首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The occurrence probabilities of the first and second anomalous nighttime local maximums in the diurnal variations in the electron density at a maximum of the ionospheric F 2 layer (NmF2) in the region where the crest (hump) of the equatorial anomaly originates in the northern geographic hemisphere have been studied using the data of the stations for vertical sounding of the ionosphere (Paramaribo, Dakar, Quagadougou, Ahmedabad, Delhi, Calcutta, Chongoing, Guangzhou, Taipei, Chung-Li, Okinawa, Yamagawa, Panama, and Bogota) from 1957 to 2004. It has been demonstrated that the anomalous nighttime NmF2 maximums are least frequently formed at ~53° geomagnetic longitude. The calculations have indicated that the studied probabilities are independent of solar activity. Geomagnetic activity weakly affects the rate of occurrence of the first nighttime NmF2 maximum at geomagnetic longitudes of approximately 140° to 358°. At geomagnetic longitudes of approximately 16° to 70° (i.e., in the longitudinal zone of a decreased occurrence frequency of anomalous nighttime maximums), the occurrence probability of the first anomalous nighttime NmF2 maximum under geomagnetically quiet conditions is pronouncedly lower than under geomagnetically disturbed conditions. The dependence of the occurrence probabilities of the first and second anomalous nighttime NmF2 maximums on the month number in a year has been studied.  相似文献   

2.
We performed a statistical and spectral analysis of variations in two main parameters of the ionospheric F2 layer: critical frequency (f 0F2) and peak height (h m F2), recorded at an ionospheric station in Irkutsk (52.5°N, 104.0°E) in the period from December 1, 2006, to January 31, 2008, under low solar activity conditions. It was found that the f 0F2 and h m F2 variations contained quasi-harmonic oscillations with periods T n = 24/n h (n = 1−7). We studied the seasonal changes in the mean and median values of monthly f 0F2 and h m F2 time series, their spectra, as well as the amplitudes and phases of the diurnal (n = 1) and semidiurnal (n = 2) variations. It is shown that the amplitude of the diurnal f 0F2 variations was maximal in October–March 2007 and minimal in May–August 2007. The diurnal f 0F2 variations were maximal at noon in the winter months and at 1600 LT in the summer months. The semidiurnal f 0F2 variations had two maxima: a primary maximum in December and January and a secondary maximum in May–July. The maxima of semidiurnal f 0F2 variations were shifted from 0000 and 1200 LT in winter to 0900 and 2100 LT in summer.  相似文献   

3.
The zone of anomalous diurnal variations in foF2, which is characterized by an excess of nighttime foF2 values over daytime ones, has been distinguished in the Southern Hemisphere based on the Intercosmos-19 satellite data. In English literature, this zone is usually defined as the Weddell Sea anomaly (WSA). The anomaly occupies the longitudes of 180°–360° E in the Western Hemisphere and the latitudes of 40°–80° S, and the effect is maximal (up to ∼5 MHz) at longitudes of 255°–315° E and latitudes of 60°–70° S (50°–55° ILAT). The anomaly is observed at all levels of solar activity. The anomaly formation causes have been considered based on calculations and qualitative analysis. For this purpose, the longitudinal variations in the ionospheric and thermospheric parameters in the Southern Hemisphere have been analyzed in detail for near-noon and near-midnight conditions. The analysis shows that the daytime foF2 values are much smaller in the Western Hemisphere than in the Eastern one, and, on the contrary, the nighttime values are much larger, as a result of which the foF2 diurnal variations are anomalous. Such a character of the longitudinal effect mainly depends on the vertical plasma drift under the action of the neutral wind and ionization by solar radiation. Other causes have also been considered: the composition and temperature of the atmosphere, plasma flows from the plasmasphere, electric fields, particle precipitation, and the relationship to the equatorial anomaly and the main ionospheric trough.  相似文献   

