首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In magnetic routine interpretation the comparison of two-dimensional model curves with measured magnetic anomalies is widely used for an approximate evaluation of the position and depth of magnetic models. Before starting an interpretation of a survey by means of two-dimensional models, it is very useful to have an idea of the shape of anomalies caused by extended but finite bodies, taking into account various strike directions: Three sets of anomalies of thin plates (horizontal length 19, downward length 9, width 1) dipping 30°, 60°, and 90° resp. for various strike directions and an inclination of 20° were computed. Some of these anomalies, e.g. those with nearly N-S strike direction look rather complicated, and at the first glance one would not expect that they are caused by such simple bodies. Several profiles crossing the computed anomalies perpendicularly were interpreted two-dimensionally. For less extended anomalies the depths determined for the top of the plates are 10-20% too small, the magnetization amounts to 50–75 % of the value of the finite bodies. The interpretation of the profiles covering more extended anomalies gave very accurately the same values for the position, depth and magnetization for the two-dimensional body as for the original three-dimensional model. Anomalies of vertical prisms with varying extensions in the y-direction were computed. Their differences in amplitude and in the distance maximum-minimum show that interpretation of short anomalies by two-dimensional methods yields depth errors of up to 20 percent. To see the possibilities of the separation of superimposed anomalies dike anomalies were added to the anomaly of a broad body in great depth and several attempts were made to interpret parts of the composite anomalies. The interpreted bodies lie too deep. In complicated cases the depth values can have large errors, but experienced interpreters should be able to keep the errors in the range of one third of the depth values.  相似文献   

2.
Various experiments are described in designing two-dimensional magnetic interpretation algorithms using computer curve fitting techniques. For a single anomaly the position of the anomaly maximum and the half-width of the anomaly give good initial estimates of the plate position and thickness. A nomogram and formulae for improving these estimates is given. Curves and estimates for the effects of finite depth extent of a plate show the limits, when the lower surface of the plate can be neglected in curve fitting. The combined anomaly of two parallel plates can be separated into partial anomalies with no common points using the horizontal derivative of the anomaly. The changes of the anomaly maxima and changes in anomaly half-widths are studied as a function of plate separation. The position of the maxima and the half-widths can be corrected before applying the one-plate procedure for obtaining initial estimates of plate positions and thicknesses. The performance of standard optimization methods of Powell, Davidon, and Marquardt in improving the values of the plate parameters are compared. The Powell method seems to be the most reliable for both single and multi-plate anomalies. All methods become unacceptably slow when the number of plates is greater than 2 or 3. In these cases feasible interpretation times are obtained using the partial anomalies and sequential parabolic search of the parameter values as tailored specially to the thick plate model. Experiments with three different error norms, the classical least squares, weighted least squares and minimax, show that the first norm gives the best overall performance in automatic interpretation. The behaviour of the classical least squares norm as a function of the plate parameters is also briefly described.  相似文献   

3.
Dip and magnetic susceptibility of very deep magnetic plates can be estimated approximately from either vertical, horizontal or total field measurements. A general accuracy of 2–5 degrees is easily obtained, if the other plate parameters, most notably horizontal position of the plate, are precisely determined. For reliable interpretation, measurements around the anomaly maximum or on the dip-side flank of the anomaly should be preferred. The depth extent of the plates must be great, some ten times the plate width at least. The method is best suited to form a part of a plate interpretation scheme, where the other plate parameters are found by some other suitable means. The method can be applied to a simultaneous determination of dips of several plates, but because of its error sensitivity an iterative formulation should then be preferred.  相似文献   

