首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 81 毫秒
1.
Jan Herrmann 《Limnologica》2012,42(4):299-309
A manmade stormwater wetland in Kalmar, SE Sweden, sized 1 ha and receiving water from residential and road areas, was monitored over the first years after inundation with respect to chemistry and biology. Water flow and chemistry was analysed in years 2–4, mainly on a monthly basis, but, in the final year, every second month. This revealed that total nitrogen, according to the Swedish Environmental Quality Criteria (EQC), typically showed moderate or high concentrations, whereas total phosphorous levels were very high or extremely high. Metal (Cd, Cr, Cu, Pb and Zn) concentrations were low or moderate in terms of EQC. Yearly average reduction of nitrogen was 173 kg ha?1 y?1, tending to increase over time, and for phosphorous 12.1 kg ha?1 y?1, tending to decrease. Vegetation analysis was performed in years 1–4 by noting all species in 27 consecutive zones around the wetland system. This showed that one year after filling with water, the vegetation was already well established with >30 plant species in the entire pond system, and this increased only slightly. After four years, the shoreline vegetation cover had become denser, especially with larger graminoids such as common reed (Phragmites australis) and sea club-rush (Bolboschoenus maritimus), and submersed vegetation almost disappeared. There was a tendency for common species to become more dominant, and for less common species to become rarer. Using sweep net sampling of benthic invertebrates during years 0–2, ca 50 species/higher taxa were observed during the first year, largely because of the appearance of many beetles, especially dytiscids. However, these decreased the following years. Apart from these animals, in the first few months the invertebrate colonisation was dominated by chironomids and corixids, whereas later prominent increases were noticed for the isopod Asellus aquaticus, the snail Physa fontinalis, and the mayfly nymph Cloeon dipterum. The results are discussed in terms of wetland values for biodiversity and nutrient reduction, suggesting that these objectives seem possible to combine in stormwater wetlands.  相似文献   

2.
《Continental Shelf Research》1999,19(14):1809-1831
The central Norwegian shelf between 62 and 68°N covers an area of about 150 000 km2. The bottom topography is complicated and consists of several shallow banks separated by deeper channels. The area plays an important site-specific role for the recruitment strategy of the Norwegian spring spawning herring. The aim of this contribution is to elucidate the general circulation pattern and the physical processes related to drift and spreading of herring larvae, primarily by the use of satellite-tracked drifting buoys. The results indicate two drift routes; the main inner one on the coastal side of the banks, and a secondary outer one which follows the shelf break. Both routes are highly governed by the bottom topography. The inner transport route is the proper Norwegian Coastal Current characterised by having the higher drift speeds, the lower mean residence time and the higher current directional stability. Several banks at the shelf may induce topographically trapped eddies. The herring seems to prefer to spawn in these eddies.  相似文献   

3.
Image classification approaches are widely used in mapping vegetation on remotely sensed images. Vegetation assemblages are equivalent to habitats. Whereas sub-pixel classification approaches potentially can produce more realistic, homogenous habitat maps, pixel-based hard classifier approaches often result in non-homogenous habitat zones. This salt-and-pepper habitat mapping is particularly a challenge on images of savannas, given the characteristic patchy texture of scattered trees and grass. Image segmentation techniques offer possibilities for homogenous habitat classification. This study aimed at establishing the extent to which established, field surveyed and geology-related vegetation types in South Africa’s Kruger National Park (KNP) can be reproduced using image segmentation. Rain season Landsat TM images were used, selected to coincide with the peak in vegetation productivity, which was deemed the time of year when discrimination between key habitats in KNP is most likely to be successful. The multiresolution segmentation mode in eCognition 5.0 was employed, object classification accomplished using the nearest neighbour (NN) classifier, using object texture and training area mean values in the NN feature space.Compared to delineations of the vegetation types of KNP on a digital map of the vegetation zones that was tested, image segmentation successfully mapped the zones (overall accuracy 85.3%, K^ = 82.7%) despite slight shifts in the location of vegetation zone boundaries. Maximum likelihood classification (MLC) of the same images was only 37% accurate (K^ = 24.2%). Whereas the vegetation zones resulting from MLC were non-homogenous, with considerable spectral confusion among the vegetation zones, image segmentation produced more homogenous vegetation zones, comparably more useful for conservation management, because realistic and meaningful habitat maps are important in biodiversity conservation as input data upon which to base management decisions. Image segmentation appears to be a useful approach in mapping savanna vegetation.  相似文献   

