首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 606 毫秒
1.
Active and semi‐active anastomosing Holocene channels upstream of the delta in the lower valley of the meandering Neches River in southeast Texas represent several morphologically distinct and hydrologically independent channel systems. These appear to have a common origin as multi‐thread crevasse channels strongly influenced by antecedent morphology. Levee breaching leads to steeper cross‐valley flows toward floodplain basins associated with Pleistocene meander scars, creating multi‐thread channels that persist due to additional tributary contributions and ground water inputs. Results are consistent with the notion of plural systems where main channels, tributaries, and sub‐channels may have different morphologies and hydrogeomorphic functions. The adjacent Trinity and Sabine Rivers have similar environmental controls, yet the Trinity lacks evidence of extensive anastomosing channels on its floodplain, and those of the Sabine appear to be of different origin. The paper highlights the effects of geographical and historical contingency and hydrological idiosyncrasy. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
Avulsion is a key process in building alluvial fans, but it is also a formidable natural hazard. Based on laboratory experiments monitored with novel high-frequency photogrammetry, we present a new model for avulsion on widely graded gravel fans. Previous experimental studies of alluvial fans have suggested that avulsion occurs in a periodic autogenic cycle, that is thought to be mediated by the gradient of the fan and fan-channel. However, those studies measured gradients at low spatial or temporal resolutions, which capture temporally or spatially averaged topographic evolution. Here, we present high-resolution (1 mm), high-frequency (1-minute) topographic data and orthophotos from an alluvial fan experiment. Avulsions in the experiment were rapid and, in contrast to some previous experimental studies, avulsion occurrence was aperiodic. Moreover, we found little evidence of the back-filling observed at coarser temporal and spatial resolutions. Our observations suggest that avulsion is disproportionately affected by sediment accumulation in the channel, particularly around larger, less mobile grains. Such in-channel deposition can cause channel shifting that interrupts the autogenic avulsion cycle, so that avulsions are aperiodic and their timing is more difficult to predict.  相似文献   

3.
Haiyan Yang 《水文研究》2020,34(17):3702-3717
Gravel-bed braided rivers are highly energetic fluvial systems characterized by frequent in-channel avulsions, which govern the morphodynamics of such rivers and are essential for them to maintain a braided planform. However, the avulsion mechanisms within natural braided rivers remain unclear due to their complicated hydraulic and morphodynamic processes. Influenced by neighbouring channels, avulsions in braided rivers may differ from those of bifurcations in single-thread rivers, suggesting that avulsions should be studied within the context of the entire braid network. In this study, braiding evolution processes in gravel-bed rivers were simulated using a physics-based numerical model that considers graded bed-load transport by dividing sediment particles into multiple size fractions and vertical sediment sorting by dividing the riverbed into several vertical layers. The numerical model successfully produced braiding processes and avulsion activities similar to those observed in a laboratory river. Results show that bend evolution of the main channel was the fundamental process controlling the occurrence of avulsions in the numerical model, with a cyclic process of channel meandering by lateral migration that transitioned to a straight channel pattern by avulsion. The radius of bend curvature for triggering avulsions in the numerical model was measured and it was found that the highest probability for a channel bend to generate an avulsion occurs when its radius of curvature is approximately 2.0–3.3 times the average anabranch width. Other types of avulsion were also observed that did not occur specifically at meander bends, but upstream meander evolution indirectly influenced such avulsions by altering channel pattern and discharge to those locations. This study explored the processes and mechanisms of several types of avulsion, and proposed factors controlling their occurrence, namely increasing channel curvature, high shear stress, tributary discharge, riverbed gradient and upstream channel pattern, with high shear stress being a direct indicator. Furthermore, avulsions in a typical gravel-bed braided river, the Waimakariri River in New Zealand, were analysed using sequential Google Earth maps, which confirmed the conclusions derived from the numerical simulation.  相似文献   

4.
