首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The 3-d coupled physical–biogeochemical model ECOHAM (version 3) was applied to the Northwest-European Shelf (47°41′–63°53′N, 15°5′W–13°55′E) for the years 1993–1996. Carbon fluxes were calculated for the years 1995 and 1996 for the inner shelf region, the North Sea (511,725 km2). This period was chosen because it corresponds to a shift from a very high winter-time North Atlantic Oscillation Index (NAOI) in 1994/1995, to an extremely low one in 1995/1996, with consequences for the North Sea physics and biogeochemistry. During the first half of 1996, the observed mean SST was about 1 °C lower than in 1995; in the southern part of the North Sea the difference was even larger (up to 3 °C). Due to a different wind regime, the normally prevailing anti-clockwise circulation, as found in winter 1995, was replaced by more complicated circulation patterns in winter 1996. Decreased precipitation over the drainage area of the continental rivers led to a reduction in the total (inorganic and organic) riverine carbon load to the North Sea from 476 Gmol C yr−1 in 1995 to 340 Gmol C yr−1 in 1996. In addition, the North Sea took up 503 Gmol C yr−1 of CO2 from the atmosphere. According to our calculations, the North Sea was a sink for atmospheric CO2, at a rate of 0.98 mol C m−2 yr−1, for both years. The North Sea is divided into two sub-systems: the shallow southern North Sea (SNS; 190,765 km2) and the deeper northern North Sea (NNS; 320,960 km2). According to our findings the SNS is a net-autotrophic system (net ecosystem production NEP>0) but released CO2 to the atmosphere: 159 Gmol C yr−1 in 1995 and 59 Gmol C yr−1 in 1996. There, the temperature-driven release of CO2 outcompetes the biological CO2 drawdown. In the NNS, where respiratory processes prevail (NEP<0), 662 and 562 Gmol C yr−1 were taken up from the atmosphere in 1995 and 1996, respectively. Stratification separates the productive, upper layer from the deeper layers of the water column where respiration/remineralization takes place. Duration and stability of the stratification are determined by the meteorological conditions, in relation to the NAO. Our results suggest that this mechanism controlling the nutrient supply to the upper layer in the northern and central North Sea has a larger impact on the carbon fluxes than changes in lateral transport due to NAOI variations. The North Sea as a whole imports organic carbon and exports inorganic carbon across the outer boundaries, and was found to be net-heterotrophic, more markedly in 1996 than in 1995.  相似文献   

2.
Nitrogen isotope values (δ15N) of surface sediments in the German Bight of the North Sea exhibit a significant gradient from values of 5–6‰ of the open shelf sea to values above 11‰ in the German Bight. This signal has been attributed to high reactive N (Nr) loading enriched in 15N from rivers and the atmosphere. To better understand the processes that determine the intensity and spatial distribution of δ15N anomalies in surface sediments, and to explore their usefulness for reconstructions of pristine N-input from rivers, we modeled the cycling of the stable isotopes 14N and 15N in reactive nitrogen through the ecosystem of the central and southern North Sea (50.9–57.3°N, 3.4°W−9.2°E) for the year 1995. The 3D-ecosystem model ECOHAM amended with an isotope-tracking module was validated by δ15N data of surface sediments within the model domain. A typical marine value (δ15Nnitrate=5‰) was prescribed for nitrate advected into the model domain at the seaside boundaries, whereas δ15Nnitrate of river inputs were those measured bi-monthly over 1 year; δ15N values of atmospheric deposition were set to 6‰ and 7‰ for NOx and NHy, respectively. The simulated δ15N values of different nitrogen compounds in the German Bight strongly depend on the mass transfers in the ecosystem. These fluxes, summarized in a nitrogen budget for 1995, give an estimate of the impacts of hydrodynamical and hydrological boundary conditions, and internal biogeochemical transformations on the nitrogen budget of the bight.  相似文献   

