首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
近断层速度脉冲地震动的三维有限差分模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
根据台湾西部地质地貌特征和1999年集集MW7.6地震的研究成果,建立三维速度结构模型和震源模型,并采用三维有限差分法对双冬断层可能产生的近断层脉冲型地震动进行数值模拟。结果表明,方向性效应引起的双向速度脉冲集中在垂直于断层滑动分量的方向上,而滑冲效应引起的单向速度脉冲则集中在平行于断层滑动分量的方向上。受方向性效应和上盘效应的共同调制,近断层脉冲型地震动反映出不对称带状分布的特征,速度脉冲主要分布在距离断层面约10 km的范围内。凹凸体的特性影响着地震动的时空分布,由地震波场显示南投和台中处于强地震动危险区。近场脉冲型地震动的研究对分析速度脉冲形成机理以及地震危险性有一定的参考意义。  相似文献   

2.
赵晓芬  温增平 《地震学报》2022,44(5):765-782
近断层速度脉冲型地震动研究对揭示建筑结构的破坏机理、开展抗震设防以及抗震设计具有重要价值。首先,对速度脉冲成因进行了系统的总结,并探讨了区分方向性效应速度脉冲和滑冲效应速度脉冲的思路;其次,系统地介绍了近断层速度脉冲的识别方法,评述了各种脉冲识别方法的优缺点;然后,基于速度脉冲特性,探讨了前方向性效应对速度脉冲特性的影响以及速度脉冲对反应谱的放大作用;最后,对速度脉冲型地震动输入方法以及对结构响应研究进行了系统总结,探讨了速度脉冲型地震动输入的关键问题。基于丰富的理论研究,未来对于速度脉冲型地震动研究工作应当充分结合实际工程需求,推进理论成果的规范标准化与工程实践。   相似文献   

3.
本文基于小波包技术的随机地震动模拟方法,提出一种改进的参数化随机近断层脉冲型地震动模拟方法。然后,通过识别和提取近断层脉冲型地震动数据库中脉冲型地震动的特征参数,建立了基于震源、传播路径和场地特征等参数的脉冲模型参数预测方程。最后,通过模拟实际记录和误差分析检验了改进的模拟方法的有效性。结果表明:应用改进的模拟方法得到的地震动时程无论在波形、频率特性还是峰值上均与实际记录具有较好的一致性。改进的模拟方法在保留地震动时频非平稳性的基础上,能够有效地提高近断层脉冲型地震动的模拟效果,并且能够很好地体现脉冲型地震动的主要特征。  相似文献   

4.
通过对隔震结构进行非线性动力响应分析,分别研究地震动参数和支座参数对结构地震响应的影响。首先,建立铅芯橡胶支座基础隔震结构的非线性运动方程;然后,以人工合成脉冲型地震动作为输入,运用MATLAB进行编程并求解结构在脉冲型地震动作用下的地震响应;最后,分别研究速度脉冲周期、支座屈服力、屈服后与屈服前的刚度比对隔震支座最大位移和上部结构层间位移的影响。研究结果表明,脉冲周期对结构地震响应影响很大,在进行隔震设计时应使结构自振周期远离脉冲周期;支座刚度比对结构地震响应影响较大,在进行支座选型时应重点关注;支座屈服力对支座位移的影响显著,屈服力越大,支座位移越小。  相似文献   