The San Antonio River Delta (SARD), Texas, has experienced two major avulsions in the past 80 years, and a number of other historical and Holocene channel shifts. The causes and consequences of these avulsions – one of which is ongoing – were examined using a combination of fieldwork, geographic information system (GIS) analysis, and historical information to identify active, semi‐active, and paleochannels and the sequence of shifting flow paths through the delta. The role of deposition patterns and antecedent morphology, large woody debris jams, and tectonic influences were given special attention. Sedimentation in the SARD is exacerbated by tectonic effects. Channel aggradation is ubiquitous, and superelevation of the channel bed above the level of backswamp areas on the floodplain is common. This creates ideal setup conditions for avulsions, and stable, cohesive fine‐grained banks favor avulsions rather than lateral migration. Flood basins between the alluvial ridges associated with the aggraded channels exist, but avulsions occur by re‐occupation of former channels found within or connected to the flood basins. Large woody debris and channel‐blocking log‐jams are common, and sometimes displace flow from the channel, triggering crevasses. However, a large, recurring log‐jam at the site of the ongoing avulsion from the San Antonio River into Elm Bayou is not responsible for the channel shift. Rather, narrow, laterally stable channels resulting from flow splits lead to accumulation of wood. Some aspects of the SARD avulsion regime are typical of other deltas, while others are more novel. These includes avulsions involving tributaries and subchannels within the delta as well as from the dominant channel; tectonic influences on delta backstepping and on channel changes within the delta; avulsions as an indirect trigger for log‐jam formation (as well as vice‐versa); and maintenance of a multi‐channel flow pattern distinct from classic anastamosing or distributary systems. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
Avulsion, the natural relocation of a river, is a key process in the evolution of subaerial fans, river floodplains and deltas. The causes of avulsion are poorly understood, which is partly due to the scarcity of field studies of present avulsions. At present, two avulsions are occurring on the middle and lower Taquari megafan, Pantanal basin, south‐western Brazil. Here we present an analysis of the causes of these avulsions based on field and remote sensing data and show that avulsions on megafans can be controlled by both upstream and downstream processes. The middle fan avulsion (started in 1997–1998) is a result of upstream control: overbank aggradation was caused by the (variable) input of sandy sediment into the system, which caused channel‐belt superelevation and also created an easily erodible subsurface favouring bank retreat, crevassing, and scour of deep floodplain channels. The sandy subsurface in this area is inferred to have been a major factor in the causation of this avulsion under conditions of little gradient advantage. The lower fan avulsion (started c. 1990) results from interplay of upstream and downstream controls, the latter being related to the local base level (the Paraguay River floodplain) at the toe of the fan. Channel and overbank aggradation on the lower fan was influenced by fan sub‐lobe progradation and channel backfilling. Fan sub‐lobe progradation caused a significant gradient advantage of the avulsion channel over the parent channel. Avulsions are commonly supposed to be preferentially triggered by high‐magnitude floods, when there is considerable channel‐belt superelevation. However, both avulsions studied by us were triggered by small to average floods, with modest channel‐belt superelevation. We conclude that flood magnitude and channel‐belt superelevation have been overrated as causes of avulsion, and demonstrate additional causes that influence the growth of crevasses into avulsions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
Anticipating geomorphic tipping points requires that we learn from the past. Major geomorphic changes in coastal plain rivers of Texas resulting in river metamorphosis or regime shifts were identified and the major driving factors determined. Eleven such transformations – possible tipping points – were identified from contemporary observations, historical records, and Quaternary reconstructions. Two of the tipping points (between general aggrading and degrading valley states) are associated with reversals in a fundamental system control (sea‐level). One (stable or aggrading versus degrading channels) is associated with an abrupt change in sediment supply due to dam construction, and two others (changes from meandering to anastomosing channel patterns, and different anastomosis styles) are similarly related to changes in sediment supply and/or transport capacity, but with additional elements of historical contingency. Three tipping points are related to avulsions. One, from a regime dominated by re‐occupation of former channels to one dominated by progradation into flood basins, is driven by progressive long‐term filling of incised valleys. Another, nodal avulsions, is triggered by disturbances associated with tectonic uplift or listric faults. The third, avulsions and related valley metamorphosis in unfilled incised valleys, is due to fundamental dynamical instabilities within the fluvial system. This synthesis and analysis suggests that geomorphic tipping points are sometimes associated with general extrinsic or intrinsic (to the fluvial system) environmental change, independent of any disturbances or instabilities. Others are associated with natural (e.g. tectonic) or human (dams) disturbances, and still others with intrinsic geomorphic instabilities. This suggests future tipping points will be equally diverse with respect to their drivers and dynamics. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

7.