3.
This article identifies the Pucarilla–Cerro Tipillas Volcanic Complex and its major eruptive source, the Luingo caldera (26° 10′S–66° 40′W). Detailed geological mapping, stratigraphic sections, facies analysis and correlations, including the identification of typical caldera components, allow us to infer the position of a collapse caldera, elongated at N65° and with a diameter of 19 km × 13 km, which is responsible for an eruption of 135 km3 (DRE) of magma. The high-crystal contents of the associated ignimbrites, combined with its tectonic setting, indicate that regional and local tectonic structures played a crucial role in the formation of the caldera.  相似文献   

4.
Phytoplankton biomass, community and size structure, primary production and bacterial production were measured at shelf and continental slope sites near North West Cape, Western Australia (20.5°S–22.5°S) over two summers (October–February 1997–1998 and 1998–1999), and in April 2002. The North West Cape region is characterized by upwelling-favorable, southwesterly winds throughout the summer. Surface outcropping of upwelled water is suppressed by the geostrophic pressure gradients and warm low-density surface waters of the southward flowing Leeuwin Current. Strong El Niño (ENSO) conditions (SOI <0) prevailed through the summer of 1997–1998 which resulted in lower sea levels along the northwestern Australian coast and a weaker Leeuwin Current. La Niña conditions prevailed during the 1998–1999 summer and in April 2002. During the summer of 1997–1998, the North West Cape region was characterized by a shallower thermocline (nutricline), resulting in larger euphotic zone stocks of inorganic nitrogen and silicate over the continental slope. There was evidence for episodic intrusions of upper thermocline waters and the sub-surface chlorophyll maximum onto the outer continental shelf in 1997–1998, but not in 1998–1999. Pronounced differences in phytoplankton biomass, community size structure and productivity were observed between the summers of 1997–1998 and 1998–1999 despite general similarities in irradiance, temperature and wind stress. Phytoplankton primary production and bacterial production were 2- to 4-fold higher during the summer of 1997–1998 than in 1998–1999, while total phytoplankton standing crop increased by<2-fold. Larger phytoplankton (chiefly diatoms in the >10 μm size fraction) made significant contributions to phytoplankton standing crop and primary production during the summer of 1997–1998, but not 1998–1999. Although there were no surface signs of upwelling, primary production rates near North West Cape episodically reached levels (3–8 g C m−2 day−1) characteristic of eastern boundary Ekman upwelling zones elsewhere in the world. Bacterial production (0.006–1.2 g C m−2 day−1) ranged between 0.6 and 145 percent (median=19 percent) of concurrent primary production. The observed differences between years and within individual summers suggest that variations in the Leeuwin Current driven by seasonal or ENSO-related changes in the Indonesian throughflow region may have episodic, but significant influences on pelagic productivity along the western margin of Australia.  相似文献   

5.
It has been shown that due to the small surface of crater lakes, temperature surveillance is a problem using meteorological satellites. This is particularly true for El Chichón surface lake because it's about one tenth of an AVHRR pixel at nadir. In order to guarantee at least one unmixed pixel in AVHRR data, it is necessary to use only AVHRR data from NOAA satellite passes as close as possible to the nadir for the period 1996–2006, therefore AVHRR data of El Chichón's crater lake were only used it they were cloudless and had scan angles close to nadir. The analysis of the time series data shows that lake surface temperature had annual maximum values (> 35 °C) during 1996 and 1997 then surface temperature decay with a negative exponential trend reaching a steady state of about 30 °C in the last years (2004–2006). A seasonal temperature variation between the dry (December to May) and the wet (June to November) seasons is also observed. Differences between nocturnal and midday temperatures indicate the influence of lake energy emission (including reflectance) at midday under a strong short-wave solar radiation. Water surface radiative flux under these conditions reaches an average of 77.8 W m− 2 and a maximum of 187.1 W m− 2. Whereas nocturnal heat output from El Chichón crater lake has an average surface radiative flux of 20.4 W m− 2 and a maximum of 74.3 W m− 2.  相似文献   

