首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
为深入理解汶川地震破裂的构造运动机制,本文选取典型的观测点,利用多种地质地貌标志测绘分析得到了汶川Ms8.0地震发震断裂的近地表三维同震滑移矢量.结果显示,北川-映秀断裂上的白水河-高川破裂段北西盘沿88°方位角水平滑移2.58 m、垂直滑移3.70 m;安县-灌县断裂上的白鹿-汉旺破裂北西盘沿134°方位角水平滑移1.63 m,垂直滑移2.00 m;小鱼洞破裂带南西盘沿76°~79°方位角水平滑移2.15~2.71 m,垂直滑移1.36~1.51 m.平行的白水河-高川破裂段和白鹿-汉旺破裂段合计形成1.72 m右旋走滑和3.49 m垂直断裂带的NW向水平缩短,总滑移方向(106°)与断裂带整体走向(42°)呈64°夹角,整个龙门山推覆构造带处于斜向挤压的构造环境.结合震源过程反演成果的分析显示,斜滑的白水河-高川破裂段和逆冲型白鹿-汉旺破裂段可能是在汶川地震中最大的一次子事件过程以滑移分解的形式而同时破裂形成的,滑移分解作用使两条断裂以斜滑与逆冲组合的力学性质产生破裂而非相同件质的斜滑破裂.小鱼洞破裂以低角度斜滑为主,可能是安县-灌县断裂与北川-映秀断裂以滑移分解形式同时破裂的纽带.小鱼洞断裂是龙门山断裂带长期处于斜向挤压的构造环境的产物,不只是逆冲断裂系中的捩断层.  相似文献   

2.
为深入理解汶川地震破裂的构造运动机制,我们选取典型的观测点,利用多种地质地貌标志测绘分析得到了汶川MS8.0地震发震断裂的近地表三维同震滑移矢量。结果显示,北川-映秀断裂上的白水河-高川破裂段北西盘沿88°方位角水平滑移2.58m、垂直滑移3.70m;安县-灌县断裂上的白鹿-汉旺破裂北西盘沿134°方位角水平滑移1.63m,垂直滑移2.00m;小鱼洞破裂带南西盘沿76°~79°方位角水平滑移2.15~2.71m,垂直滑移1.36~1.51m。平行的白水河-高川破裂段和白鹿-汉旺破裂段合计形成1.72m右旋走滑和3.49m垂直断裂带的NW向水平缩短,总滑移方向(106°)与断裂带整体走向(42°)呈64°夹角,整个龙门山推覆构造带处于斜向挤压的构造环境。结合震源过程反演成果的分析显示,斜滑的白水河-高川破裂段和逆冲型白鹿-汉旺破裂段可能是在汶川地震最大的一次子事件过程中以滑移分解的形式同时破裂形成的,滑移分解作用使两条断裂以斜滑与逆冲组合的力学性质产生破裂而非相同性质的斜滑破裂。小鱼洞破裂以低角度斜滑为主,可能是安县-灌县断裂与北川-映秀断裂以滑移分解形式同时破裂的纽带。小鱼洞断裂是龙门山断裂带长期处于斜向挤压的构造环境的产物,不只是逆冲断裂系中的简单捩断层。  相似文献   

3.
2008年5月12日四川汶川Ms8.0地震是一条陆内活动逆断裂带最新活动的结果.地震震源断裂沿龙门山构造带中央断裂发生斜滑作用和沿前山断裂发生纯逆断裂作用,断裂产状前者陡后者缓,垂直位移前者大后者小,这是一条少见的具有右旋走滑特征的挤压性质双断坡破裂,它是深部斜滑断裂在上地壳脆性域发生应变分解的结果.地震地表破裂带的分段活动和位移分布、地震波反演、余震空间分布、主震和余震震源机制解都说明这一条活动断裂带的活动机制和震源断裂破裂机制的复杂性.北西向小鱼洞左旋走滑破裂带是调节北东向破裂带中缩短量不同的破裂段之间的捩断裂,但由于震源断裂西南段经受着强烈挤压,左旋走滑的小鱼洞断裂也具有明显的挤压分量.在中央断裂这一条走滑逆冲和逆走滑性质的断裂和破裂带中出现的走滑正断裂控制的沙坝沟槽是在一个特殊的构造和地貌条件下,由震源断裂滑动和重力共同作用的结果,重力作用加大了该段破裂的正断层型垂直位移量,它不能真正代表震源断裂的最大地表垂直位移.  相似文献   