Instream flow science and management requires identification of characteristic hydrological, ecological, and geomorphological attributes of stream reaches. This study approaches this problem by identifying geomorphic transition zones along the lower Sabine River, Texas and Louisiana. Boundaries were delineated along the lower Sabine River valley based on surficial geology, valley width, valley confinement, network characteristics (divergent versus convergent), sinuousity, slope, paleomeanders, and point bars. The coincidence of multiple boundaries reveals five key transition zones separating six reaches of distinct hydrological and geomorphological characteristics. Geologic controls and gross valley morphology play a major role as geomorphic controls, as does an upstream‐to‐downstream gradient in the importance of pulsed dam releases, and a down‐to‐upstream gradient in coastal backwater effects. Geomorphic history, both in the sense of the legacy of Quaternary sea level changes, and the effects of specific events such as avulsions and captures, are also critical. The transition zones delineate reaches with distinct hydrological characteristics in terms of the relative importance of dam releases and coastal backwater effects, single versus multi‐channel flow patterns, frequency of overbank flow, and channel‐floodplain connectivity. The transitional areas also represent sensitive zones which can be expected to be bellwethers in terms of responses to future environmental changes. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
Hurricane Rita, a category three hurricane which struck the US Gulf Coast near the Louisiana/Texas border in 2005, did not cause extensive river flooding. However, the storm did result in extensive forest damage and tree blowdown. High‐resolution post‐storm aerial photography allowed an inventory of river bank trees blown into the channel along the lower Neches and Sabine Rivers of southeast Texas and southwest Louisiana. Blowdowns directly into the channel averaged 9·3 per kilometer in the lower Neches and 13·4 in the lower Sabine River, but individual reaches 10 to 20 km in length had rates of 20 to 44 blowdowns per kilometer. Though large woody debris (LWD) from Hurricane Rita was widely perceived to reduce the capacity of channels to convey flow, no strong evidence exists of increased flooding or significant reductions in channel conveyance capacity due to LWD from the storm. The Rita blowdown inventory also allowed an assessment of whether similar blowdown events could account for major logjams and rafts on Red, Atchafalaya, and Colorado Rivers on the Gulf Coast, which blocked navigation from tens to hundreds of kilometers in the 1800s. Results from Hurricane Rita suggest that blowdown into channels alone – not withstanding blowdown elsewhere in the river valleys or along tributaries which could deliver LWD to the river – is sufficient to completely block channels, thus providing a plausible mechanism for initiating such (pre)historic log rafts. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
Geomorphological analyses of the morphology, lithostratigraphy and chronology of Holocene alluvial fills in a 2·75 km long piedmont reach of the wandering gravel‐bed River South Tyne at Lambley in Northumberland, northern England, have identified spatial and temporal patterns of late Holocene channel and floodplain development and elucidated the relationship between reach‐ and subreach‐scale channel transformation and terrace formation. Five terraced alluvial fills have been dated to periods sometime between c. 1400 BC –AD 1100, AD 1100–1300, AD 1300–1700, AD 1700–1850 and from AD 1850 to the present. Palaeochannel morphology and lithofacies architecture of alluvial deposits indicate that the past 3000 years has been characterized by episodic channel and floodplain change associated with development and subsequent recovery of subreach‐scale zones of instability which have been fixed in neither time nor space. Cartographic and photographic evidence spanning the past 130 years suggests channel transformation can be accomplished in as little as 50 years. The localized and episodic nature of fluvial adjustment at Lambley points to the operation of subreach‐scale controls of coarse sediment transfers. These include downstream propagation of sediment waves, as well as internal controls imposed by differing valley floor morphology, gradient and boundary materials. However, the preservation of correlated terrace levels indicates that major phases of floodplain construction and entrenchment have been superimposed over locally complex patterns of sediment transfer. Reach‐scale lateral and vertical channel adjustments at Lambley appear to be closely related to climatically driven changes in flood frequency and magnitude, with clusters of extreme floods being particularly important for accomplishing entrenchment and reconfiguring the pattern of localized instability zones. Confinement of flood flows by valley entrenchment, and contamination of catchment river courses by metal‐rich fine sediments following recent historic mining operations, have combined to render the South Tyne at Lambley increasingly sensitive to changes in flood regimes over the past 1000 years. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

10.