4.
Lengshuiqing is part of the late Proterozoic igneous province from the western margin of the Yangtze craton. The Lengshuiqing area comprises five ultramafic–mafic intrusions, emplaced in the late Proterozoic Yanbian Group. The intrusions from Lengshuiqing contain cumulate ultramafic zones (peridotite + olivine pyroxenite), with cumulus olivine and Cr-spinel, and intercumulus pyroxenes, hornblende, phlogopite and plagioclase. Ni–Cu ore (pyrrhotite + pentlandite + chalcopyrite) is hosted in the ultramafic zones. Olivine-free diorite–quartz diorite ± gabbro and granite zones commonly occur above the ultramafic rocks. The genesis of the intrusions (conduit-related accumulation or differentiation from stagnant magma) was investigated. The amount of sulphides in the intrusions from Lengshuiqing is one order of magnitude bigger than the sulphides that can be dissolved by a volume of mafic magma similar with the volume of the intrusions. Most intrusions from Lengshuiqing have bulk composition (peridotite ± diorite ± granite) more magnesian (MgO = 21–22%; Mg# > 78) than the deduced composition of their parental magma (MgO = 9–11%; Mg# = 64–67). This indicates the accumulation of sulphide and mafic silicates from a volume of magma much bigger than the volume of the intrusions, which can be explained by the fractionation from magma ascending through the intrusions to shallower depths. A continuous supply and vent of magma is consistent with the lack of chilled margins, the melting of the wall rocks and the generation of high-temperature mineral assemblages (K-feldspar, diopside, and sillimanite) in the Yanbian Group. The intrusions from Lengshuiqing are seen as microchambers on conduits draining olivine-, Cr-spinel-, and sulphide-bearing mafic magma from a larger staging chamber.  相似文献   

5.
This pore-scale modeling study in saturated porous media shows that compound-specific effects are important not only at steady-state and for the lateral displacement of solutes with different diffusivities but also for transient transport and solute breakthrough. We performed flow and transport simulations in two-dimensional pore-scale domains with different arrangement of the solid grains leading to distinct characteristics of flow variability and connectivity, representing mildly and highly heterogeneous porous media, respectively. The results obtained for a range of average velocities representative of groundwater flow (0.1–10 m/day), show significant effects of aqueous diffusion on solute breakthrough curves. However, the magnitude of such effects can be masked by the flux-averaging approach used to measure solute breakthrough and can hinder the correct interpretation of the true dilution of different solutes. We propose, as a metric of mixing, a transient flux-related dilution index that allows quantifying the evolution of solute dilution at a given position along the main flow direction. For the different solute transport scenarios we obtained dilution breakthrough curves that complement and add important information to traditional solute breakthrough curves. Such dilution breakthrough curves allow capturing the compound-specific mixing of the different solutes and provide useful insights on the interplay between advective and diffusive processes, mass transfer limitations, and incomplete mixing in the heterogeneous pore-scale domains. The quantification of dilution for conservative solutes is in good agreement with the outcomes of mixing-controlled reactive transport simulations, in which the mass and concentration breakthrough curves of the product of an instantaneous transformation of two initially segregated reactants were used as measures of reactive mixing.  相似文献   