4.
汶川8级大地震的地表破裂特征及分段   总被引:6,自引:1,他引:5  
2008年5月12日14时28分,四川省汶川县境内发生MS8.0地震.地表破裂多以跌水、陡坎形态发育在河流沟谷或晚新生代沉积层内,位移明显.山地受崩塌、滑坡影响,位移量较难获得.发震断裂主要有三条,即北川-映秀断裂、彭县-灌县断裂和小鱼洞断裂.北川-映秀断裂地表破裂由南向北活动性质从逆冲为主逐渐转变为走滑为主,长约220 km,平均垂直位移量约3 m,按位移量沿断裂走向的变化可以分为虹口段、北川段和南坝段;彭县-灌县断裂地表破裂以逆冲活动为主,长约82 km,平均垂直位移量约1.5 m,可以划分为白鹿段和汉旺段,断裂断距分布的几何特征与北川-映秀断裂的中南段相近;小鱼洞断裂是一条新生北西走向的次级破裂,长约5.6 km,平均垂直位移量约1.5 m,调节两侧构造单元变形差异,具有捩断层特征,活动以逆(左行)走滑为主,可划分出小鱼洞段和中坝段.姚都镇地表破裂可能说明南坝以北的地震具有不同的活动特征.活动断裂的运动方式反映区域应力场有北西西向挤压特征.  相似文献   

5.
断裂带物质组成、结构及其物理性质是理解断裂变形机制和地震破裂过程的基础和关键,断裂带地震(黏滑)和非地震(蠕滑)滑移行为不仅对了解地震活动性和山脉隆升过程具有重要意义,而且直接为防震减灾提供科学依据.我们以穿过龙门山映秀—北川和灌县—安县断裂带的汶川地震断裂带科学钻探(WFSD)岩心和地表出露的断裂带为研究对象,通过对断裂岩组成、结构、显微构造和钻孔物性测井数据进行分析研究,确定了龙门山逆冲断裂带滑移行为和物性特征,初步探讨了大地震活动性和有关断裂带的隆升作用:(1)映秀—北川断裂带倾向NW,浅部倾角~65°,发育的断裂岩厚约180~280 m,由碎裂岩、假玄武玻璃(地震化石)、断层泥和断层角砾岩组成.断裂带具有高自然伽马、高磁化率值、低电阻率、低波速等物理性质以及对称型破碎结构.断层泥普遍具有摩擦热效应的高磁化率值和石墨化作用特征,是古地震滑动的岩石记录.表明映秀—北川断裂带为经常发生大地震的断裂带,晚新生代以来类似汶川地震的大地震复发周期小于6000—10000年,具有千年复发周期特征.(2)灌县—安县断裂带倾向NW,浅部倾角~38°,发育的断裂岩厚约40~50 m,仅由断层泥和断层角砾岩组成,具有典型的"压溶"结构,表现出蠕滑性质.除压溶作用外,定向富集的层状黏土矿物和微孔隙的发育使断层强度变弱.断裂带具上盘破碎的非对称型破碎结构,除具低磁化率值特征外,其他物性与映秀—北川断裂带一致.(3)根据断裂岩厚度与断层滑移量相关经验公式关系,以及断层产状,粗略估算映秀—北川断裂带自中生代以来累积垂直位移量大于9 km,灌县—安县断裂带累积垂直位移量小于3 km.映秀—北川断裂带长期大地震产生的累积垂直位移量是龙门山隆升的主要贡献.  相似文献   

6.
汶川MS8.0级地震的发震构造为龙门山断裂带,地震地表破裂主要分布在其中的北川-映秀断裂和江油-灌县断裂上,尤其是沿前者发育了长达240 km左右的地表破裂带.通过对龙门山断裂带震后断层擦痕的测量,得到311条断层擦痕数据,利用由断层滑动资料反演构造应力张量的计算方法,得到研究区8个测点的构造应力张量数据,并获得了研究区构造应力场特征:区域现代构造应力场以近水平挤压为主,最大主应力方向(σ1)为76°~121°,平均倾角9°,应力结构以逆断型为主.受构造应力场及断层几何特征的影响,地表破裂呈现出分段性:映秀—北川段主要以NW盘逆冲为主,垂直位移明显;北川以北段为逆冲兼走滑,水平位移量与垂直位移量基本相当,或水平位移略大.  相似文献   