The evolution of the Yellow River delta is characterized by heavy sediment load,rapid seaward migration,frequent avulsions,and intense anthropogenic disturbances.Evolution of the delta channel following avulsions is very complex and has not yet been thoroughly understood.In the research presented by this paper,we conducted comprehensive analyses of the changes in the water stages,slopes,longitudinal profiles,and the erosion and deposition in the Yellow River delta channels during a time period of over five decades.Results showed that,following each avulsion,channels migrated seaward at decaying rates and the slopes at the downstream of the avulsion point decreased exponentially with time and completed its major adjustment within about four to five years.A generalized geometric model was proposed to describe the changes in the longitudinal profiles of the delta channels.A calculation method to determine the characteristic water stages at the delta was proposed based on the geometric model and the delayed response model for the morphological responses of fluvial rivers to perturbations.Water stages corresponding to a discharge of 3000 m3/s at Lijin and Xihekou during 1954 through 2012 were calculated by using the proposed method.The proposed method may be used to predict the evolution of the delta channels in response to artificial avulsions at the Yellow River delta in the future.  相似文献   

11.
The state of an Earth surface system (ESS) is determined by three sets of factors: laws, place, and history. Laws ( L = L1, L2, . . . , Ln) are the n general principles applicable to any such system at any time. Place factors ( P = P1, P2, . . . , Pm) are the m relevant characteristics of the local or regional environment. History factors ( H = H1 , H2, . . . , Hq) include the previous evolutionary pathway of the ESS, its stage of development, past disturbance, and initial conditions. Geoscience investigation may focus on laws, place, or history, but ultimately all three are necessary to understand and explain ESS. The LPH triad is useful as a pedagogical device, illustrated here via application to explaining the world's longest cave (Mammoth Cave, KY). Beyond providing a useful checklist, the LPH framework provides analytical traction to some difficult research problems. For example, studies of the avulsions of three southeast Texas rivers showed substantial differences in avulsion regimes and resulting alluvial morphology, despite the proximity and superficial similarity of the systems. Avulsions are governed by the same laws in all cases [ L (A) = L (B) = L (C)], and the three rivers have undergone the same sea‐level, climate, and tectonic histories, as well as the same general anthropic impacts [ H (A) ≈ H (B) ≈ H (C)]. Though regional environmental controls are similar, local details such as the location of the modern main channel relative to Pleistocene meander channels differ, and thus these place factors explain the differences between the rivers. The LPH framework, or similar types of reasoning, is implicit in many types of geoscience analysis. Explicit attention to the triad can help solve or address many specific problems and remind us of the importance of all three sets of factors. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
River bifurcations are critical but poorly understood elements of many geomorphological systems. They are integral elements of alluvial fans, braided rivers, fluvial lowland plains, and deltas and control the partitioning of water and sediment through these systems. Bifurcations are commonly unstable but their lifespan varies greatly. In braided rivers bars and channels migrate, split and merge at annual or shorter timescales, thereby creating and abandoning bifurcations. This behaviour has been studied mainly by geomorphologists and fluid dynamicists. Bifurcations also exist during avulsion, the process of a river changing course on a floodplain or in a delta, which may take 102–103 years and has been studied mainly by sedimentologists. This review synthesizes our current understanding of bifurcations and brings together insights from different research communities and different environmental settings. We consider the causes and initiation of bifurcations and avulsion, the physical mechanisms controlling bifurcation and avulsion evolution, mathematical and numerical modelling of these processes, and the possibility of stable bifurcations. We end the review with some open questions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
This study aims to understand (mainly qualitatively) the long‐term role of human impact on avulsion processes and the development of fluvial (mega‐) fans in semi‐arid environments. In this paper we refer to human impact as the direct influences of actions on the river's hydraulics (i.e. flow regulation, flow diversion and channel engineering). In five case‐studies drawn from the Khuzestan plains in southwest Iran we have analysed the setup and triggering conditions of specific avulsions that occurred in the past (timescale of millennia) and identified the role of human interference in their causation. Our analysis is based on the integration of historical, archaeological, geomorphological and geological data. Through this study we demonstrate that avulsions in the Khuzestan plains are the result of long‐term and complex interplay between multiple human‐induced and natural causes. In similar ways human‐induced actions may play important roles during different phases of avulsion development. The ‘success‘ of an avulsion in the post‐triggering phase may be defined by human‐induced setup causes as well as morphodynamic processes. We suggest that present‐day flood events may be partly inherited from long‐term human alterations of the natural processes. These finding could have implications for any fluvial system (e.g. distributive fluvial systems, deltas) where avulsion plays a major role in their development and research tends to emphasize on natural mechanisms. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