6.
The southern Chilean region between the Boca del Guafo passage and Estero Elefantes contains one of the estuarine zones with the greatest freshwater influence on the planet. At the surface, plumes of freshwater from the fjord heads to their mouths, emptying into the Moraleda–Costa–Elefantes channel system and then the coastal ocean. The influence of this freshwater on the region’s estuarine dynamics, coastal ecology, and biogeochemical processes has only recently begun to be elucidated.Using hydrographic data from the CIMAR-Fiordos cruises (1998–2001), this study quantifies the equivalent height of freshwater, emphasizing the role it plays in the potential energy anomaly and front locations, as well as its relationship with river discharges. Using a criterion of equivalent height of freshwater >15% (density <1021 kg/m3 and salinity <28), the brackish layer was found to be 1–15 m thick (except in Estero Elefantes), with horizontal extensions on the order of 100 km. The limits of this layer tended to coincide with frontal zones having potential energy anomaly gradients >0.005 J/m4. The frontal zones were located in the extreme southeast of Jacaf Channel, at the head of Ventisquero Sound, in the central part of the Puyuguapi and Moraleda channels, and at the head and mouth of Aysén Fjord. The equivalent height of freshwater and potential energy anomaly showed a good correlation with the accumulated (5-day) river discharges (r2=0.87), which were greatest toward the fjord heads in spring. The brackish surface water had short residence times (3.5 days) in Aysen Fjord, unlike the deep layer, which other authors report to have a longer residence time (near 1 year).  相似文献   

7.
《Marine pollution bulletin》2013,66(10-12):478-489
Atoll lagoons display a high diversity of trophic states due mainly to their specific geomorphology, and probably to their level and mode of human exploitation. We investigated the functioning of the Ahe atoll lagoon, utilized for pearl oyster farming, through estimations of photosynthetic parameters (pulse amplitude modulation fluorometry) and primary production (13C incorporation) measurements of the size structured phytoplankton biomass (<2 μm and >2 μm). Spatial and temporal scales of variability were surveyed during four seasons, over 16 months, at four sites within the lagoon. While primary production (P) was dominated by the picophytoplankton, its biomass specific primary productivity (PB) was lower than in other atoll lagoons. The variables size fraction of the phytoplankton, water temperature, season, the interaction term station * fraction and site, explained significantly the variance of the data set using redundancy analysis. No significant trends over depth were observed in the range of 0–20 m. A clear spatial pattern was found which was persistent over the seasons: south and north sites were different from the two central stations for most of the measured variables. This pattern could possibly be explained by the existence of water cells showing different water residence time within the lagoon. Photoacclimation strategies of the two size fractions differed through their light saturation coefficient (higher for picophytoplankton), but not through their maximum photosynthetic capacity (ETRmax). Positive linear relationships between photosynthetic parameters indicated that their dynamic was independent of light availability in this ecosystem, but most probably dependent on nutrient availability and/or rapid changes in the community structure. Spatial and temporal patterns of the measured processes are then further discussed in the context of nutrient availability and the possible role of cultured oysters in nutrient recycling.  相似文献   

8.
《Continental Shelf Research》2006,26(17-18):2029-2049
A field experiment was carried out in Massachusetts Bay in August 1998 to assess the role of large-amplitude internal waves (LIWs) in resuspending bottom sediments. The field experiment consisted of a four-element moored array extending from just west of Stellwagen Bank (90-m water depth) across Stellwagen Basin (85- and 50-m water depth) to the coast (24-m water depth). The LIWs were observed in packets of 5–10 waves, had periods of 5–10 min and wavelengths of 200–400 m, and caused downward excursions of the thermocline of as much as 30 m. At the 85-m site, the current measured 1 m above bottom (mab) typically increased from near 0 to 0.2 m/s offshore in a few minutes upon arrival of the LIWs. At the 50-m site, the near-bottom offshore flow measured 6 mab increased from about 0.1 to 0.4–0.6 m/s upon arrival of the LIWs and remained offshore in the bottom layer for 1–2 h. The near-bottom currents associated with the LIWs, in concert with the tidal currents, were directed offshore and sufficient to resuspend the bottom sediments at both the 50- and 85-m sites. When LIWs are present, they may resuspend sediments for as long as 5 hours each tidal cycle as they travel westward across Stellwagen Basin. At 85-m water depth, resuspension associated with LIWs is estimated to occur for about 0.4 days each summer, about the same amount of time as caused by surface waves.  相似文献   