4.
重、磁勘探具有效率高、成本低、工作范围广等优点,已在地球物理勘探中得到了广泛应用.前人大多在不考虑重、磁勘探观测精度的条件下进行了垂向识别能力的研究,但在考虑重、磁观测精度条件下,重力(重力异常、重力张量)与磁力(磁力异常、磁力三分量、磁力张量)对孤立异常的垂向识别能力如何则需要进行深入的理论研究.本文从重、磁场正演理论出发,以球体(点源模型)和无限延伸水平圆柱体(线源模型)为例,考虑给定观测精度条件下,以重力和磁力幅值大小与观测精度的关系来研究垂向识别能力,从而消除了背景场的影响,提高了研究结果的可靠度.通过研究表明,对于孤立异常,重力张量在浅部一定深度内比重力异常的垂向识别能力强,该深度与重力异常和重力张量观测精度的比值成正比;垂直磁化磁力张量在浅部一定深度内比化极磁力异常的垂向识别能力强,该深度与磁力异常与磁力张量观测精度的比值成正比;磁力在浅部一定深度内比重力的垂向识别能力强,该深度与地质体的磁化强度和剩余密度比值、重力观测精度和磁力观测精度比值成正比.通过重力和磁力垂向识别能力的研究将为重、磁勘探的实际应用起到指导作用.  相似文献   

5.
A theoretical solution is presented to the problem where a VLF anomaly is generated by a conducting half-plane or a perfectly conducting wedge below a stratified overburden. The solution is obtained by the use of a scattering matrix for plane-wave eigenfunctions. VLF anomalies have been computed for different values of the conductance and dip of the half-plane. The phase of the VLF anomaly due to a conducting half-plane depends on the conductance and the distance to the half-plane. Close to the half-plane the tilt angle and ellipticity are of opposite sign for a perfect conductor, but the ellipticity will change sign for a poor conductor. The VLF anomaly for a perfectly conducting wedge is essentially determined by the position of the upper surface of the wedge, i.e. the anomaly will closely resemble the anomaly of a perfectly conducting half-plane in the same position as the upper surface of the wedge.  相似文献   

6.
A cross-plot of the shape factors and the structural indices, determined from gravity anomalies over various idealized sources, namely horizontal/vertical lines and vertical ribbons with various strike lengths and depth extents, forms a closed loop. Different segments of this loop, termed the source geometry identification loop (SGIL), correspond to different source geometries. Combined use of the structural index and the shape factor determined from an isolated gravity anomaly reduces the ambiguity in characterizing the source geometry. A simulated example and three field examples, namely a Cuban chromite anomaly, an Indian example over manganese ore and a sulphide ore from Quebec, have been analysed by the proposed method in order to identify their respective source geometries.  相似文献   

7.
火山岩油气藏重磁电震综合预测方法及应用   总被引:5,自引:1,他引:4       下载免费PDF全文
通过准噶尔盆地陆东地区数十口钻井资料的对比分析、归纳总结,提出了火山岩油气藏重磁电震综合预测方法.将正则化下延与延拓回返垂直二次导数串联形成了一个新的滤波器,该滤波器相当于首先通过正则化下延将位场曲面延拓至地下目的层段,降低火山岩埋深对磁J异常幅值的影响,然后利用延拓回返垂直二次导数对弱信号进行增强,不仅提高了位场异常...  相似文献   

8.
In a paper by Koefoed and Kegge (1968), which was based on previous work of Wesley (1958), the electrical current pattern has been derived that is induced by an oscillating magnetic dipole in a semi-infinite thin plate of infinitesimal resistivity. In the present paper, the range of validity of the assumptions, on which the work of Wesley is based, is subjected to a theoretical analysis. It is found that the decisive factor for the validity of Wesley's derivation is the quotient of the square of the penetration depth of the electrical current over the product of the thickness of the plate and a distance that is indicative of the size of the current loops in the plate. Wesley's derivation is shown to be valid only when this factor is negligible. It is also shown that in this condition the imaginary component of the anomaly must be negligible. Model experiments are described in which the electrical current pattern is studied also in the range in which the derivation of Wesley is not valid. The procedure used in these model experiments was to measure the tangential component of the magnetic field strength very close to the metal plate that simulated the conductive dyke. In order to express the results of the measurements in terms of the imaginary to real ratio, these results are compared with an interpretation graph for field measurements that was published by Hedström and Parasnis (1958). It is found that the current pattern in the plate is essentially the same as that which follows from Wesley's derivation, provided that the imaginary to real ratio is less than one third. The measurements do not permit to draw conclusions regarding the current pattern in the plate in conditions that correspond to larger values of the imaginary to real ratio.  相似文献   