7.
2008年5月12日MS8.0 汶川大地震的主要发震断层是龙门山断裂带的映秀—北川断裂.本研究通过地震后的实地调查和地震前后高空间分辨率航空与卫星影像的解译,对映秀—北川断裂带北川段(擂鼓镇—曲山镇)同震地表破裂带的几何学与运动学特征及相关地震地质灾害进行了详细分析.研究结果表明5·12汶川大地震沿映秀—北川断裂带产生的地表破裂带正穿过北川县城—曲山镇中心,并在曲山镇周围诱发了一系列大型滑坡和岩崩等地质灾害,致使北川县城遭到毁灭性破坏.野外考察表明北川段最大逆冲量和右旋走滑量都达8~10 m,这也是映秀—北川地表地震破裂带中位移量最大的地段.同时,值得注意的是曲山镇一带正是地震断层几何学和运动学特征改变的转换地带:曲山镇及其南西部断层倾向北西,呈现以逆冲为主兼右旋走滑的特征;在曲山镇北东断层倾向南东,表现为右旋走滑分量与垂直分量相当,走滑活动特征更明显.研究结果还表明,逆冲-走滑型(或斜向逆冲型)同震地表破裂带的几何学和运动学特征直接影响地震地质灾害及其破坏程度,地震地质灾害的分布表现出明显的不对称性:断层NW盘(上盘)远远强于SE盘(下盘).地震断层的几何学特征与断层运动的应力及坡向的自由面之间相互作用,加强了滑坡、岩崩等地质灾害的破坏力.因此,汶川大地震为我们研究逆冲-走滑型同震地表破裂的几何学、运动学特征及其地震地质灾害效应提供了契机.  相似文献   

8.
汶川M_S8.0地震地表破裂带及其发震构造   总被引:178,自引:33,他引:145  
震后应急野外考察表明,2008年5月12日汶川MS8.0地震在青藏高原东缘龙门山推覆构造带上同时使北川-映秀断裂和灌县-江油断裂两条倾向NW的叠瓦状逆断层发生地表破裂。其中,沿北川-映秀断裂展布的地表破裂带长约240km,以兼有右旋走滑分量的逆断层型破裂为主,最大垂直位移6.2m,最大右旋走滑位移4.9m;沿灌县-江油断裂连续展布的地表破裂带长约72km,最长可达90km,为典型的纯逆断层型地表破裂,最大垂直位移3.5m;另外,在上述两条地表破裂带西部还发育着1条NW向带有逆冲垂直分量、左旋走滑性质的小鱼洞地表破裂带,长约6km。这一地表破裂样式是近期发生的特大地震中结构最复杂的一次逆断层型地表破裂,地表破裂的长度也最长。利用已有的石油地震剖面,结合余震分布和地表破裂带特征等资料构建的三维发震构造模型表明,龙门山推覆构造带现今和第四纪时期以地壳缩短为主,斜滑逆冲型地震表明青藏高原中东部的水平运动在华南地块与巴颜喀拉地块之间的龙门山推覆构造带上转化为地壳的缩短和隆升  相似文献   

9.
汶川Ms8.0级地震断层滑动机制研究   总被引:10,自引:3,他引:7       下载免费PDF全文
汶川Ms8.0级地震的发震构造为龙门山断裂带,地震地表破裂主要分布在其中的北川-映秀断裂和江油-灌县断裂上,尤其是沿前者发育了长达240 km左右的地表破裂带.通过对龙门山断裂带震后断层擦痕的测量,得到311条断层擦痕数据,利用由断层滑动资料反演构造应力张量的计算方法,得到研究区8个测点的构造应力张量数据,并获得了研究区构造应力场特征:区域现代构造应力场以近水平挤压为主,最大主应力方向(σ1)为76°~121°,平均倾角9°,应力结构以逆断型为主.受构造应力场及断层几何特征的影响,地表破裂呈现出分段性:映秀-北川段主要以NW盘逆冲为主,垂直位移明显;北川以北段为逆冲兼走滑,水平位移量与垂直位移量基本相当,或水平位移略大.  相似文献   