4.
It is shown in a joint analysis of ionospheric vertical sounding data at the arctic Heiss Island and antarctic Vostok stations and the geomagnetic PC index, which characterizes the geoefficient component of the interplanetary magnetic field, that, during a disturbed geomagnetic period when PC > 2 in years of solar activity (SA) maxima in the winter season, positive phases of ionospheric disturbances are predominantly observed. In the nighttime hours, an increase in the critical foF2 frequencies by a factor of 2–3 can occur. In a disturbed geomagnetic period at the PC > 1.5 level in the summer season, negative phases of ionospheric disturbances are mainly observed. In years of maximum and moderate SA, the decrease in foF2, as compared to their median values, happens at night (∼30%). In years of low SA, the decrease value is much lower. At a substantial decrease in the PC index level, in the region of the geomagnetic pole at the Vostok station, in some cases, a substantial increase in the electron density level in the F region occurs with a delay of 0.5 h. At the same time, a significant correlation (r = −0.57) is observed between variations in the PC index and foF2.  相似文献   

5.
The F2-layer response to the moderate storm of 5–7 April 2010 was investigated using data from two equatorial stations (Ilorin: lat. 8.5°N, 4.5°E; Kwajalein: lat. 9°N, long. 167.2°E) and mid-latitude (San Vito: lat. 40.6°N, long. 17.8°E; Pruhonice: lat. 50°N, long. 14.6°E). Before storm commencement, enhancement, and depletion of NmF2 values were observed in the equatorial and mid-latitude stations, respectively, indicating the latitudinal dependence of the pre-storm event. All the stations with the exception of Kwajalein show positive phase in NmF2 response at the storm onset stage. Positive phase in NmF2 continues over Ilorin and appears on the daytime ionosphere of Kwajalein on 6 April, whereas negative phase suppressed the positive feature in Pruhonice and San Vito until the recovery condition. The differences in the response of F2-layer to the storm for the two equatorial stations were attributed to their longitudinal differences. On the average, both the AE and D st indices revealed poor correlation relationship. More studies are required to ascertain this finding.  相似文献   

6.
Using data from ground-based ionospheric sounding stations, we studied the morphologic features of the disturbance pattern of the electron concentration at the midlatitude F2-layer maximum (NmF2) in the period of a magnetic superstorm, which began on July 15, 2000. In the Southern (winter) Hemisphere in the latitudinal sector, where the main storm phase began after sunrise, negative NmF disturbances were observed at quite high midlatitudes both day and night; whereas large positive NmF disturbances took place at lower midlatitudes in nighttime hours. In the Northern (summer) Hemisphere at latitudes where the main storm phase occurred in the local evening, only long-term negative disturbances were observed in daytime and nighttime hours; whereas at latitudes where the main storm phase began in the afternoon, NmF2 experienced both negative and positive disturbances. Based on analysis of data of KOMPSAT-l, ROCSAT-1, DMSP F13, F14, and F15 satellites, we present clear arguments for the viewpoint of many authors that it is just the enhancement of the eastward electric field in the evening sector that led to formation of the large-scale trough in the nighttime low-latitude upper ionosphere. This field enhancement was due to penetration of the magnetospheric electric field to low latitudes, not to the dynamo action of the disturbed neutral wind. It is also shown that, due to equatorward expansion of the magnetospheric convection system during the main storm phase, the plasmapause and the main ionospheric trough were shifted to a magnetic latitude of 40° (L ∼ 1.7).  相似文献   

7.
Using the data of vertical sounding of the ionosphere in Alma-Ata (76°55′ E, 43°15′ N) conducted in 2002–2012, the reaction of parameters of the ionospheric F2 layer to various types of nighttime enhancements in the electron concentration in the maximum of the layer (NmF2) was studied, including the height of the maximum and bottom of the layer, its semithickness, and electron concentration at some fixed heights. Examples of recordings of a combination of the enhancements caused by different mechanisms are presented. The similarity of the reaction of the F2-layer parameters to the nighttime enhancements caused by the rise of the layer and plasma flux from the protonosphere and passage of large-scale travelling ionospheric disturbances was found. Difficulties in identifying these two events in the case of their equal duration are noted. The difference in the reaction of the F2-layer parameters to the enhancements caused by the rise of the layer and plasma fluxes from the protonosphere and occurrence of the summer midlatitude ionospheric anomaly is shown.  相似文献   

