首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Reinforced concrete waffle‐flat plate (WFP) structures present 2 important drawbacks for use as a main seismic resisting system: low lateral stiffness and limited ductility. Yet the former can serve a positive purpose when, in parallel, the flexible WFP structure is combined with a stiff system lending high‐energy dissipation capacity, to form a “flexible‐stiff mixed structure.” This paper experimentally investigates the seismic performance of WFP structures (flexible system) equipped with hysteretic dampers (stiff system) through shake‐table tests conducted on a 2/5‐scale test specimen. The WFP structure was designed only for gravitational loads. The lateral strength and stiffness provided by the dampers at each story were, respectively, about 3 and 7 times greater than those of the bare WFP structure. The mixed system was subjected to a sequence of seismic simulations representing frequent to very rare ground motions. Under the seismic simulations associated with earthquakes having return periods ranging from 93 to 1894 years, the WFP structure performed in the level of “immediate occupancy,” with maximum interstory drifts up to about 1%. The dampers dissipated most (75%) of the energy input by the earthquake.  相似文献   

2.
The estimation of cyclic deformation demand resulting from earthquake loads is crucial to the core objective of performance‐based design if the damage and residual capacity of the system following a seismic event needs to be evaluated. A simplified procedure to develop the cyclic demand spectrum for use in preliminary seismic evaluation and design is proposed in this paper. The methodology is based on estimating the number of equivalent cycles at a specified ductility. The cyclic demand spectrum is then determined using well‐established relationships between seismic input energy and dissipated hysteretic energy. An interesting feature of the proposed procedure is the incorporation of a design spectrum into the proposed procedure. It is demonstrated that the force–deformation characteristics of the system, the ductility‐based force‐reduction factor Rμ, and the ground motion characteristics play a significant role in the cyclic demand imposed on a structure during severe earthquakes. Current design philosophy which is primarily based on peak response amplitude considers cyclic degradation only in an implicit manner through detailing requirements based on observed experimental testing. Findings from this study indicate that cumulative effects are important for certain structures, classified in this study by the initial fundamental period, and should be incorporated into the design process. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