6.
Long-term and high-resolution (∼1.2 km) satellite-derived sea surface temperature (SST) fields of a monthly mean time series for the 1985–1999 period, and a daily climatology have been calculated for the North West Atlantic Ocean. The SST fields extend from 78°W to 41°W in longitude, and 30°N to 56°N in latitude, encompassing the region off Cape Hatteras, North Carolina, to the southern Labrador Sea. The monthly mean time series, consists of 180 cloud-masked monthly mean SST fields, derived from a full-resolution NOAA/NASA Pathfinder SST data set for the 1985–1999 period. The satellite-derived monthly mean SST fields, as compared with in situ monthly mean near-surface ocean temperatures from buoys located in the western North Atlantic, yield an overall RMS difference of 1.15 °C. The daily climatology, which consists of 365 fields, was derived by applying a least-squares harmonic regression technique on the monthly mean SST time series for the full study period. The monthly mean and daily climatological SST fields will be useful for studying inter-annual variability related to climate variability of SST over the study domain.  相似文献   

7.
Summary In continuation of the investigations of previous years (Kautsky [1973, 1976, 1985]; Kautsky, Jefferies, and Steele [1980]), besides surface water samples, water samples were also taken at depth for the first time along the entire station grid northwards of 53° 30 N (1982) and 53° N (1984).The fundamental distribution pattern of the137+134Cs in the North Sea, within certain limits was practically analogous with that of the previous years. In the South and westwards of Jutland, on the basis of steep activity concentration gradients, one can again clearly recognize the boundary between the water coming out of the Channel from the South and the water coming from the North along the English coast. In the surface water, this boundary between the two water masses — as in previous years — lies between 6° E and 7° E.However, in deep water westwards of Jutland, clear differences of the distribution are observed between the years 1982 and 1984. In August/September 1982, a clear front in the entire water column between surface and bottom is present (Fig. 11). A comparable pattern, in principle, is indicated by the salinity distribution (Fig. 13). In comparison with it, in May/June 1984, a clearly stronger advance of the deep water (on the basis of the activity concentration differences) in the direction of Jutland compared with the surface water is recognizable (Fig. 12). Here also this effect appeared in outline to a certain extent in the salinity distribution (Fig. 14). Altogether, the content of radio caesium in the water of the North Sea from 1982 to 1984 has decreased by 30%. In 1984, it totalled, approximately 2400 TBq137+134Cs, only 0.5% of the circa 481000 TBq40K present in nature in the North Sea.
Verteilung und Gehalt von137+134Cs und90Sr im Wasser der Nordsee in den Jahren 1982 bis 1984
Zusammenfassung In Weiterführung der Untersuchungen vorhergehender Jahre (Kautsky [1973, 1976, 1985]; Kautsky, Jefferies, und Steele [1980]) wurden erstmalig neben Oberflächenwasserproben auf dem gesamten Stationsnetz nördlich von 53° 30 N (1982) und 53° N (1984) auch Tiefenwasserproben entnommen.Das grundsätzliche Verteilungsmuster des137+134Cs in der Nordsee gleicht im Rahmen einer gewissen Variationsbreite praktisch dem der vorhergehenden Jahre. Im Süden und westlich von Jütland ist anhand der steilen Aktivitätskonzentrationsgradienten wieder deutlich die Grenze zwischen dem aus dem Kanal von Süden und dem entlang der englischen Küste von Norden kommenden Wasser zu erkennen. Im Oberflächenwasser leigt diese Grenze zwischen den beiden Wassermassen — wie auch in den Vorjahren — zwischen 6° E und 7° E.Im Tiefenwasser westlich Jütland sind zwischen den Jahren 1982 und 1984 aber deutliche Unterschiede der Verteilung zu beobachten. Im August/September 1982 ist eine klare Front in der gesamten Wassersäule zwischen Oberfläche und Boden vorhanden (Abb. 11). Ein im Prinzip vergleichbares Muster zeigt die Salzgehaltsverteilung (Abb. 13). Dagegen ist im Mai/Juni 1984 ein deutlich stärkeres Vordringen des Tiefenwassers (anhand der Aktivitätskonzentrationsunterschiede) in Richtung Jütland gegenüber dem Oberflächenwasser erkennbar (Abb. 12). Auch hier zeichnet sich dieser Effekt bis zu einem gewissen Grad in der Salzgehaltsverteilung ab (Abb. 14). Insgesamt hat der Gehalt des Radiocaesium im Wasser der Nordseee von 1982 bis 1984 um 30% abgenommen. Er beträgt 1984 mit rund 2400 TBq137+134Cs nur 0,5% der in der Nordsee von Natur aus vorhandenen rund 481 000 TBq40K.