8.
Using the data of the topside ionosphere sounding from the Intercosmos-19 satellite, longitudinal variations in foF2 at low latitudes at the daytime hours are considered. It is obtained that these variations in particular days in the majority of cases have a regular wave-like character with periods of about 75°–100° in longitude and amplitudes on the average of 2–4 MHz. In other words, along the valley and crests of the equatorial anomaly, a structure with four maximums and four minimums which have a tendency to be located near certain longitudes (the same in all seasons) is observed. The variations in foF2 along the crests of the equatorial anomaly are usually in anti-phase to variations along its valley. Comparing the characteristics of this wavelike structure at the daytime and nighttime hours, we obtained that the average positions of its extremes at the nighttime hours are shifted eastwards by 10°–50° relative to the daytime extremes. As a cause of formation of such a structure, high harmonics of atmospheric tides are assumed which, uplifting from below to heights of the E region, via the electric currents in this region influence the longitudinal structure of the electrodynamic plasma drift over the equator and by that impact the structure of the entire daytime low-latitude ionosphere.  相似文献   

9.
The relative contributions of quasi-periodic oscillations from 2 to 35 days to the variability of foF2 at middle northern latitudes between 42°N and 60°N are investigated. The foF2 hourly data for the whole solar cycle 21 (1976–1986) for four European ionospheric stations Rome (41.9°N, 12.5°E), Poitiers (46.5°N, 0.3°E), Kaliningrad (54.7°N, 20.6°E) and Uppsala (59.8°N, 17.6°E) are used for analysis. The relative contributions of different periodic bands due to planetary wave activity and solar flux variations are evaluated by integrated percent contributions of spectral energy for these bands. The observations suggest that a clearly expressed seasonal variation of percent contributions exists with maximum at summer solstice and minimum at winter solstice for all periodic bands. The contributions for summer increase when the latitude increases. The contributions are modulated by the solar cycle and simultaneously influenced by the long-term geomagnetic activity variations. The greater percentage of spectral energy between 2 to 35 days is contributed by the periodic bands related to the middle atmosphere planetary wave activity.  相似文献   

10.
By processing the data of vertical ionospheric sounding in Almaty for 2000–2009, we obtained the distributions of the heights of the maximum (h m F) and bottom (h bot F) of the F2-layer, incremental changes in its semi-thickness (δh), the characteristic time of losses (τ), and the vertical displacement velocity of the node of the thermospheric wind (V) during the transitional time of the day during nighttime increases in the electron concentration at the layer maximum. The comparison of the measured V and modeled V m velocities showed a certain discrepancy. The influence of the altitude gradient of the meridional thermospheric wind velocity on the behaviors of h m F, h bot F, δh, and τ during nighttime increases in the electron concentration is studied.  相似文献   

11.
On the basis of measurements of the intensity of 1.58-μm emissions of the Infrared Atmospheric System of molecular oxygen (IRAO2) conducted at the Zvenigorod scientific station of the Institute of Atmospheric Physics of the Russian Academy of Sciences (φ = 55.7°N, λ = 36.8°E), seasonal variations are estimated for various solar zenith angles. Their amplitude has the maximum value at the solar zenith angles χ S ∼ 105–110°. It decreases at χ S ∼ 125–130° and tends to zero at χ S ∼ 80–85°. The comparison of currently measured values of the 1.58-μm emission intensity of the Infrared Atmospheric System of molecular oxygen with published data on the intensity of this emission obtained in 1961–1966 reveals their decrease over approximately 50 years. This fact is in good agreement with similar behavior of the emission intensity of atomic oxygen (557.7 nm) over the period considered.  相似文献   