10.
汶川8.0级地震地表破裂带与岩性关系   总被引:14,自引:4,他引:10       下载免费PDF全文
2008年汶川8.0级地震沿龙门山断裂带内的映秀—北川断裂和灌县—安县断裂分别形成约230 km和70 km的地表破裂带.震后地质考察研究表明,伴随地震断层出露地表的滑动面大多沿炭质泥岩和煤层发育.与1∶5万区域地质图进行对照,显示映秀—北川地震破裂带的西南段(虹口—清平段)和灌县—安县地震地表破裂带的展布与龙门山地区上三叠统须家河组煤系地层的出露范围相一致.龙门山地区的上三叠统须家河组地层中的薄煤层、炭质泥岩层以及志留系、寒武系的炭质页岩层是易于产生滑动的柔性岩层,易形成滑脱面或成岩片夹于断层带中.汶川地震产生的复杂地表破裂带是龙门山逆冲推覆构造带沿地表构造层中夹有煤层等柔性岩层的断层产生B型滑动的结果.  相似文献   

11.
2008汶川地震之后,多个研究组对龙门山的新生代剥蚀历史进行了研究,但是在龙门山推覆构造带中段,剥蚀历史研究主要集中在彭灌杂岩,而彭灌杂岩东侧(即中央断裂下盘)的热年代学资料相对缺乏,其剥蚀历史还比较模糊.对于彭灌杂岩东侧岩体的新生代剥蚀历史研究,不仅可以了解龙门山推覆构造带的新生代断层活动历史,而且对于青藏高原东缘的新生代隆升机制具有重要约束作用.在前人热年代学研究基础上,在龙门山推覆构造带中段中央断裂和前山断裂附近补充了一些裂变径迹样品.采用外探测器法(external detector method)对样品进行裂变径迹分析,实验测试在台湾中正大学裂变径迹实验室完成.实验获得了6个锆石裂变径迹和6个磷灰石裂变径迹年龄.前山断裂上盘,AFT(磷灰石裂变径迹)年龄以小鱼洞断裂为界存在明显的差异,其中小鱼洞断裂以南的样品AFT年龄为39Ma,小鱼洞断裂以北的4个AFT年龄介于6—8 Ma之间.研究揭示出中央断裂和前山断裂的新生代活动性以NW向小鱼洞断裂为界存在较大差异:距今8Ma以来,小鱼洞断裂以北,中央断裂和前山断裂的平均垂向滑动速率分别为约0.1mm·a-1和约0.55mm·a-1;小鱼洞断裂以南,平均垂向滑动速率则分别为约0.55mm·a-1和约0.1mm·a-1.低温热年代学方法获得的断层新生代垂向滑动速率与汶川地震断层垂向同震位移分布基本一致.前山断裂(小鱼洞断裂以北)距今8 Ma以来北西-南东向水平缩短量达到8~12km,表明地壳缩短是造成龙门山抬升和剥蚀的重要因素之一.本研究结论不支持下地壳增厚模型对于龙门山隆升的解释.  相似文献   

12.
张鹏  李丽梅 《地震学刊》2010,(2):229-234
2008年5月12日的汶川8.0级地震使龙门山断裂带形成了3条同震地表破裂带,这表明有多条活动断层同时参与地震破裂,其过程复杂,现象丰富。本文对小鱼洞地表破裂带及其与另2条地表破裂带的交汇区域进行了野外调查,并对小鱼洞地表破裂带的活动性质和展布特征进行了分析。小鱼洞地表破裂带位于彭州市小鱼洞镇附近,是汶川8.0级地震形成的一条走向NW的逆冲并具有左旋走滑分量的同震地表变形带。调查结果显示,小鱼洞地表破裂带表现出明显的分段性特征:小鱼洞镇一带的中段,逆冲量和走滑量最大;小鱼洞镇向东南方向延伸的南段,逆冲量和走滑量逐渐变小;小鱼洞镇向西北方向进入山区的北段,则表现为以逆冲为主的活动性质。  相似文献   