9.
The spontaneous imbibition of water and other liquids into gas-filled fractures in variably-saturated porous media is important in a variety of engineering and geological contexts. However, surprisingly few studies have investigated this phenomenon. We present a theoretical framework for predicting the 1-dimensional movement of water into air-filled fractures within a porous medium based on early-time capillary dynamics and spreading over the rough surfaces of fracture faces. The theory permits estimation of sorptivity values for the matrix and fracture zone, as well as a dispersion parameter which quantifies the extent of spreading of the wetting front. Quantitative data on spontaneous imbibition of water in unsaturated Berea sandstone cores were acquired to evaluate the proposed model. The cores with different permeability classes ranging from 50 to 500 mD and were fractured using the Brazilian method. Spontaneous imbibition in the fractured cores was measured by dynamic neutron radiography at the Neutron Imaging Prototype Facility (beam line CG-1D, HFIR), Oak Ridge National Laboratory. Water uptake into both the matrix and the fracture zone exhibited square-root-of-time behavior. The matrix sorptivities ranged from 2.9 to 4.6 mm s−0.5, and increased linearly as the permeability class increased. The sorptivities of the fracture zones ranged from 17.9 to 27.1 mm s−0.5, and increased linearly with increasing fracture aperture width. The dispersion coefficients ranged from 23.7 to 66.7 mm2 s−1 and increased linearly with increasing fracture aperture width and damage zone width. Both theory and observations indicate that fractures can significantly increase spontaneous imbibition in unsaturated sedimentary rock by capillary action and surface spreading on rough fracture faces. Fractures also increase the dispersion of the wetting front. Further research is needed to investigate this phenomenon in other natural and engineered porous media.  相似文献   

10.
Previous studies have examined in-depth the dispersion mechanisms in natural catchments. In contrast, these dispersion mechanisms have been studied little in urban catchments, where artificial transport elements and morphological arrangements are expected to modify travel times and mobilize excess rainfall from spatially distributed impervious sites. This has the ability to modify the variance of the catchment’s travel times and hence the total dispersion. This work quantifies the dispersion mechanisms in an urban catchment using the theory of transport by travel times as represented by the Urban Morpho-climatic Instantaneous Unit Hydrograph (U-McIUH) model. The U-McIUH computes travel times based on kinematic wave theory and accounts explicitly for the path heterogeneities and altered connectivity patterns characteristic of an urban drainage network. The analysis is illustrated using the Aubinière urban catchment in France as a case study. We found that kinematic dispersion is dominant for small rainfall intensities, whereas geomorphologic dispersion becomes more dominant for larger intensities. The total dispersion scales with the drainage area in a power law fashion. The kinematic dispersion is dominant across spatial scales up to a threshold of approximately 2–3 km2, after which the geomorphologic dispersion becomes more dominant. Overall, overland flow is responsible for most of the dispersion in the catchment, while conduits tend to counteract the increase of the geomorphologic dispersion with a negative kinematic dispersion. Further study with other catchments is needed to asses if the latter is a general feature of urban drainage networks.  相似文献   

11.
Drinking water wells indiscriminatingly placed adjacent to fecal contaminated surface water represents a significant but difficult to quantify health risk. Here we seek to understand mechanisms that limit the contamination extent by scaling up bacterial transport results from the laboratory to the field in a well constrained setting. Three pulses of Escherichia coli originating during the early monsoon from a freshly excavated pond receiving latrine effluent in Bangladesh were monitored in 6 wells and modeled with a two-dimensional (2-D) flow and transport model conditioned with measured hydraulic heads. The modeling was performed assuming three different modes of interaction of E. coli with aquifer sands: (1) irreversible attachment only (best-fit ki = 7.6 day−1); (2) reversible attachment only (ka = 10.5 and kd = 0.2 day−1); and (3) a combination of reversible and irreversible modes of attachment (ka = 60, kd = 7.6, ki = 5.2 day−1). Only the third approach adequately reproduced the observed temporal and spatial distribution of E. coli, including a 4-log10 lateral removal distance of ∼9 m. In saturated column experiments, carried out using aquifer sand from the field site, a combination of reversible and irreversible attachment was also required to reproduce the observed breakthrough curves and E. coli retention profiles within the laboratory columns. Applying the laboratory-measured kinetic parameters to the 2-D calibrated flow model of the field site underestimates the observed 4-log10 lateral removal distance by less than a factor of two. This is promising for predicting field scale transport from laboratory experiments.  相似文献   