Distribution et concentration du caesium 137 et 134 et du strontium 90 dans les eaux de la Mer du Nord au cours des années 1982 et 1984
Résumé Pendant la continuation des recherches des années antérieures (Kautsky [1973, 1976, 1985]; Kautsky, Jefferies et Steele [1980]) et en plus des prélèvements d'eau de surface, on a aussi prélevé pour la première fois, des échantillons d'eau profonde à toutes les stations du réseau au Nord du parallèle 53° 30 N (1982) et du parallèle 53° N (1984).Le modèle fondamental de distribution du caesium 137 et 134 en Mer du Nord est pratiquement analogue, à l'intérieur de certaines limites de latitude, à celui des années antérieures. Dans le Sud et à l'Ouest du Jutland, on peut encore reconnaître clairement, sur la base de forts gradients de concentration d'activité, la frontière entre les eaux venant de la Manche par le Sud et les eaux pénétrant par le Nord le long de la côte anglaise. Pour l'eau de surface, cette frontière entre les deux masses d'eau s'étend, comme dans les années antérieures, entre les méridiens 6° E et 7° E.Cependant, en eau profonde à l'Ouest du Jutland, de réelles différences de distributions ont été observées entre les années 1982 et 1984. En août-septembre 1982, un front net est présent dans toute la colonne d'eau comprise entre la surface et le fond (Fig. 11). Un modèle comparable, dans le principe, est indiqué par la distribution de la salinité (Fig. 13). Par contre en mai–juin 1984 on peut reconnaître, une progression significativement plus forte de l'eau profonde (sur la base des différences de concentration d'activité comparée à celle de l'eau de surface en direction du Jutland (Fig. 12). Ici aussi cet effet est apparu jusqu'à un certain degré dans la distribution de la salinité (Fig. 14). Tout compte fait, la concentration de caesium radioactif a diminué de 30% dans la Mer du Nord entre 1982 et 1984. En 1984 le caesium 137 et 134 totalisait approximativement 2400 TBq ce qui représente seulement 0,5% des 481 000 TBq environ de potassium 40 présent au naturel dans la Mer du Nord.
  相似文献   

8.
A method for determining the cross-isotherm ocean transport from surface heat flux and ocean temperature data is derived. By computing the volume flux through the isotherm that extend from 19°E, 74°N to the eastern part of the Kola Peninsula, the flow through the western entrance of the Barents Sea south of 74°N is estimated. Using three different surface heat flux datasets, the inflow is found to range from 2.9 to 4.5 Sv in winter (October–March) and from 0.4 to 1.4 Sv in summer (April–September; 1 Sv=106 m3 s−1). The seasonal variations are stronger than indicated by results from direct current measurements, probably because the seasonal cycle of the surface heat fluxes is overestimated along the considered isotherm. The annual mean inflow ranges from 1.9 to 2.2 Sv during a cold period (1986–1988), and from 2.4 to 3.0 Sv during a warm period (1990–1992), close to reported observations.  相似文献   

9.
Profiles of salinity, temperature, oxygen and nutrients for a station at 35°46.5′N and 67°59.8′W show the influence of the five major sources of deep water in the North Atlantic Ocean. The presence of distinct, identifiable cores of water types, far removed from their sources, together with linear relationships between salinity and both oxygen and silicate in the deep water suggest that horizontal mixing processes predominate over vertical dissipation and in situ production or loss processes in determining the distribution of these tracers in the deep western Atlantic Ocean.  相似文献   