9.
The amplitude of the horizontal magnetic field in the ground between two parallel wires, both carrying an alternating current in the same direction, is likely to have a saddle point if the separation between the wires is small and the frequency is low. The amplitude has a maximum in the vertical direction and a minimum in the horizontal. Rectangular geological structures in the ground which are centered between the wires have a varying effect on the magnetic fields at the surface. In general, the vertical magnetic field “crosses over” at the center of the structure. A shallow and flat lying conductor displays a broad flat type of profile when the horizontal magnetic field between the wires is measured. Changing the structure to a narrower but more conducting one at depth will provide a more pointed but still broad profile. The phase of the horizontal field is also increased. When the structure is a thin vertical dyke, the amplitude of the horizontal magnetic field anomaly due to the dyke rapidly decreases as the depth of the dyke is increased. The phase of the horizontal field is less sensitive to changes in depth of the dyke but is more sensitive to the conductivity ratio of the dyke and the half-space. The amplitude of the vertical magnetic field anomaly due to the dyke is only slightly influenced by conductivity contrast or the depth of the dyke. The phase of the vertical magnetic field, however, is strongly influenced by the conductivity contrast, particularly if the conductivity frequency product is greater than hundred. In essence, the field behaves like that of the conventional vertical loop source, but the fields are uniform over much larger areas. This suggests the possibility of using dip angle measurements for rapid reconnaissance.  相似文献   

10.
Summary Conditions are given under which two thick plates, differing in dip, apparent susceptibility, and remanence, will produce similar magnetic anomalies. From these conditions correction formulae are developed. Using these formulae the dip and susceptibility of a plate with remanent magnetization can be obtained from those of non-remanent plate. An interpretation procedure is suggested where the magnetic anomaly is first interpreted by means of a plate without remanence, dip and apparent susceptibility are then estimated by using the correction formulae developed. Thickness, position and depth of the plate are unaffected by the remanence correction procedure. The procedure is independent of the field component measured.  相似文献   

11.
中国东北地区远震P波走时层析成像研究   总被引:20,自引:14,他引:6       下载免费PDF全文
利用中国东北流动和固定台网的234个宽频带地震仪记录的远震波形数据,采用波形相关方法拾取了57251个有效相对走时残差数据,进一步采用FMTT(Fast Marching Teleseismic Tomography)层析成像的方法,反演获取了研究区下方深达800 km的P波速度结构.结果显示:在长白山下方发现有一个高速异常结构,这可能就是俯冲到欧亚大陆板块下方的太平洋板块,由于板块的部分下沉,使得板块的形状并没有呈现出明显的板片状.长白山、阿尔山、五大连池火山下方都有低速异常体,长白山和阿尔山下的低速异常向下延伸至地幔转换带,可能与其上部的火山形成有关.五大连池火山下方的低速异常向下延伸至200 km左右,不同埋深的低速异常结构可能意味着五大连池与长白山和阿尔山有着不同的成因.松辽盆地呈现以高速异常为主导高低速异常混合分布的特性,暗示松辽盆地可能有岩石圈拆沉的过程,盆地南部下方的低速异常与长白山和阿尔山下的低速异常有连通性,可能是下地幔热物质上涌的一个通道.  相似文献   

12.
We have developed a least‐squares minimization approach to depth determination using numerical second horizontal derivative anomalies obtained from magnetic data with filters of successive window lengths (graticule spacings). The problem of depth determination from second‐derivative magnetic anomalies has been transformed into finding a solution to a non‐linear equation of the form, f(z) = 0. Formulae have been derived for a sphere, a horizontal cylinder, a dike and a geological contact. Procedures are also formulated to estimate the magnetic angle and the amplitude coefficient. We have also developed a simple method to define simultaneously the shape (shape factor) and the depth of a buried structure from magnetic data. The method is based on computing the variance of depths determined from all second‐derivative anomaly profiles using the above method. The variance is considered a criterion for determining the correct shape and depth of the buried structure. When the correct shape factor is used, the variance of depths is less than the variances computed using incorrect shape factors. The method is applied to synthetic data with and without random errors, complicated regionals, and interference from neighbouring magnetic rocks. Finally, the method is tested on a field example from India. In all the cases examined, the depth and the shape parameters are found to be in good agreement with the actual parameters.  相似文献   