3.
Precast concrete structures are preferred for facilities with large open areas due to easiness in construction. Such structures are typically composed of individual columns and long‐span beams, and are quite flexible and of limited redundancy. In this paper, nonlinear dynamic analyses of a typical such structure are conducted using as excitation 54 ground motions recorded on top of a variety of soils (hard, soft, and liquefied soil sites). The results show that liquefaction‐affected level‐ground motions systematically impose a greater threat to precast‐concrete structures in terms of seismic demand, even when low values of elastic spectral acceleration prevail, as opposed to soft‐soil records and even more to hard‐soil ones. Thus, elastic spectral acceleration appears to be an insufficient engineering demand parameter for design. Soil effects, the “signature” of which is born on ground motions, are first uncovered using wavelet analysis to detect the evolution of the energy and frequency content of the ground motion in the time domain. From this, the changes in effective (“dominant”) excitation period are noted, persuasively attributed to the nature of the soil, and finally correlated with the observed structural behavior. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
In the presented practice‐oriented probabilistic approach for the seismic performance assessment of building structures, the SAC‐FEMA method, which is a part of the broader PEER probabilistic framework and permits probability assessment in closed form, is combined with the pushover‐based N2 method. The most demanding part of the PEER probabilistic framework, that is incremental dynamic analysis, is replaced by the much simpler N2 method, which requires considerably less input data and much less computational time, but which can, nevertheless, often provide: acceptable estimates for the mean values of the structural response. Using some additional simplifying assumptions that are consistent with seismic code procedures, an explicit equation for a quick estimation of the annual probability of “failure” (i.e. the probability of exceeding the near collapse limit state) of a structure can be derived, which is appropriate for practical applications, provided that predetermined default values for the dispersion measures are available. In the paper, this simplified approach is summarized and applied to the estimation of the “failure” probability of reinforced concrete frame buildings representing both old structures, not designed for earthquake resistance, and new structures designed according to Eurocode 8. The results of the analyses indicate a high probability of the “failure” of buildings, which have not been designed for seismic loads. For a building designed according to a modern code, the conservatively determined probability of “failure” is about 30 times less but still significant (about 1% over the lifetime of the structure). Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
The concentrically braced frame (CBF) structure is one of the most efficient steel structural systems to resist earthquakes. This system can dissipate energy during earthquakes through braces, which are expected to yield in tension and buckle in compression, while all other elements such as columns, beams and connections are expected to behave elastically. In this paper, the performance of single‐storey CBFs is assessed with nonlinear time‐history analysis, where a robust numerical model that simulates the behaviour of shake table tests is developed. The numerical model of the brace element used in the analysis was calibrated using data measured in physical tests on brace members subjected to cyclic loading. The model is then validated by comparing predictions from nonlinear time‐history analysis to measured performance of brace members in full scale shake table tests. Furthermore, the sensitivity of the performance of the CBF to different earthquake ground motions is investigated by subjecting the CBF to eight ground motions that have been scaled to have similar displacement response spectra. The comparative assessments presented in this work indicate that these developed numerical models can accurately capture the salient features related to the seismic behaviour of CBFs. A good agreement is found between the performance of the numerical and physical models in terms of maximum displacement, base shear force, energy dissipated and the equivalent viscous damping. The energy dissipated and, more particular, the equivalent viscous damping, are important parameters required when developing an accurate displacement‐based design methodology for CBFs subjected to earthquake loading. In this study, a relatively good prediction of the equivalent viscous damping is obtained from the numerical model when compared with data measured during the shake table tests. However, it was found that already established equations to determine the equivalent viscous damping of CBFs may give closer values to those obtained from the physical tests. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
This paper presents a direct displacement-based design procedure for seismic retrofit of existing buildings using nonlinear viscous dampers according to equivalent linear systems. Unlike conventional methods, the equivalent linear viscous damping provided by the nonlinear viscous dampers is derived based on the assumption that the average energy dissipated between the linear and the nonlinear viscous dampers is equal. Also, the equivalent period and viscous damping for the equivalent linear systems which are used for representing the behavior of bare frames (the buildings without dampers) are derived from the concept of average storage energy and average dissipated energy, respectively. It is shown from nonlinear time-history analyses that the nonlinear action of the retrofitted structures can be reasonably captured by the presented direct displacement-based procedure.  相似文献   

7.
The usefulness of energy dissipation devices to reduce seismic response of structures is now well established. For a given installation of such devices in a structure, one can easily compute the level of response reduction achieved. However, the solution of an inverse problem of how many devices one would need to achieve a desired level of response reduction in a structure, or to achieve an expected level of performance from a structural system, is not quite as straightforward and well formulated. In this paper, a method is presented to obtain the amount of viscous and visco‐elastic damping one would need to obtain a desired level of response reduction. The needed supplemental devices are also optimally distributed in the structure to achieve the best performance. To solve the optimal problem, a gradient‐based optimization approach is used. To illustrate the application, numerical results for a 24‐storey building structure are presented where the objective is to achieve the maximum reduction in the performance functions expressed in terms of the inter‐storey drifts, base shear, or floor accelerations. Other forms of performance functions can also be treated similarly. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

8.
A new direct performance‐based design method utilizing design tools called performance‐spectra (P‐Spectra) for low‐rise to medium‐rise frame structures incorporating supplemental damping devices is presented. P‐Spectra are graphic tools that relate the responses of nonlinear SDOF systems with supplemental dampers to various damping parameters and dynamic system properties that structural designers can control. These tools integrate multiple response quantities that are important to the performance of a structure into a single compact graphical format to facilitate direct comparison of different potential solutions that satisfy a set of predetermined performance objectives under various levels of seismic hazard. An SDOF to MDOF transformation procedure that defines the required supplemental damping properties for the MDOF structure to achieve the response defined by the target SDOF system is also presented for hysteretic, linear viscous and viscoelastic damping devices. Using nonlinear time‐history analyses of idealized shear structures, the accuracy of the transformation procedure is verified. A seismic performance upgrade design example is presented to demonstrate the usefulness of the proposed method for achieving design performance goals using supplemental damping devices. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
A new type of energy‐dissipated structural system for existing buildings with story‐increased frames is presented and investigated in this paper. In this system the sliding‐friction layer between the lowest increased floor of the outer frame structure and the roof of the original building is applied, and energy‐dissipated dampers are used for the connections between the columns of the outer frame and each floor of the original building. A shaking table test is performed on the model of the system and the simplified structural model of this system is given. The theory of the non‐classical damping approach is introduced to the calculation analyses and compared with test results. The results show that friction and energy‐dissipated devices are very effective in reducing the seismic response and dissipating the input energy of the model structure. Finally, the design scheme and dynamic time‐history analyses of an existing engineering project are investigated to illustrate the application and advantages of the given method. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