10.
A data set of 199 sea surface temperature maps derived from the Advanced Very High Resolution Radiometer for the period 2000–2002 was processed to derive the position of the surface inshore thermal front of the Brazil Current (BCIF) in the SE Brazilian coastal and oceanic area. After the derivation of the position of the BC front for each image, the ensemble of digital frontal vectors was processed using the algorithm of frontal density (FD). For each 5′×5′ cell in the domain the calculated FD provided an index expressing the presence and persistence of the front in the area or the probability of finding the front in the region. In the paper we present the results of the FD analysis to get a better view of the space and time variability of the BC front in the region. The highest values of FD were in general observed close to or at the shelf break zone (between 200 and 1000 m isobaths). From 20°S to 23°S there is a tendency of BCIF to be positioned over the outer shelf, inshore of the 200 m isobaths. SE of Cape Sao Tome and S of Cape Frio it was observed a bimodal spatial distribution of highest FD caused by the presence of two semi-permanent frontal eddies. After moving offshore near Cape Frio, the BCIF tends to return to the shelf break zone south of 24°S probably due to a potential vorticity conservation mechanism. The position of the highest FD values calculated for different seasons confirms previous studies in that BCIF is closer to the coast during the summer and furthest offshore in the winter. Statistical analysis of the SST data gave for the BCIF an average SST gradient of 0.31°C km−1 with a standard deviation of 0.15°C km−1. A mean frontal width of 6 km was inferred from the average SST gradient and typical temperatures near the front at both sides, at outer shelf and in the BC itself. A Weibull probability density function can be fitted to describe the BCIF SST gradients with scale factor c=0.3460°C km−1 and shape factor k=2.1737. The BCIF SST gradient showed a seasonal variability with the smallest gradients in summer (~0.24 °C km−1) and the highest in autumn (~0.33 °C km−1). Using a three harmonic Fourier fit for the SST field near the BCIF, at the outer shelf and at interior of BC, it was possible to derive an analytical model for the time variability of the SST gradient of BCIF.  相似文献   

11.
The ocean circulation on Australia's Northern Shelf is dominated by the Monsoon and influenced by large-scale interannual variability. These driving forces exert an ocean circulation that influences the deep Timor Sea Passage of the Indonesian Throughflow, the circulation on the Timor and Arafura Shelves and, further downstream, the Leeuwin Current. Seasonal maxima of northeastward (southwestward) volume transports on the shelf are almost symmetric and exceed 106 m3/s in February (June). The associated seasonal cycle of vertical upwelling from June to August south of 8.5°S and between 124°E and 137.5°E exceeds 1.5×106 m3/s across 40 m depth. During El Niño events, combined anomalies from the seasonal means of high regional wind stresses and low inter-ocean pressure gradients double the northeastward volume transport on the North Australian Shelf to 1.5×106 m3/s which accounts for 20% of the total depth-integrated transport across 124°E and reduce the total transport of the Indonesian Throughflow. Variability of heat content on the shelf is largely determined by Pacific and Indian Ocean equatorial wind stress anomalies with some contribution from local wind stress forcing.  相似文献   

12.
Wide-angle refraction and multichannel reflection seismic data show that oceanic crust along the Galápagos Spreading Center (GSC) between 97°W and 91°25′W thickens by 2.3 km as the Galápagos plume is approached from the west. This crustal thickening can account for ∼52% of the 700 m amplitude of the Galápagos swell. After correcting for changes in crustal thickness, the residual mantle Bouguer gravity anomaly associated with the Galápagos swell shows a minimum of −25 mGal near 92°15′W, the area where the GSC is intersected by the Wolf-Darwin volcanic lineament (WDL). The remaining depth and gravity anomalies indicate an eastward reduction of mantle density, estimated to be most prominent above a compensation depth of 50-100 km. Melting calculations assuming adiabatic, passive mantle upwelling predict the observed crustal thickening to arise from a small increase in mantle potential temperature of ∼30°C. The associated thermal expansion and increase in melt depletion reduce mantle densities, but to a degree that is insufficient to explain the geophysical observations. The largest density anomalies appear at the intersection of the GSC and the WDL. Our results therefore require the existence of compositionally buoyant mantle beneath the GSC near the Galápagos plume. Possible origins of this excess buoyancy include melt retained in the mantle as well as mantle depleted by melting in the upwelling plume beneath the Galápagos Islands that is later transported to the GSC. Our estimate for the buoyancy flux of the Galápagos plume (700 kg s−1) is lower than previous estimates, while the total crustal production rate of the Galápagos plume (5.5 m3s−1) is comparable to that of the Icelandic and Hawaiian plumes.  相似文献   