12.
Based on satellite observation data, using dynamics equation, the ionospheric O+ ion’s distribution in the synchronous altitude region for different geomagnetic activity indexK p is studied by theoretical modeling and numerical analyzing, and semi-empirical models for the O+ ion’s density and flux versus longitude in the synchronous altitude region for differentK p are given. The main results show that in the synchronous altitude region: (i) The O+ ion’s density and flux in day-side are larger than those in nightside. (ii) With longitude changing, the higher the geomagnetic activity indexK p is, the higher the O+ ion’s density and flux, and their variation amplitude will be. The O+ ion’s density and flux whenK p 6 will be about ten times as great as that whenK p = 0. (iii) WhenK p = 0 orK p 6, the O+ ion’s density reaches maximum at longitudes 120° and 240° respectively, and minimum in the magnetotail. WhenK p = 3−5, the O+ ion’s density gets to maximum at longitude 0°, and minimum in the magnetotail. However, the O+ ion’s flux reaches maximum at longitude 120° and 240° respectively, and minimum in the magnetotail for anyK p value.  相似文献   

13.
The dependence of the origination of G conditions in the ionospheric F region on solar and geomagnetic activity has been determined based on numerical simulation of the ionosphere over points 50° N, 105° E and 70° N, 105° E for summer conditions at noon. It has been found that the threshold value of the Kp geomagnetic activity index (Kp S ), beginning from which a G condition can originate, is minimal for a low solar activity level at relatively high latitudes during the recovery phase of a geomagnetic storm. On average, Kp S increases with increasing solar activity, but G conditions can originate at high solar activity levels and be absent at moderate ones for certain Kp values, which was apparently predicted for the first time. These properties of the origination of G conditions do not contradict the known results of a G-condition statistical analysis performed based on the data from the global network of ionospheric stations.  相似文献   

14.
The behavior of the F2 layer at sunrise has been studied based on vertical-incidence ionospheric sounding data in Almaty (76°55′E, 43°15′N). Records with small amplitudes of electron density background fluctuations were selected in order to exactly estimate the onsets of a pronounced increase in the electron density at different altitudes. It has been indicated that the electron density growth rate is a function of altitude; in this case, the growth rate at the F2 layer maximum is much lower than such values at fixed altitudes of ~30–55 km below the layer maximum. The solar zenith angle (χ) and the blanketing layer thickness (h 0) at the beginning of a pronounced increase in the electron density at altitude h are linearly related to the h value, and these quantities vary within ~90° < χ < 100° and 180 km < h 0 < 260 km, respectively.  相似文献   

15.
The ionospheric responses to a large number (116) of moderate (?50≥Dst>?100 nT) geomagnetic storms distributed over the period (1980–1990) are investigated using total electron content (TEC) data recorded at Calcutta (88.38°E, 22.58°N geographic, dip: 32°N). TEC perturbations exhibit a prominent dependence on the local times of main phase occurrence (MPO). The storms with MPO during daytime hours are more effective in producing larger deviations and smaller time delays for maximum positive deviations compared to those with nighttime MPO. Though the perturbations in the equinoctial and winter solstitial months more or less follow the reported climatology, remarkable deviations are detected for the summer solstitial storms. Depending on the local times of MPO, the sunrise enhancement in TEC is greatly perturbed. The TEC variability patterns are interpreted in terms of the storm time modifications of equatorial electric field, wind system and neutral composition.  相似文献   