10.
In this study, a direct static design method for structures with metal yielding dampers is proposed based on a new design target called the seismic capacity redundancy indicator (SCRI). The proposed method is applicable to the design of elastic‐plastic damped structures by considering the influence of damper on different structural performance indicators separately without the need for iteration or nonlinear dynamic analysis. The SCRI—a quantitative measure of the seismic capacity redundancy—is defined as the ratio of the seismic demand required by the target performance limit to the design seismic demand. Changes in the structural SCRI are correlated with the parameters of the supplemental dampers so that the dampers can be directly designed according to a given target SCRI. The proposed method is illustrated through application to a 12‐story reinforced‐concrete frame, and increment dynamic analysis is performed to verify the effectiveness of the proposed method. The seismic intensity corresponding to the target structural performance limit is regarded as a measure of the structural seismic capacity. The required seismic intensity increases after the structure is equipped with the designed metal yielding dampers according to the expected SCRI. It is concluded that the proposed method is easy to implement and feasible for performance‐based design of metal yielding dampers.  相似文献   

11.
Dry-assembled precast concrete frame structures are typically made with dowel beam-to-column connections, which allow relative rotation along the beam direction. In the orthogonal direction the rotation of the beam is prevented but again the connections of the superimposed floor elements allow for relative rotation. All the ductility and energy dissipation demand in case of seismic action is therefore concentrated at the base of cantilever columns. Hence, the column-to-foundation connection plays a key role on the seismic performance of such structures. Mechanical connection devices, even if correctly designed for what concerns resistance, may affect the behaviour of the whole joint modifying the ductility capacity of the columns and their energy dissipation properties. An experimental campaign on different mechanical connection devices has been performed at Politecnico di Milano within the Safecast project (European programme FP7-SME-2007-2, Grant agreement No. 218417, 2009). The results of cyclic tests on full scale structural sub-assembly specimens are presented. Design rules are suggested for each of the tested connections on the basis of the experimental observations, and numerical analyses have been performed with hysteretic parameters calibrated on the experimental loops. The seismic performance of structures provided with those connections is investigated through a case study on a multi-storey precast building prototype, which has also been subject to full-scale pseudo-dynamic testing within the same research project at the European Laboratory of Structural Assessment of the Joint Research Centre of the European Commission. The comparison of the results from the structure provided with the different studied connections clearly highlights how some solutions may lead to both reduction of ductility capacity and dissipation of energy, increasing the expected structural damage and the seismic risk.  相似文献   

12.
This paper describes a proposed methodology, referred to as probabilistic seismic control analysis, for the development of probabilistic seismic demand curves for structures with supplemental control devices. The resulting curves may be used to determine the probability that any response measure, whether for a structure or control device, exceeds a pre‐determined allowable limit. This procedure couples conventional probabilistic seismic hazard analysis with non‐linear dynamic structural analyses to provide system specific information. This method is performed by evaluating the performance of specific controlled systems under seismic excitations using the SAC Phase II structures for the Los Angeles region, and three different control‐systems: (i) base isolation; (ii) linear viscous brace dampers; and (iii) active tendon braces. The use of a probabilistic format allows for consideration of structural response over a range of seismic hazards. The resulting annual hazard curves provide a basis for comparison between the different control strategies. Results for these curves indicate that no single control strategy is the most effective at all hazard levels. For example, at low return periods the viscous system has the lowest drift demands. However, at higher return periods, the isolation system becomes the most effective strategy. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