5.
在分析特殊型地震动如近场脉冲型地震动或远场类谐和地震动时,研究和设计人员更关注于地震动的时域特性.鉴于目前尚不具有一种成熟的用于分析地震动时域特性的方法,在研究中通常采用肉眼辨别地震动.但在肉眼辨别的过程中并没有定量的指标描述地震动的特性,因此这种方法容易引入人为的主观性误差.地震动的时域特性主要指地震动的振动周期和强度随时间的变化情况.如有一种定量描述这种变化的方法便能消除肉眼辨别中引入的主观性误差.为解决该问题,本文提出了一种简便、有效的分析地震动速度时程时域特性的速度零点法ZVPM(Zero Velocity Point Method).采用这种方法可以定量地分析地震动速度时程的振动周期和强弱程度随时间的变化情况,并可以通过定义的幅值参数、周期参数和相位参数获取等效的地震动速度时程.鉴于脉冲型地震动对结构具有特殊的破坏作用,本文采用速度零点法分析了24条典型的强脉冲型地震动,并基于速度零点法提出了一种简便的脉冲周期计算方法.为便于工程设计人员快速地获取本文所选脉冲型地震动的等效速度脉冲,文中给出了每一条地震动等效速度脉冲的数学表达式.  相似文献   

6.
In this paper, response spectral characteristics of one-, two-, and three-lobe sinusoidal acceleration pulses are investigated, and some of their basic properties are derived. Furthermore, the empirical mode decomposition (EMD) method is utilized as an adaptive filter to decompose the near-fault pulse-like ground motions, which were recorded during the September 20, 1999, Chi-Chi earthquake. These ground motions contain distinct velocity pulses, and were decomposed into high-frequency (HF) and low-frequency (LF) components, from which the corresponding HF acceleration pulse (if existing) and LF acceleration pulse could be easily identified and detected. Finally, the identified acceleration pulses are modeled by simplified sinusoidal approximations, whose dynamic behaviors are compared to those of the original acceleration pulses as well as to those of the original HF and LF acceleration components in the context of elastic response spectra. It was demonstrated that it is just the acceleration pulses contained in the near-fault pulse-like ground motion that fundamentally dominate the special impulsive dynamic behaviors of such motion in an engineering sense. The motion thus has a greater potential to cause severe damage than the far-field ground motions, i.e. they impose high base shear demands on engineering structures as well as placing very high deformation demands on long-period structures.  相似文献   

7.
根据我国台湾地区西部的地质地貌特征和1999年集集MW7.6地震的震源参数,建立了三维速度结构模型和两类震源模型。基于地壳中断层的位错积累量和岩石破裂后应力应变的传播特性,采用三维有限差分法对双冬断层活动可能产生的近场脉冲型地震动进行了模拟研究。结果表明:走滑断层垂直于断层走向的水平分量和逆断层垂直分量的峰值速度较大;由方向性效应所产生的双向速度脉冲主要集中在垂直于断层滑动分量方向,而由滑冲效应所产生的单向速度脉冲则主要集中在平行于断层滑动分量的方向;受方向性效应和上盘效应的共同制约,近场脉冲型地震动呈不对称带状分布,速度脉冲多分布在距离走滑断层迹线15 km和逆断层迹线10 km的范围内;速度反应谱在断层面的覆盖范围内沿破裂方向逐渐增大,且速度脉冲可能会对大型建筑物产生严重的剪切破坏。受凹凸体特性的影响,地震波场显示南投、台中和苗栗处于强地震动危险区。   相似文献   

8.
The response and damage assessment of engineering structures under near-field ground motions is currently of great interest. Near-field ground motion with directivity focusing or fling effects produces pulse-like ground motion that has characteristics different from those of ordinary records. This paper develops simple deterministic and probabilistic models for near-field pulse-like ground motions. These models belong to the class of engineering models that aim to replicate some of the gross features observed in near-field records. The ground velocity is expressed as a steady-state function or a stationary random process modulated by an envelope function. Both models account for the non-stationarity and the multiple pulses in the ground velocity. While the deterministic model is similar to some of the models developed earlier, the probabilistic model facilitates handling uncertainties in the ground motion and variability in the structure's properties. For instance, this model combined with structural reliability methods can be used for reliability assessment of structures under near-field random ground motion. The reduction of the structural response by adding supplemental dampers is also investigated.  相似文献   

