and how baseflow has responded to land alteration and climate changes across the study area during the 50‐year study period by exploring hydrologic variations based on long‐term stream gage data. This study evaluates monthly contributions to annual baseflow along with possible trends over the 1966–2016 period for 458 U.S. Geological Survey streamflow gages within 12 different Midwestern states. It also examines the influence of climate and land use factors on the observed baseflow trends. Monthly contribution breakdowns demonstrate how the majority of baseflow is discharged into streams during the spring months (March, April, and May) and is overall more substantial throughout the spring (especially in April) and summer (June, July, and August). Baseflow has not remained constant over the study period, and the results of the trend detection from the Mann–Kendall test reveal that baseflows have increased and are the strongest from May to September. This analysis is confirmed by quantile regression, which suggests that for most of the year, the largest changes are detected in the central part of the distribution. Although increasing baseflow trends are widespread throughout the region, decreasing trends are few and limited to Kansas and Nebraska. Further analysis reveals that baseflow changes are being driven by both climate and land use change across the region. Increasing trends in baseflow are linked to increases in precipitation throughout the year and are most prominent during May and June. Changes in agricultural intensity (in terms of harvested corn and soybean acreage) are linked to increasing trends in the central and western Midwest, whereas increasing temperatures may lead to decreasing baseflow trends in spring and summer in northern Wisconsin, Kansas, and Nebraska.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号