12.
《Journal of Hydrology》2006,316(1-4):13-27
A linearized approach to quantifying predictive uncertainty in a 2-D model of shallow water flow in response to uncertainty in friction parameterization is presented. The resulting uncertain finite volume (UFV) method is tested against Monte Carlo simulations for uncertain models over channel only, floodplain only and channel and floodplain meshes. The results show that the UFV model performs well in predicting mean and standard deviations of water depths, for problems with two independent Manning's n values, with standard deviations of up to 0.02 m1/3 s−1 with a mean value of 0.03 m1/3 s−1. For depth averaged velocities, mean values are well represented, but standard deviations are poorly predicted by UFV. UFV also performs well when modelling flow over an uneven fractal topography and for a distributed (11 degrees of freedom) parameterization. A computation time advantage of >50 when compared to the Monte Carlo method is observed.  相似文献   

13.
In this study, carbon dioxide exsolution from carbonated water is directly observed under reservoir conditions (9 MPa and 45 °C). Fluorescence microscopy and image analysis are used to quantitatively characterize bubble formation, morphology, and mobility. Observations indicate the strong influence of interfacial tension and pore-geometry on bubble growth and evolution. Most of the gas exhibits little mobility during the course of depressurization and clogs water flow paths. However, a snap-off mechanism mobilizes a small portion of the trapped gas along the water flow paths. This feature contributes to the transport of the dispersed exsolved gas phase and the formation of intermittent gas flow. A new definition of critical gas saturation is proposed accordingly as the minimum saturation that snap-off starts to produce mobile bubbles. Low mobility of the water phase and CO2 phase in exsolution is explained by formation of dispersed CO2 bubbles which block water flow and lack the connectivity to create a mobile gas phase.  相似文献   

14.
《Continental Shelf Research》2006,26(17-18):2073-2091
The eastern part of the chenier plain of the Louisiana coast has been prograding seaward over the last few decades while much of the rest of the Louisiana coast is experiencing high erosion rates. The source of sediment is the Atchafalaya River, which has been delivering sediment to the coastal ocean since the 1940s. Researchers have suggested that the repeated passage of cold fronts during winter and early spring plays an important role in delivering sediment to the coast. A sediment-transport study on the Atchafalaya coast was conducted between October 1997 and March 2001, which included several field experiments in early March, the period of high discharge from the Atchafalaya and frequent cold-front activity. A combination of shipboard profiling and time-series measurements from a bottom tripod and array of wave sensors on the inner shelf has resulted in a data set that illustrates the mechanism of onshore transport. For a cold-front passage sampled in 2001, during pre-front conditions, sediment is resuspended and mixed throughout the water column, with transport rates onshore and to the west of 53 and 184 g s−1 m−1, respectively. Post-front conditions also result in onshore transport due to onshore flow (upwelling) in the lower meter of the water column and formation of a high-concentration bottom layer. Post-front onshore transport rates are 32 g s−1 m−1 and most of the transport occurs in the bottom meter of the water column. The repeated cycling of cold-front passages leads to a positive feedback with transport onshore during both pre- and post-front conditions, and effective attenuation of wave energy over the muddy inner shelf inhibits erosion at the coast. Thus, the chenier-plain coast is experiencing high progradation rates (up to 29 m yr−1), while most of the Gulf coast is eroding.  相似文献   