9.
This paper presents a novel approach to identify the pulse-like motions in earthquake recordings that dominate the maximum structural responses over a wide period range. The identification method is based on the congruence relationship between the response spectrum and the dimensionless П-response spectrum established in this study through straightforward dimensional arguments of linear and bilinear SDOF oscillators subject to pulse-like ground motions. By evaluating the geometric match and dislocations of the П-response spectrum of a given waveform with the dimensional response spectrum in bi-logarithm plotting, one can identify the simple pulses and their parameters that match simultaneously the kinematic characteristics and the response spectrum of earthquake recordings that exhibit pulse-like features. The developed pulse identification method has been implemented in a computer program and applied successfully to detect the pulse-like motions in the PEER NGA strong motion database. Both velocity and acceleration pulses potentially due to forward directivity effects in near fault regions are identified. The identified velocity pulses show strong correlation with the seismological parameters. They are subsequently used in regression analysis to derive the empirical scaling laws that relate the directivity pulse parameters to the earthquake magnitude and rupture distance. The study confirms some magnitude scaling laws in literature and demonstrates the accuracy and efficiency of the proposed pulse identification method.  相似文献   

10.
以1979年MW6.5帝王谷地震为例,比较了小波变换法、峰点法(PPM)和零点法(ZVPM)识别近断层速度脉冲型强震记录的能力,三种方法识别出的脉冲峰值基本一致,脉冲周期略有差别.为分析速度脉冲的产生机制,包括产生时间、位置以及凹凸体的影响,借助频率-波数域格林函数法(FK法)合成近断层宽频带地震动,采用峰点法逐步识别...  相似文献   

11.
Ground motions with strong velocity pulses are of particular interest to structural earthquake engineers because they have the potential to impose extreme seismic demands on structures. Accurate classification of records is essential in several earthquake engineering fields where pulse‐like ground motions should be distinguished from nonpulse‐like records, such as probabilistic seismic hazard analysis and seismic risk assessment of structures. This study proposes an effective method to identify pulse‐like ground motions having single, multiple, or irregular pulses. To effectively characterize the intrinsic pulse‐like features, the concept of an energy‐based significant velocity half‐cycle, which is visually identifiable, is first presented. Ground motions are classified into 6 categories according to the number of significant half‐cycles in the velocity time series. The pulse energy ratio is used as an indicator for quantitative identification, and then the energy threshold values for each type of ground motions are determined. Comprehensive comparisons of the proposed approach with 4 benchmark identification methods are conducted, and the results indicate that the methodology presented in this study can more accurately and efficiently distinguish pulse‐like and nonpulse‐like ground motions. Also presented are some insights into the reasons why many pulse‐like ground motions are not detected successfully by each of the benchmark methods.  相似文献   

12.
为了在众多参数中挑选其中最有代表性的参数,来解释和反映脉冲型地震动对结构的潜在破坏能力,以338条脉冲型地震动记录作为研究对象,分析地震动参数与中低层结构响应的相关性。选取了14个常用地震动参数,对各地震动参数之间的相关性进行分析,从中选出7个代表性地震动参数;并将脉冲型地震动输入中低层结构模型中计算结构响应,分析代表性地震动参数与结构响应的相关性,与基于非脉冲型地震动的相关性计算结果进行对比。选用了3层和7层2个RC框架结构作为中低层结构代表,其基本周期为0.62s和0.89s。结果表明:对于脉冲型地震动,对于3层结构时与结构响应相关性最好的为EPV,对于7层结构时与结构响应相关性最好的为PGV,因此可以用PGV和EPV作为表征脉冲型地震动对中低层结构潜在破坏能力的参数;而对于非脉冲型地震动,与结构响应相关性最好的参数为PGV,可以用PGV作为表征脉冲型地震动对中低层结构的潜在破坏能力的参数。因此,通过地震动参数来解释和表征脉冲型地震动对结构的破坏能力是可行的。  相似文献   