13.
结构地震损伤破坏,本质上是地震动输入能量超出结构或构件耗能能力所致。“能量”参数能够综合反映地震动强度、频谱特性以及强震持时对结构破坏的影响,本文基于能量耗散原理建立结构损伤模型,采用有限元软件ABAQUS对3榀单层单跨钢筋混凝土平面框架结构抗震性能进行数值模拟,通过损伤指数量化研究了地震作用下钢筋混凝土框架结构的损伤演化规律。研究表明:基于应变能耗储的结构损伤模型,能够合理有效地反映“位移首超破坏”与“累积损伤破坏”模式,且上、下界收敛;模拟分析得到的滞回曲线和骨架曲线与试验数据吻合较好,数值建模方法适用于以梁、柱构件为主的框架结构抗震性能分析;耗能构件框架梁能够对结构损伤破坏发展和抗震性能劣化起到一定延缓作用,承力构件框架柱的损伤加剧会加速结构抗震性能的劣化;加载幅值较小时,结构依靠混凝土裂缝闭合摩擦消耗能量,“位移首超破坏”所致损伤所占比例较大,随着位移幅值及循环次数的增加,“累积损伤破坏”所致损伤所占比例逐渐增大。  相似文献   

14.
黏滞阻尼器作为一种有效的消能减震装置,已在钢结构建筑中得到了大量应用.然而由于钢结构的延性和阻尼特征,实用的钢结构附加黏滞阻尼器设计方法仍需深度探讨.文中提出一种基于黏滞阻尼器延性需求的减震设计方法.首先,根据钢结构需求量化层间位移角性能目标及目标附加阻尼比,计算黏滞阻尼器延性需求,并确定黏滞阻尼器布置数量、进行控制效...  相似文献   

15.
Regulation of the total structural jerk is a means of managing the structural energy and enhancing the performance of civil structures undergoing large seismic events. A quadratic regulator is derived for the total structural jerk that produces a single algebraic Riccati equation to define the control gains. The resulting control method is tested using a realistic non‐linear structural control case study where the structural response is statistically quantified for large suites of scaled earthquakes. The control method developed is shown to be more effective than typical displacement‐focused active and semi‐active civil structural control methods. In particular, quadratic jerk regulation provides better performance than typical structural control methods for near‐field seismic events where the response is dominated by a large impulse, and relatively poorer results for far‐field seismic inputs where the response is vibratory. Hence, this type of control approach has strong potential for mitigating the damage for large impulse, near‐field events, where jerk regulation provides much more efficient response and damage management. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

16.
This paper presents an analytical study used to establish design factors for a new seismic design methodology for precast concrete floor diaphragms. The design factors include diaphragm force amplification factors Ψ and diaphragm shear overstrength factors Ωv. The Ψ factors are applied to the ASCE7‐05 diaphragm design forces to produce diaphragm design strengths aligned to different performance targets. These performance targets are based on diaphragm detailing choices, and include: (i) elastic diaphragm behavior or (ii) limiting inelastic deformation demand on the diaphragm reinforcement (connectors between precast units or reinforcing bars in a topping slab) to within their reliable deformation capacities. The Ωv factors provide overstrength relative to the diaphragm bending strength for capacity protection against shear failure. The analytical study was performed by conducting nonlinear time history analyses of a simple evaluation structure, of which the dimensions and structural properties were varied. The analytical model used in the study is constructed and calibrated on the basis of extensive physical testing. The analytically obtained values of the diaphragm design factors are presented as functions of the geometric and structural properties of the building. The design factors presented here have been verified through evaluation of a set of realistic precast prototype structures. The diaphragm design methodology is currently in the codification process. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
Seismic design of concrete structures is currently based on time-invariant capacity design criteria which do not account for environmental hazards. The significant progressive decay of strength and ductility of concrete structures exposed to damage, in particular due to reinforcing steel corrosion, shows that this approach should be revised to consider the deterioration over time of the seismic performance. This is important also for precast systems, for which most of structural members are often directly exposed to the atmosphere and environmental aggressiveness. This paper presents a probabilistic approach for the lifetime assessment of seismic performance of concrete structures considering the interaction of seismic and environmental hazards. The effectiveness of the proposed approach is shown by its application to multistory precast buildings exposed to corrosion. The results show that structures designed for the same seismic action could have different lifetime seismic performance depending on the environmental exposure. These results emphasize the importance of a life-cycle approach to both seismic assessment of existing buildings and seismic design of new structures, and indicate that capacity design criteria need to be properly revised to consider the severity of the environmental exposure.  相似文献   