13.
断裂两盘岩性差异对汶川地震的影响   总被引:2,自引:1,他引:1       下载免费PDF全文
姚琪  邢会林  徐锡伟  张微 《地球物理学报》2012,55(11):3634-3647
岩性差异导致层间变形差异是常见的构造变形现象.龙门山断裂带中段北川—映秀断裂虹口至清平段,断裂上盘为坚硬的前震旦系褶皱基底,下盘则为软弱的前陆盆地沉积物,两者之间具有较大的岩性差异.本文利用基于R-minimum的有限元算法对在一个地震复发间隔内的断层活动进行非线性摩擦接触模拟.计算结果显示,上下盘泊松比的差异则对断层破裂时间及快体变形影响不大,但不同的泊松比条件下断层的破裂过程略有不同,而上下盘杨氏模量的差异能够延迟断层的破裂时间,延长破裂过程,扩大地震复发间隔,且扩大了下盘深度10 km以上和10 km以下地层变形的差异.双断坡构造能够通过深部的应力分解来削弱断层下盘深度10 km以上的变形,但是在上下盘岩性一致的情况下,双断坡构造推迟了主断层的滑动时间,延长了破裂过程,而在强硬上盘和软弱下盘共存的条件下,发育于软弱下盘的次级破裂并不能对主断层的破裂时间和破裂过程造成较大影响.北川—映秀断裂上盘强硬的彭灌杂岩和下盘软弱的含碳沉积地层对汶川地震双断坡式破裂的生成具有重要的促进作用.  相似文献   

14.
基于SAR影像偏移量获取汶川地震二维形变场   总被引:7,自引:3,他引:4       下载免费PDF全文
本文以ALOS卫星PALSAR影像为数据源,采用强度图像偏移量方法获得的整个汶川地震地表二维形变场显示,整个映秀-北川地表破裂带全长约240 km,从西南端的虹口往北东方向一直延伸到青川县附近,在虹口及北川县城所在地为两个形变量最大区域,偏移量可达4~6 m,局部更是达到了6~8 m.在高川乡附近出现一斜列拉分阶区,宽约8~10 km.在映秀-北川断层的地表破裂迹线南侧约12 km处还有一条汉旺-白鹿次级破裂带,从漩口镇一直延伸到秀水镇,长度大约100 km,在白鹿附近形变量较大,可达3~4 m.另外在小鱼洞附近可见一个NW 走向、长宽约10×5 km、形变幅度达3~4 m的连接以上两条破裂带的地表破裂带,性质为逆冲兼具左旋走滑.研究表明,利用SAR影像偏移量法能够获取近场几米量级的大形变量及客观揭示断层破裂迹线的真实形态和分段特征,可以成为野外观测、InSAR等手段的有益补充,综合以上几种观测手段,优势互补,我们可以构建更为真实的断层模型,进而对汶川地震的复杂破裂过程有更深入的了解.  相似文献   

15.
利用日本ALOS-2和欧空局Sentinel-1A卫星获得的尼泊尔地震同震形变场,结合GPS同震位移数据,联合反演了断层滑动分布特征和空间展布.结果表明:尼泊尔地震的同震形变场主要集中在150km×100km的范围内,且分为南北两个相邻的形变中心,南形变中心的视线向抬升量约为1.2m,北形变中心的视线向沉降量约为0.8m,均位于发震断层上盘.位于形变抬升区的KKN4和NAST两个GPS站,抬升量和南向运动量均达到了m级,而远离震区的其他GPS台水平和垂直观测量均在1cm以内.联合反演得到的断层位错分布主要集中在沿走向150km,沿倾向70km的范围内,最大滑动量为5.59m,平均滑动量为0.94m.断层面倾角在浅部约为7°,随着深度增加,倾角逐渐变大,到垂直深度20km时倾角接近12°;5月12日MW7.2级余震位于主震破裂区的"凹"型滑动缺损区域;主震破裂区的上边界与MBT空间位置十分吻合,主震破裂区主要集中的MBT以北50~60km处,垂直深度为8~9km,倾角为9°,继续向北时主震破裂面以10°~12°的倾角向深延伸,在18~20km可能与MHT交汇.因此,初步判定MBT为此次地震的发震断层.  相似文献   