13.
A series of relatively long-period velocity pulses appearing in the later part of ground motion, which is the characterization of far-source long-period ground motions in basin (“long-period ground motion” for short), is mainly influenced by focal mechanism, basin effect, and dispersion. It was supposed that the successive low-frequency velocity pulses in long-period ground motion caused the resonance of long-period structures in basin, which are of special concern to designers of super high-rise buildings. The authors proposed a wavelet-based successive frequency-dependent pulse extraction (WSFPE) method to identify and extract these pulses with dominant period of interest from long-period ground motions. The pulses extracted by using two frequently used methods (zero-crossing analysis, empirical mode decomposition) were compared to the pulses extracted by using WSFPE. The results demonstrate that the WSFPE provides higher resolution in time–frequency domain than the other two methods do. The velocity pulses extracted by using WSFPE are responsible for the resonance and maximum response of structure subjected to long-period ground motions. WSFPE can be used to make a better understanding of long-period ground motions and to promote the formation of long-period ground motion model which will help the seismic design of long-period structures built in sedimentary basin.  相似文献   

14.
Detection of pulse-like ground motions based on continues wavelet transform   总被引:5,自引:1,他引:4  
This paper implements a quantitative approach to detect pulse-like ground motions based on continues wavelet transform, which is able to clearly identify sudden jumps in time history of earthquake records by considering contribution of different levels of frequency. These analyses were performed on a set of time series records obtained in near-fault regions of Iran. Pulse-like ground motions frequently resulted from directivity effects in near-fault area and are of interest in the field of seismology and also earthquake engineering for seismic performance evaluation of structures. The results of this study basically help us to establish a suitable platform for selecting pulse-like records, while performance evaluation of structure in near-fault area will need to account. The period of velocity pulses as a key parameter that significantly affects structural response is simply determined by using a pseudo-period of the mother wavelets. In addition, the efficiency of different types of mother wavelets on classification performance and the features of detected pulse are investigated by applying seven different kinds of mother wavelets. The analyses indicate that the selection of most appropriate mother wavelet plays a significant role in effective extraction of ground motion features and consequently in estimation of velocity pulse period. As a result, the user should be aware of what is selected as a mother wavelet in the analysis. The comparisons given here among different mother wavelets also show the better performance of BiorSpline (bior1.3) basis from biorthognal wavelet families for the preferred purpose in this paper.  相似文献   

15.
Near-fault ground motions containing high energy and large amplitude velocity pulses may cause severe damage to structures. The most widely used intensity measure (IM) is the elastic spectral acceleration at the fundamental period of the structure (Sa(T1)); however, Sa(T1) is not a sufficient IM with respect to the effects of the pulse-like ground motions on structural response. For near-fault ground motions, including pulse-like and non–pulse-like time histories, we propose a vector-valued IM consisting of a new IM called instantaneous power (IP(T1)) and the Sa(T1). The IP(T1) is defined as the maximum power of the bandpass-filtered velocity time series over a time interval of 0.5T1. The IP(T1) is period-dependent because the velocity time series is filtered over a period range (0.2T1-3T1). This allows the IP(T1) to represent the power of the near-fault ground motions relevant to the response of the structure. Using two-dimensional models of the 2- and 9-story steel-frame buildings, we show that the proposed [Sa(T1), IP(T1)] vector IM gives more accurate estimates of the maximum inter-story drift and collapse capacity responses from near-fault ground motions than using the vector IM consisting of the Sa(T1), the presence of the velocity pulse, and the period of the velocity pulse. Moreover, for the structures considered, for a given Sa(T1), the IP(T1) is more strongly correlated with structural damage from near-fault ground motions than the combination of the velocity pulse and pulse period.  相似文献   

16.
近断层地震动具有独特的上盘效应、破裂方向性效应和速度脉冲特征。本文分组考察具有这些运动特征的地震动对短肢剪力墙高层建筑结构地震反应的影响。选择台湾集集近断层地震动记录作为地震动输入,利用ANSYS软件对一幢12层短肢剪力墙结构建立空间杆件一壳元组合有限元模型,进行弹塑性时程分析。计算结果表明,近断层地震动上盘效应和破裂方向性效应明显增大短肢剪力墙结构体系的地震反应,短肢剪力墙高层结构的最大层间位移角发生在中部第5层,为0.98%,说明该结构已经达到中等破坏状态;脉冲型地震动效应与结构周期长短密切相关,对长周期结构脉冲效应显著。  相似文献   