18.
近年来,国内学者强调对于复杂和超限结构需进行中震性能设计,即在小震弹性设计后进行中震下的承载力复核及调整,然而中震设计能否提高结构整体抗震性能仍存在争议。为探究中震设计与小震设计方法的差异,本文依据现行规范,以设防烈度、结构高度和场地类别为变化参数,建立了48个典型RC剪力墙模型,并分别以“小震”、“高规中震”、“广东高规中震”和“关键构件中震”进行截面设计,之后进行罕遇地震作用下的弹塑性分析及增量动力分析计算。在对比了不同设计方法的钢筋用量、结构与构件性能表现及结构抗倒塌能力储备的差异后认为,现行中震设计方法存在诸多弊端,包括会导致结构用钢量的显著增大,结构延性的降低,及结构安全度的降低等;采用关键构件中震设计方法则能较好地提高结构整体抗震性能,更符合抗震设计概念。因此,建议对RC剪力墙结构仅针对关键构件进行中震性能设计,以提高重要结构的安全性。  相似文献   

19.
Special concentrically braced frames (SCBFs) are considered as one of the most economical and effective lateral force‐resisting systems in structures located in the regions of high seismicity. Steel braces in a braced frame undergo large axial deformations in tension and compression to dissipate the seismic energy. However, past studies have shown that SCBFs exhibit the soft‐story hinge mechanisms and unpredictable failure patterns under earthquake loading conditions. These inelastic responses along with the use of continuous structural sections as columns over consecutive floors induce flexural demand that is not considered in the current design practice. In this study, the evaluation of seismic performance of nine SCBFs designed as per the current practice has been carried out for three different story heights (i.e., three‐story, six‐story, and nine‐story) and three types of brace configurations (namely, chevron, split X, and single X). Three additional design techniques are also explored based on (i) the inclusion of column moments in the design; (ii) the theory of formation of plastic hinges; and (iii) the design of braces considering the forces computed at their post‐buckled stages. Nonlinear dynamic analyses of these study frames have been evaluated numerically using a computer software Perform‐3D for a suite of 40 ground motions representing the design basis earthquake and maximum considered earthquake hazard levels. Analyses results showed that the SCBFs designed as per the modified procedures achieved the desired performance objectives without the formation of soft‐story mechanism. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

20.
In this paper a new seismic design procedure for Reinforced Concrete (R/C) structures is proposed—the Rigid‐Plastic Seismic Design (RPSD) method. This is a design procedure based on Non‐Linear Time‐ History Analysis (NLTHA) for systems expected to perform in the non‐linear range during a lifetime earthquake event. The theoretical background is the Theory of Plasticity (Rigid‐Plastic Structures). Firstly, a collapse mechanism is chosen and the corresponding stress field is made safe outside the regions where plastic behaviour takes place. It is shown that this allows the determination of the required structural strength with respect to a pre‐defined performance parameter using a rigid‐plastic response spectrum, which is characteristic of the ground motion alone. The maximum strength demand at any point is solely dependent on the intensity of the ground motion, which facilitates the task of distributing required strength throughout the structure. Any artificial considerations intended to adjust results according to empirical observations are avoided, which, from a conceptual point of view, is considered to be an advantage over other simplified design procedures for seismic design. The procedure is formulated using a step‐by‐step format followed by a design example of a 4‐storey‐R/C‐plane‐frame. Results are compared with refined NLTHA and found to be extremely encouraging. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号