13.
In this paper, a possible increase in wind wave heights in the south-eastern south American continental shelf between 32°S and 40°S is investigated. Both time series of in situ (1996–2006) and topex (1993–2001) annual mean significant wave heights gathered at the continental shelf and adjacent ocean present apparent positive trends. Even though these trends are not statistically different from zero, it must be taken into account that the available in situ and satellite data have a short span and, moreover, in situ data present several gaps. Several papers presented evidence about a possible change on the low atmospheric circulation in this region of the southern hemisphere. Consequently, a weak increase in wave height might be occurring, which would be hard to quantify due to the shortness and the insufficiency of the available observations. In order to study a possible trend in mean annual wind wave heights simulating waves nearshore (swan) model forced with ncep/ncar surface wind was implemented in a regional domain for the period 1971–2005. The annual root-mean-square heights of the simulated wave show significant trends at several locations of the inner continental shelf and the adjacent ocean. The most significant increase is observed between 1991–2000 and 1981–1990 decades. The largest difference (0.20 m, 9%) occurs around 34°S–48°W. The wave height increase is somewhat lower, 7%, in the continental shelf and in the río de la plata estuary. The annual mean energy density (spatially averaged) also presents a significant positive trend (0.036 m2/yr) and relatively high inter-annual variability. The possible link between this inter-annual variability and el niño–southern oscillation (enso) was investigated but no apparent relationship was found. A possible increase in the annual mean energy density of waves would be able to produce changes in the littoral processes and, consequently, in the erosion of the coast.  相似文献   

14.
This study investigates environmental assessment of artificial reef systems deployed at different areas in terms of nutrient cycling and seabed organic enrichment. Two identical artificial reef systems: Olhão Artificial Reef—OAR (37°00′55″N and 007°44′54″W) and Faro Artificial Reef—FAR (36°58′65″N and 008°00′91″W) were deployed in southern Portuguese coast, adjacent to a highly productive coastal lagoon (Ria Formosa) in 1990 and monitorized over two years (1992–1993). Water samples were collected within OAR and FAR systems, inside the lagoon (L) and in a non-reef area (NRA) to evaluate nutrient dynamics. Settled particles and sediment cores were also sampled within OAR and FAR to determine aluminium, calcium, silicon and chlorophyll a and organic and inorganic carbon, nitrogen and phosphorous. Results obtained showed that: (i) water column nutrients evidenced seasonal and spatial variability. The maximum nutrients concentration was recorded inside the lagoon and in OAR, mainly during warmer periods. Ammonium, nitrate and silicate in OAR were statistically higher (p<0.01, n=18) than in FAR and NRA; (ii) particulate organic carbon and nitrogen in FAR settled particles were significantly higher (p<0.005) than those collected at OAR; and (iii) organic carbon and nitrogen, calcium, aluminium and chlorophyll a in OAR upper sediment were higher than at FAR. The overall results suggest that OAR is a productive system, emphasizing its contribution to the trophic chain pull out, while FAR presented oceanic oligotrophic water.  相似文献   