Since the end of the post‐glacial sea level rise 6800 years ago, progradation of river mouths into estuaries has been a global phenomenon. The responses of upstream alluvial river reaches to this progradation have received little attention. Here, the links between river mouth progradation and Holocene valley aggradation are examined for the Macdonald and Tuross Rivers in south‐eastern Australia. Optical and radiocarbon dating of floodplain sediments indicates that since the mid‐Holocene sea level highstand 6800 years ago vertical floodplain aggradation along the two valleys has generally been consistent with the rate at which each river prograded into its estuary. This link between river mouth progradation and alluvial aggradation drove floodplain aggradation for many tens of kilometres upstream of the estuarine limits. Both rivers have abandoned their main Holocene floodplains over the last 2000 years and their channels have contracted. A regional shift to smaller floods is inferred to be responsible for this change, though a greater relative sea level fall experienced by the Macdonald River since the mid‐Holocene sea level highstand appears to have been an additional influence upon floodplain evolution in this valley. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
Water temperature dynamics in High Arctic river basins   总被引:2,自引:0,他引:2  
Despite the high sensitivity of polar regions to climate change and the strong influence of temperature upon ecosystem processes, contemporary understanding of water temperature dynamics in Arctic river systems is limited. This research gap was addressed by exploring high‐resolution water column thermal regimes for glacier‐fed and non‐glacial rivers at eight sites across Svalbard during the 2010 melt season. Mean water column temperatures in glacier‐fed rivers (0.3–3.2 °C) were lowest and least variable near the glacier terminus but increased downstream (0.7–2.3 °C km–1). Non‐glacial rivers, where discharge was sourced primarily from snowmelt runoff, were warmer (mean: 2.9–5.7 °C) and more variable, indicating increased water residence times in shallow alluvial zones and increased potential for atmospheric influence. Mean summer water temperature and the magnitude of daily thermal variation were similar to those of some Alaskan Arctic rivers but low at all sites when compared with alpine glacierized environments at lower latitudes. Thermal regimes were correlated strongly (p < 0.01) with incoming short‐wave radiation, air temperature, and river discharge. Principal drivers of thermal variability were inferred to be (i) water source (i.e. glacier melt, snowmelt, groundwater); (ii) exposure time to the atmosphere; (iii) prevailing meteorological conditions; (iv) river discharge; (v) runoff interaction with permafrost and buried ice; and (vi) basin‐specific geomorphological features (e.g. channel morphology). These results provide insight into the potential changes in high‐latitude river systems in the context of projected warming in polar regions. We hypothesize that warmer and more variable temperature regimes may prevail in the future as the proportion of bulk discharge sourced from glacial meltwater declines and rivers undergo a progressive shift towards snow water and groundwater sources. Importantly, such changes could have implications for aquatic species diversity and abundance and influence rates of ecosystem functioning in high‐latitude river systems. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
Dividing rivers into homogeneous reaches is key for river processes and watershed management. In contrast to downstream fluvially dominated rivers, upstream debris-flow dominated torrents have steeper channel slopes and smaller valley width/depth ratios. Investigating transition reaches between torrents and fluvially dominated rivers, not only explores the structure of the landscape, but also contributes to hazard management. This study proposed a valley morphology index combining two variables, channel slope and valley width/depth ratio, to determine transition reaches between torrents and rivers. The methodology was applied to 41 mountain streams in Taiwan using a Geographic Information System (GIS)-based topographic analysis. Plots of valley width/depth ratio versus channel slope were used to determine boundary values of the valley morphology index (Iv) separating torrents from rivers. The plots showed that about 80% of the river basins present “L-shaped” curves, which indicate sharp decreases in slope for upstream sections and dramatic increases of valley width/depth ratio for downstream sections. Results further demonstrated an average value of Iv 0.0047 across the study sites. Spatial comparison between geographic regions indicated that transition reaches in eastern rivers tend to occur lower in the drainage basin due, in part, to higher terrain. Local factors, such as tributary confluences and landslides promote the transition from torrents to fluvially dominated rivers. Satellite images verified that the approach correctly identified transition reaches, suggesting that it may provide a useful reference for river management.  相似文献   

17.