15.
《Journal of Hydrology》1999,214(1-4):8-17
Understanding the influence of irrigation methods on solute transport is essential to properly manage chemical use in agricultural soils. In this study, we compare the transport of a conservative solute (bromide) under sprinkler and flood irrigations on a sandy clay loam (mixed Ustollic Haplargid) under no-till condition. After spraying 148.8 kg/ha of KBr on the surface, ≈25 cm of irrigation water was applied in six increments over two months as flood irrigation on one plot and as sprinkler irrigation on another plot. The net applied water (NAW=irrigation+precipitation−evaporation) was similar for both plots, which allowed the comparison of the Br profiles for the two types of irrigation. Water content and Br concentration were sampled at 5, 19, 34, and 68 days after chemical application.The recovered mass of Br and the location of center of mass were comparable for the two types of irrigation. The spread around the center of mass, however, was higher for the flood-irrigated plot. On the flood-irrigated plot, more mass leached below the depth of 90 cm, with the differences being statistically significant. The velocity of the Br center of mass was consistently 10%–20% larger than the piston displacement velocity. Dispersion and velocity coefficients varied substantially between sampling time. A recent quasi-steady solution of the convection–dispersion equation [M.H. Nachabe, L.R. Ahuja, Quasi-analytical solution for predicting the redistribution of surface-applied chemicals. Trans. ASAE 39(5) (1996) 1659–1664], which accounts for variable flow and dispersion, simulates the Br profiles fairly well.  相似文献   

16.
《Journal of Hydrology》2006,316(1-4):213-232
The Magdalena River, a major fluvial system draining most of the Colombian Andes, has the highest sediment yield of any medium-sized or large river in South America. We examined sediment yield and its response to control variables in the Magdalena drainage basin based on a multi-year dataset of sediment loads from 32 tributary catchments. Various morphometric, hydrologic, and climatic variables were estimated in order to understand and predict the variation in sediment yield. Sediment yield varies from 128 to 2200 t km−2 yr−1 for catchments ranging from 320 to 59,600 km2. The mean sediment yield for 32 sub-basins within the Magdalena basin is ∼690 t km−2 yr−1. Mean annual runoff is the dominant control and explains 51% of the observed variance in sediment yield. A multiple regression model, including two control variables, runoff and maximum water discharge, explains 58% of the variance. This model is efficient (ME=0.89) and is a valuable tool for predicting total sediment yield from tributary catchments in the Magdalena basin. Multiple correlations for those basins corresponding to the upper Magdalena, middle basin, Eastern Cordillera, and catchment areas greater than 2000 km2, explain 75, 77, 89, and 78% of the variance in sediment yield, respectively. Although more variance is explained when dataset are grouped into categories, the models are less efficient (ME<0.72). Within the spatially distributed models, six catchment variables predict sediment yield, including runoff, precipitation, precipitation peakedness, mean elevation, mean water discharge, and relief. These estimators are related to the relative importance of climate and weathering, hillslope erosion, and fluvial transport processes. Time series analysis indicates that significant increases in sediment load have occurred over 68% of the catchment area, while 31% have experienced a decreasing trend in sediment load and thus yield. Land use analysis and increasing sediment load trends indicate that erosion within the catchment has increased over the last 10–20 years.  相似文献   

17.
The large-scale deformation of high mountain slopes finds its origin in many phenomena with very different time-constants. Gravitational effect, tectonic forces, and water infiltration are generally the principal causes. However, it is always very difficult to distinguish which cause is dominant and which are their respective effects. A two-dimensional numerical experiment coupled with geophysical approach was carried out to determine (1) the effect of gravitational force on the mechanical behaviour of the “la Clapière” area, (2) a 2D-depth structure of this landslide. The results show that gravitational instability is possible and leads to destabilisation of the massif by a regressive evolution of the landslide from the bottom at 1100 m up to a height of 1800 m, which is actually the top of the La Clapière landslide. This deformation progression only concerns a depth of around 150 ± 50 m, which can be correlated to the sliding surface, as suggested by our electrical data obtained by resistivity investigations and previous studies. Our numerical results suggest that changes of the slope topography “drive” the diffusion of the plastic deformation in the mass, possibly through a channel which could be then the privileged zone along which the fracture is initiated.  相似文献   