17.
This paper presents a new way of selecting real input ground motions for seismic design and analysis of structures based on a comprehensive method for estimating the damage potential of ground motions, which takes into consideration of various ground motion parameters and structural seismic damage criteria in terms of strength, deformation, hysteretic energy and dual damage of Park & Ang damage index. The proposed comprehensive method fully involves the effects of the intensity, frequency content and duration of ground motions and the dynamic characteristics of structures. Then, the concept of the most unfavourable real seismic design ground motion is introduced. Based on the concept, the most unfavourable real seismic design ground motions for rock, stiff soil, medium soil and soft soil site conditions are selected in terms of three typical period ranges of structures. The selected real strong motion records are suitable for seismic analysis of important structures whose failure or collapse will be avoided at a higher level of confidence during the strong earthquake, as they can cause the greatest damage to structures and thereby result in the highest damage potential from an extended real ground motion database for a given site. In addition, this paper also presents the real input design ground motions with medium damage potential, which can be used for the seismic analysis of structures located at the area with low and moderate seismicity. The most unfavourable real seismic design ground motions are verified by analysing the seismic response of structures. It is concluded that the most unfavourable real seismic design ground motion approach can select the real ground motions that can result in the highest damage potential for a given structure and site condition, and the real ground motions can be mainly used for structures whose failure or collapse will be avoided at a higher level of confidence during the strong earthquake. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
近断层地震动脉冲特性在2个水平分量上具有差异,采用平方和开方法分析了近断层脉冲地震动双向地震作用下基础隔震结构和组合隔震结构的隔震层位移,并与近断层脉冲单向地震作用进行了对比分析,结果表明:若仅地震动加速度峰值大的分量或2个方向分量均存在明显速度脉冲,则产生的隔震层位移大于单向地震动;若仅地震动加速度峰值小的分量存在明...  相似文献   

19.
Robust methods for time-frequency analysis of time series, which provide local information of signals, allow earthquake engineers to study both the input and output of dynamic time history analysis with more reliability. Moreover, time-frequency representations (TFRs) have a major role in the analysis of non-stationary seismic signals exhibiting significant time variation of frequency content. S-Transform (ST) is a modern TFR, which can measure local characteristics of a signal such as amplitude, frequency, and phase at any time instant. This paper presents a new method for decomposition of ground motion signals. A modified version of ST-based technique, originally employed to decompose signals of gearbox vibration, is introduced and applied to the extraction and characterization of pulse-like part of near-fault velocity records, which is contributed to the directivity effects. In addition, a new definition based on ST analysis is used to identify pulse period. The results of implementation of proposed procedure on a database of pulse-like ground motion recordings belonging to the different ranges of magnitude demonstrate the efficiency of proposed method compared with other available approaches. The results, also, indicate that simple approximation of distinct pulses using single-period waveforms, unlike the extracted pulses, cannot represent the impulsive nature of real records adequately.  相似文献   

20.
In this study, a new mathematical model is developed composed of two parts, including harmonic and polynomial expressions for simulating the dominant velocity pulse of near fault ground motions. Based on a proposed velocity function, the corresponding expressions for the ground acceleration and displacement time histories are also derived. The proposed model is then fitted using some selected pulse-like near fault ground motions in the Next Generation Attenuation (NGA) project library. The new model is not only simple in form but also simulates the long-period portion of actual velocity near fault records with a high level of precision. It is shown that the proposed model-based elastic response spectra are compatible with the near fault records in the neighborhood of the prevailing frequency of the pulse. The results indicate that the proposed model adequately simulates the components of the time histories. Finally, the energy of the proposed pulse was compared with the energy of the actual record to confirm the compatibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号