13.
位场解析信号振幅极值位置空间变化规律研究   总被引:6,自引:1,他引:5       下载免费PDF全文
王万银 《地球物理学报》2012,55(4):1288-1299
通过对单一边界、双边界、多边界以及点(线)质量模型重力异常解析信号振幅和重力异常垂向导数解析信号振幅的极值位置空间变化规律研究表明,重力异常垂向导数解析信号振幅和化极磁力异常解析信号振幅的极值位置相同,且与重力异常解析信号振幅的极值位置空间变化规律相似.利用位场解析信号振幅极大值位置能够准确识别单一直立边界地质体的边缘位置,但不能准确识别其它任何形体的边缘位置,其识别结果的偏移量大小随地质体的埋深、水平尺寸以及倾斜程度等变化.虽然重力异常垂向导数解析信号振幅比重力异常解析信号振幅的峰值更加尖锐、横向识别能力更强,其极大值位置更靠近地质体上顶面边缘位置,但均受地质体埋深的影响较大;随着埋深的增加,位场解析信号振幅的极大值位置会快速收敛到形体的"中心位置",其轨迹类似"叉子状";且对多边界模型会出现"极大值位置盲区"而无法识别其边缘位置.通过这些理论研究表明,位场解析信号振幅只能识别单一边界地质体的边缘位置;而不宜用来识别多边界地质体的边缘位置,但可以用来识别多边界地质体的"中心位置".  相似文献   

14.
Conventional electrical prospecting can be extended to the search for deep-seated hydrocarbon deposits, by using the steel casings of drill-holes as vertical line sources. These sources produce at depth a density of current higher than the density created by point sources located at the ground surface. Several tests have shown that the contrast of conductivity between resistive hydrocarbon deposits and the surrounding salt water produces relevant anomalies on a resistivity map obtained with vertical line sources, especially where there exists a superficial masking effect caused by a highly resistive layer. In a survey carried out in the USSR, combined measurements were performed, both with line source and with surface point sources. The detected residual resistivity anomaly roughly delineates the contours of the known hydrocarbon deposit.  相似文献   

15.
Based on the theory of surface waves in a media with weak lateral heterogeneities, an explanation is given for the peculiarities that are considered as prospecting indicators in the microseismic sounding method (MSM). According to this theory, during the propagation of surface waves in such media, their local characteristics are the same as in the case of propagation in a horizontally homogeneous medium characterized by the same vertical velocity section as underlying a given point. Since the wave energy flux through a semiinfinite vertical strip is conserved, the amplitude of the wave is redistributed along the vertical. Based on this principle and simple physical considerations, it is shown that above a low-velocity domain, the amplitudes of microseisms should increase at wavelengths approximately exceeding the depth of the anomaly by a factor of three and decrease at small wavelengths. The model calculations show that variation of spectral amplitudes only allows a depth to the anomaly to be estimated rather than its average extent. Practically identical spectra characterize the anomalies in which the product of the vertical extent of the anomaly and the velocity contrast is approximately similar.  相似文献   

16.
In a weathered environment estimates of depth and conductance of metallic sulphide dykes from conventional anomaly index diagrams for a vertical half-plane in air have to be corrected, besides the usual corrections, for: 1. moderate conductivity of the host rocks, and 2. finiteness of strike length S and depth extent D. Model experiments have been carried out to evaluate the response variation of a vertical planar conductor with varying depth extent and strike length for both insulating and conductive surroundings. The results indicate: 1. A conductor with finite depth extent (D/L < 2.5) or strike length (S/L < 5.0) in an insulating medium yields a lower estimate of conductance (mineralization) and a greater depth. 2. A moderately-conductive host rock enhances the anomaly and rotates the phase so that the conductor appears to be more resistive (less mineralized) and shallower. The results have practical significance since in weathered surroundings a highly-mineralized body of finite size could be missed, or misjudged, because of low estimates of conductivity and depth.  相似文献   

17.
For outcropping bodies an approximate direct interpretation of the associated gravity anomaly is generally obtained with the flat plate formula. Results can be significantly improved if the causative body is approximated by a bell shape instead of a flat plate. A set of parameter curves allows the conversion to depth data. The validity of the method is borne out by synthetic models and by field examples in a Nevada valley with Tertiary and in the Los Angeles Basin. The method provides structural definition more accurate than can be obtained with the flat plate formula, particularly in the case of narrow anomalies.  相似文献   