16.
A one-dimensional model is used to analyze, at the local scale, the response of the equatorial Atlantic Ocean under different meteorological conditions. The study was performed at the location of three moored buoys of the Pilot Research Moored Array in the Tropical Atlantic located at 10° W, 0° N; 10° W, 6° S; and 10° W, 10° S. During the EGEE-3 (Etude de la circulation océanique et de sa variabilité dans le Golfe de Guinee) campaign of May–June 2006, each buoy was visited for maintenance during 2 days. On board the ship, high-resolution atmospheric parameters were collected, as were profiles of temperature, salinity, and current. These data are used here to initialize, force, and validate a one-dimensional model in order to study the diurnal oceanic mixed-layer variability. It is shown that the diurnal variability of the sea surface temperatures is mainly driven by the solar heat flux. The diurnal response of the near-surface temperatures to daytime heating and nighttime cooling has an amplitude of a few tenths of degree. The computed diurnal heat budget experiences a net warming tendency of 31 and 27 W m−2 at 0° N and 10° S, respectively, and a cooling tendency of 122 W m−2 at 6° S. Both observed and simulated mixed-layer depths experience a jump between the nighttime convection phase and the well-stabilized diurnal water column. Its amplitude changes dramatically depending on the meteorological conditions occurring at the stations and reaches its maximum amplitude (~50 m) at 10° S. At 6° and 10° S, the presence of barrier layers is observed, a feature that is clearer at 10° S. Simulated turbulent kinetic energy (TKE) dissipation rates, compared to independent microstructure measurements, show that the model tracks their diurnal evolution reasonably well. It is also shown that the shear and buoyancy productions and the vertical diffusion of TKE all contribute to the supply of TKE, but the buoyancy production is the main source of TKE during the period of the simulation.  相似文献   

17.
The characteristics of the cold point tropopause (CPT), convective tropopause (COT) and tropical tropopause layer (TTL) in the tropical region at different longitudes are studied using radiosonde data at 5 stations in the tropical belt (±15°) and high resolution GPS radiosonde data from April 2006 to December 2008 at Gadanki (13.5°N, 79.2°E) also a tropical station. The CPT over Gadanki is found to be higher than over the rest of the stations. This aspect is further confirmed using COSMIC GPS RO observations. In the Northern Hemisphere (NH) winter, the CPT is coldest over stations in the Pacific region compared to the other stations while in the NH summer, it is coldest at Gadanki, a station in the Indian monsoon region. The range of seasonal variation of the CPT temperature is found to be quite small over Gadanki compared to the other stations whereas that of the CPT altitude is nearly the same.  相似文献   

18.
The structure and variability of the currents in the Luzon Strait during spring of 2002 are studied, based on the current measurements at the average position of the mooring station (20°49′57"N, 120°48′12"E) from March 17 to April 15, 2002, satellite geostrophic currents in the Luzon Strait, and the spectral analyses, using the maximum entropy method. The subtidal currents at the mooring station show de-creased amplitudes downward with an anti-cyclonic rotation, suggesting that the currents enter and exit t...  相似文献   

19.
The search for the magnetic precursors of earthquakes by the method of synchronous detection is described. The data of the Guam Observatory (13.6°N, 144.9°E) located in a seismically active region and the USGS/NEIC catalogue of the National Earthquake Information Center of the U.S. Geological Survey for the period from 1991 to 2009 are used. Earthquakes with magnitudes M ≥ 7 in the range of longitudes from 100° to 170°E are analyzed. The intervals of accumulation cover 40 hours before and 40 hours after an earthquake. The preliminary result reveals an enhancement of fluctuations in the Z-component within 12 hours before the earthquake.  相似文献   

20.
The bases of the classification method of ionospheric disturbances caused by solar-geomagnetic activity on the basis of the critical frequency of the F2 layer are developed. Data for the total solar activity cycle from 1975 to 1986 were used for studying variations in the critical frequency of the ionospheric F2 layer. The critical frequency was measured at the Moscow ionospheric observatory (55°45′N, 37°37′E) at an interval of 1 h. The gaps in the critical frequency values were filled in by the cubic interpolation method. The solar activity level was estimated using the F10.7 index. The geomagnetic disturbance was determined using the Kp · 10, Dst, and AE indices. According to the developed classification, an index of ionospheric activity is introduced. An analysis of the obtained values of the index for years of solar activity minimum and maximum shows that an increase in the absolute values of the index as a rule occurs at an increase in global geomagnetic and/or auroral disturbances. This fact indicates the sufficient information content of the developed index for characterizing ionospheric activity in any season. Moreover, using the sign of the index, one can form an opinion regarding an increase or decrease in the concentration of the ionospheric F2 layer, because the values of the considered index correspond to real oscillations in the critical frequency of the midlatitude ionosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号