The presence of peats and high compressibility inorganic clays within alluvial fills on the left-side tributaries of the Tiber River, close to Rome’s historic center in Italy, is well documented in literature. Nevertheless, few literature data exist until now on the dynamic properties of these deposits by undisturbed bore-hole samples. The Galba test-site was set up to characterise dynamic properties of the alluvial deposits by using lab-tests as well as to derive velocity profiles by seismic noise measurements. These were performed in the Giustiniano Imperatore area located in the Grottaperfetta valley, about 2?km south of Rome’s historic centre. The alluvial deposits filled a paleovalley excavated in the bedrock during the Würm glacial (18–20 ky). The stratigraphic setting of the alluvial body was reconstructed along three geological cross-sections by means of the available logs; seven lithotecnical horizons can be distinguished within the alluvial body, some tens of meters thick, based on both log-stratigraphic data and in-site geotechnical tests. These horizons include peaty layers (T) and high compressibility inorganic clays (AGI), which characterise the alluvial deposits in the Grottaperfetta valley. They do not have direct correlation with the alluvial horizons which constitute the alluvial body of the main Tiber valley in Rome’s historical centre. These alluvial horizons which are distinguished and characterised at the Galba test-site can be regarded as typical of other lateral valleys of the Tiber River in Southern Rome. They are characterised by the presence of similar high compressibility clayey deposits as well as peaty layers up to some meters thick. Undisturbed samples were also obtained at the Galba test-site for dynamic testing via resonant column and cyclic torsional shear tests. In order to attribute dynamic properties to the alluvial body at the Grottaperfetta valley, an extrapolation process was performed based on a detailed engineering-geology model of the alluvial body which was reconstructed along three transversal geological sections of the valley using bore-hole data. Three subsoil profiles, considered representative of the geological setting along the three reconstructed transversal cross sections, were analysed by seismic noise measurements performed specifically to derive S-waves velocity profiles. The results obtained show a very low velocity (<180 m/s) for the layers T and AGI. 1D modelling of seismic shaking was performed by the code Shake91, in order to evaluate the influence of the low-velocity strata on maximum shear strains induced within the alluvial deposits under the maximum expected seismic action. The results of the numerical modelling indicate that the AGI and the T layers play a key role in: (i) concentrating the maximum shear strain along the subsoil profiles, even though the volumetric threshold is never exceeded; (ii) increasing the maximum shear strain along the subsoil profiles; (iii) causing the resonance frequency of the alluvial fill to assume an almost constant value (about 1Hz) which is quite similar to that measured in the main Tiber River valley, despite a significant change in thickness of the alluvial body along the Grottaperfetta valley.  相似文献   

18.
Anastomosing rivers have multiple interconnected channels that enclose flood basins. Various theories potentially explain this pattern, including an increased discharge conveyance and sediment transport capacity of multiple channels, deltaic branching, avulsion forced by base‐level rise, or a tendency to avulse due to upstream sediment overloading. The former two imply a stable anabranching channel pattern, whereas the latter two imply disequilibrium and evolution towards a single‐channel pattern in the absence of avulsion. Our objective is to test these hypotheses on morphodynamic scenario modelling and data of a well‐documented case study: the upper Columbia River. Proportions of channel and floodplain sediments along the river valley were derived from surface mapping. Initial and boundary conditions for the modelling were derived from field data. A 1D network model was built based on gradually varied flow equations, sediment transport prediction, mass conservation, transverse slope and spiral meander flow effects at the bifurcations. The number of channels and crevasse splays decreases in a downstream direction. Also, measured sediment transport is higher at the upstream boundary than downstream. These observations concur with bed sediment overloading from upstream, which can have caused channel aggradation above the surrounding floodplain and subsequent avulsion. The modelling also indicates that avulsion was likely caused by upstream overloading. In the model, multi‐channel systems inevitably evolve towards single‐channel systems within centuries. The reasons are that symmetric channel bifurcations are inherently unstable, while confluenced channels have relatively less friction than two parallel channels, so that more discharge is conveyed through the path with more confluences and less friction. Furthermore, the present longitudinal profile curvature of the valley could only be reproduced in the model by temporary overfeeding. We conclude that this anastomosing pattern is the result of time‐varying sediment overloading and is not an equilibrium pattern feature, and suggest this is valid for many anastomosing rivers. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
20.
Debris flows are one of the most important processes which influence the morphology of channels and valley floors in the Oregon Coast Range. Debris flows that initiate in bedrock hollows at heads of first-order basins erode the long-accumulated sediment and organic debris from the floors of headwater, first- and second-order channels. This material is deposited on valley floors in the form of fans, levees, and terraces. In channels, deposits of debris flows control the distribution of boulders. The stochastic nature of sediment supply to alluvial channels by debris flows promotes cycling between channel aggradation which results in a gravel-bed morphology, and channel degradation which results in a mixed bedrock- and boulder-bed morphology. Temporal and spatial variability of channel-bed morphology is expected in other landscapes where debris flows are an important process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号