18.
The applied potential, or mise‐à‐la‐masse, method is used in mineral exploration and environmental applications to constrain the shape and extent of conductive anomalies. However, few simple calculations exist to help gain understanding and intuition regarding the pattern of measured electrical potential at the ground surface. While it makes intuitive sense that the conductor must come close to the ground surface in order for the lateral extent of the potential anomaly to be affected by the dimensions of the conductor rather than simply by the depth, no simple calculation exists to quantify this effect. In this contribution, a simple method of images solution for the case of a sphere of constant electrical potential in a conducting half‐space is presented. The solution consists of an infinite series where the first term is the same as the method of images solution for a point current source in an infinite half‐space. The higher order terms result from the interaction of the constant potential sphere with the no‐flux boundary condition representing the ground surface and cause the change in the shape of the potential anomaly that is of interest in the applied potential method. The calculation is relevant to applied potentials when the conductive anomaly is limited in all three space dimensions and is highly conductive. Using the derived formula, it is shown that, while the electrical potential at the ground surface caused by the sphere is affected even when the sphere is quite deep, the ratio of the potential to the current, a quantity that is more relevant to the applied potential method, is not affected until the centre of the sphere is within two radii of the ground surface. An expression for the contact resistance of the sphere as a function of depth is also given, and the contact resistance is shown to increase by roughly 45% as the sphere is moved from great depth to the ground surface.  相似文献   

19.
Responses of a multifrequency, multicoil airborne electromagnetic (AEM) system were modelled numerically for 3D electrical conductors embedded in a resistive bedrock and overlain by an overburden of low to moderate conductivity. The results cover a horizontal coplanar coil configuration and two frequencies, 7837 Hz and 51 250 Hz. The models studied are single or multiple, poor conductors (conductance lower than 0.1 S) embedded in a host rock of high but finite resistivity (5000 Ωm) and overlain by a layer of overburden with finite thickness and low to moderate conductivity (conductance up to 2 S). On the basis of the modelling results, limits of detectability for poor conductors have been studied for the various model structures. The results indicate that the anomaly from a steeply dipping, plate-like conductor will decrease significantly when the conductor is embedded in a weakly conductive host rock and is overlain by a conductive overburden. However, an anomaly is obtained, and its magnitude can even increase with increasing overburden conductivity or frequency. The plate anomaly remains practically constant when only the overburden thickness is varied. Changes in overburden conductivity will cause the plate-anomaly values to change markedly. If the plate conductance is less than that of the overburden, a local anomaly opposite in sign to the normal type of anomaly will be recorded. Another major consequence is that conductors interpreted with free-space models will be heavily overestimated in depth or underestimated in conductance, if in reality induction and current channelling in the host rock and overburden make even a slight contribution to the anomalous EM field. The lateral resolution for the horizontal coplanar coil system was found to be about 1.7 times the sensor altitude. Similarly, the lateral extension of a horizontal conductive ribbon, required to reach the semi-infinite (half-space) behaviour, is more than three times the sensor altitude. Finally, screening of a steeply dipping plate, caused by a small, conductive horizontal ribbon, is much more severe than screening of the same plate by an extensive horizontal layer.  相似文献   

20.
Knowledge of the structure of the lower crust and uppermost mantle is of special importance in understanding plate tectonics. Electrical conductivity of this region has been measured recently in various parts of the world. Transfer functions are still the most widely used quantity in data analysis and model fitting. Anomalies in the horizontal magnetic components in combination with anomalies in the vertical component have been found very useful in locating conductivity contrasts. With these, when the cause of the anomaly is a concentrated line current, both the position of the line current and its depth can be directly located. The method of hypothetical event analysis is another new technique and this is highly suited for areas having complex subsurface geology or areas under non-uniform source fields or both. The anomaly is more suitable for modelling geophysical structures when it is separated into regional and local components. Model calculations still are not very satisfactory and the importance of one dimensional calculations must be emphasized for they give direct information on the variation of conductivity with depth, which is the purpose of GDS. We need more results, especially from tectonically active areas, before the underlying physical processes can be completely understood.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号