16.
2010年9月4日新西兰南岛Canterbury平原发生了Mw7.1地震,震源深度约为10 km.本次地震发生在一条震前不为人所知的断层上.我们利用覆盖整个震区的合成孔径雷达(SAR)观测资料,通过干涉处理分析获得雷达视线向(LOS)同震形变场;以此资料为约束反演了断层的几何参数以及同震破裂分布.结果显示,该地震造成四条相对独立断层的破裂.大部分的地震矩释放发生在Greendale断层(编号1-4),其错动以右旋走滑为主,最大破裂约为8.5 m.其它三条断层中,经过震源的逆冲断层最大破裂为5.1 m (编号6),位于Greendale断层以西的逆冲断层最大破裂为3.5 m (编号5),位于Greendale断层北面的走滑断层最大破裂为1.9 m(编号7).反演的Greendale断层地表滑动与地质调查得到的地表破裂在形态和数值上均吻合较好.本次地震释放的地震矩为5.0×1019N·m,矩震级为7.1.板块边界带形变场分析表明,Darfield地震的发生受边界带应变分配在该地区残留构造应力场控制,其复杂性体现了区域构造应力场的特点.地震对其周围地区的应力场影响较大,库仑应力增加区与余震分布有一定对应关系,并在2011年Christchurch 6.3级地震发震断层区域造成约0.1bar的库仑应力增加,对此地震有一定的触发作用.  相似文献   

17.
2008年发生了汶川地震的龙门山断层带是典型的铲形逆冲断层带.利用二维线弹性有限元模型,得到关于铲形逆冲断层带一些具普适性的认识:(1)如果断层带强度不随深度变化,则地震从断层带转换层附近开始发动,破裂沿断层向上传播,当地震蓄积能量足够大时,破裂可以冲破到地表,如汶川地震.(2)一旦到达地表,其最大同震位错将位于断层带...  相似文献   

18.
利用汶川地震前后的ENVISAT ASAR影像,采用交叉相关性方法对影像进行了亚像元级别的配准,获取了沿卫星斜距向和方位向上的同震形变图,对地震地表破裂带的分布及断层运动特性进行了分析.提取了沿北川-映秀断裂分布的长230 km的地震地表破裂带,以及沿灌县-江油断裂分布的长约65 km的地震地表破裂带.通过对两个方向地...  相似文献   

19.
Re-measured GPS data have recently revealed that a broad NE trending dextral shear zone exists in the eastern Bayan Har block about 200 km northwest of the Longmenshan thrust on the eastern margin of the Qinghai-Tibet Plateau. The strain rate along this shear zone may reach up to 4-6 mm/a. Our interpretation of satellite images and field observations indicate that this dextral shear zone corresponds to a newly generated NE trending Longriba fault zone that has been ignored before. The northeast segment of the Longriba fault zone consists of two subparallel N54°±5°E trending branch faults about 30 km apart, and late Quaternary offset landforms are well developed along the strands of these two branch faults. The northern branch fault, the Longriqu fault, has relatively large reverse component, while the southern branch fault, the Maoergai fault, is a pure right-lateral strike slip fault. According to vector synthesizing principle, the average right-lateral strike slip rate along the Longriba fault zone in the late Quaternary is calculated to be 5.4±2.0 mm/a, the vertical slip rate to be 0.7 mm/a, and the rate of crustal shortening to be 0.55 mm/a. The discovery of the Longriba fault zone may provide a new insight into the tectonics and dynamics of the eastern margin of the Qinghai-Tibet Plateau. Taken the Longriba fault zone as a boundary, the Bayan Har block is divided into two sub-blocks: the Ahba sub-block in the west and the Longmenshan sub-block in the east. The shortening and uplifting of the Longmenshan sub-block as a whole reflects that both the Longmenshan thrust and Longriba fault zone are subordinated to a back propagated nappe tectonic system that was formed during the southeastward motion of the Bayan Har block owing to intense resistance of the South China block. This nappe tectonic system has become a boundary tectonic type of an active block supporting crustal deformation along the eastern margin of the Qinghai-Tibet Plateau from late Cenozoic till now. The Longriba fault zone is just an active fault zone newly-generated in late Quaternary along this tectonic system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号