18.
《Marine pollution bulletin》2009,58(6-12):735-743
A pilot-scale mangrove wetland was constructed in Futian, Shenzhen for municipal sewage treatment. Three identical belts (length: 33 m, width: 3 m, depth: 0.5 m) were filled with stone (bottom), gravel and mangrove sand (surface). Seedlings of two native mangrove species (Kandelia candel, Aegiceras corniculatum) and one exotic species (Sonneratia caseolaris) were transplanted to the belts with one species for each belt. The hydraulic loading was 5 m3 d−1 and hydraulic retention time 3 d. High levels of removal of COD, BOD5, TN, TP and NH3–N were obtained. The treatment efficiency of S. caseolaris and A. corniculatum was higher than that of K. candel. Faster plant growth was obtained for S. caseolaris. The substrate in the S. caseolaris belt also showed higher enzyme activities including dehydrogenase, cellulase, phosphatase, urease and β-glucosidase. The removal rates of organic matter and nutrients were positively correlated with plant growth. The results indicated that mangroves could be used in a constructed wetland for municipal sewage treatment, providing post-treatment to remove coliforms was also included.  相似文献   

19.
《Advances in water resources》2007,30(6-7):1583-1592
A major problem preventing widespread implementation of microbial injection strategies for bioremediation and/or microbially enhanced oil recovery is the tendency of bacteria to strongly adhere to surfaces in the immediate vicinity of the injection point. Long term (weeks to months) nutrient starvation of bacteria prior to injection can decrease attachment and enhance transport through porous media. This paper summarizes results of starvation-enhanced transport experiments in sand columns of 30 cm, 3 m, and 16 m in length. The 16 m column experiments compared transport, breakthrough and distribution of adhered cells for starved and vegetative cultures of Klebsiella oxytoca, a copious biofilm producer. Results from these experiments were subsequently used to design and construct a field-scale biofilm barrier using starved Pseudomonas fluorescens. The 30 cm and 3 m sand columns experiments investigated starvation-enhanced transport of Shewanella algae BrY, a dissimilatory metal-reducing bacterium. In both cases the vegetative cells adsorbed onto the sand in higher numbers than the starved cells, especially near the entrance of the column. These results, taken together with studies cited in the literature, indicate that starved cells penetrate farther (i.e. higher breakthrough concentration) and adsorb more uniformly along the flow path than vegetative cells.  相似文献   

20.
This paper highlights the efficiency and complementarity of a light package of geophysical techniques to study the structure of karst Unsaturated Zone (UZ) in typical Mediterranean environment where soil cover is thin or absent. Both selected techniques, 2D Ground Penetrating Radar (GPR) and Electrical Resistivity Tomography (ERT), are widely used in environmental studies and their application is accessible for a lot of scientists/engineers. However, GPR or ERT alone is not able to provide an enhanced characterization of geological features in karst media. In the present study, GPR results supply a near surface high resolution imaging and thus can provide relevant geological information such as stratifications and fractures. Despite the quality of the results GPR's investigation depth remains limited to around 12 m. Apparent and inverted resistivity provided by ERT surveys shows strong lateral and vertical variations. These variations can inform about general geological structuring and feature orientation. ERT is able to prospect down to 40 m but it's a low resolution integrative technique. In the study area the investigated limestone is a commonly electrical resistive formation (more than 2000 Ω.m). However deeper than 5–7 m, the ERT profiles reveal several zones of moderate resistivity (around 900 Ω.m). In these zones a stratification change corresponding to slanted bedding is clearly identified by GPR results. The combination of both GPR and ERT results can allow a well-established geological interpretation. These moderate resistivity zones with slanted beddings can explain the presence of a perennial water flow point 35 m below the surface of the studied site within the underground gallery of the Low-Noise Underground Laboratory (LSBB).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号