15.
Summary Utilising two years data collected at two tropical coastal stations, Madras (13°04N, 80°15E) and Waltair (17°42N, 83°18E) and for one tropical continental station, Nagpur (21°09N, 79°07E), the authors have re-evaluated the constants ofBrunt's regression equation. Analyses of the observations for Waltair and Nagpur show good correlation coefficients (r) between the values of the effective emissivity of the atmosphere (the effective emissivity is the ratio of incoming long-wave sky radiation at the surfaceR s , to black body radiation T 4) and the square root values of surface vapour pressuree (mb). The value ofr for Waltair from radiometer observations is 0.98. It is also determined for Waltair and Nagpur from Ångström compensation pyrgeometer observations as 0.83 and 0.91 respectively. A low correlation co-efficient 0.56 is obtained for Madras. It might be due to higher surface vapour pressure values at Madras than at Waltair and Nagpur. The applicability of the reduced regression equations are examined for different years for the different stations. The agreement between the computed values with the new regression equations and the observed long-wave sky radiation at the surface seems to be quite good.  相似文献   

16.
A historical data set is used to describe the coastal transition zone off Northwest Africa during spring 1973 and fall 1975, from 17° to 26°N, with special emphasis on the interaction between subtropical (North Atlantic Central Waters) and tropical (South Atlantic Central Waters) gyres. The near-surface geostrophic circulation, relative to 300 m, is quite complex. Major features are a large cyclonic pattern north of Cape Blanc (21°N) and offshore flow at the Cape Verde front. The large cyclone occurs in the region of most intense winds, and resembles a large meander of the baroclinic southward upwelling jet. The Cape Verde frontal system displays substantial interleaving that may partly originate as mesoscale features at the coastal upwelling front. Property–property diagrams show that the front is an effective barrier to all properties except temperature. The analysis of the Turner angle suggests that the frontal system is characterized by large heat horizontal diffusion as a result of intense double diffusion, which results in the smoothing of the temperature horizontal gradients. Nine cross-shore sections are used to calculate along-shore geostrophic water-mass and nutrient transports and to infer exchanges between the coastal transition zone and the deep ocean (import: deep ocean to transition zone; export: transition zone to deep ocean). These exchanges compare well with mean wind-induced transports and actual geostrophic cross-shore transport estimates. The region is divided into three areas: southern (18–21°N), central (21–23.5°N), and northern (23.5–26°N). In the northern area geostrophic import is roughly compensated with wind-induced export during both seasons. In the central area geostrophic import is greater than wind-induced export during spring, resulting in net import of both water (0.8 Sv) and nitrate (14 kmol s−1), but during fall both factors again roughly cancel. In the southern area geostrophy and wind join to export water and nutrients during both seasons, they increase from 0.6 Sv and 3 kmol s−1 during fall to 2.9 Sv and 53 kmol s−1 during spring.  相似文献   

17.
The results are presented of an intensive study of phytoplankton assemblage carried out in the Berounka River above its confluence with the Vltava River (Czech Republic) in the period 2002–2007. The annual and interannual changes of phytoplankton development (based on high frequency of sampling) and their relation to hydrological conditions and concentrations of main nutrients are analysed. A marked decline of nutrient concentrations was observed during the period 1996–2007. The annual mean values of total P decreased from 0.43 mg L−1 to 0.16 mg L−1, those of N-NO3 from 4.6 mg L−1 to 1.5 mg L−1 and N-NH4 from 1.9 mg L−1 to 0.04 mg L−1. Despite this, the phytoplankton biomass remained at a high level. The seasonal mean values of chlorophyll-a ranged from 51.0 μg L−1 to 116.8 μg L−1 in the same time period. An obviously stronger relationship was found of the phytoplankton biomass and pattern of its development to the variation of flow rates than to the existing level of nutrient concentrations. A significantly decreasing relationship (R2 = 0.384, P < 0.001) of chlorophyll-a to flow rates and a significantly increasing relationship (R2 = 0.359, P < 0.001) of chlorophyll-a to water temperatures were found, based on monthly mean values for the seasonal period 2002–2007. The results obtained indicate a remarkable increase of phytoplankton biomass and its prolongated occurrence in watercourses, which can be expected due to the consequences of the predicted climate change (i.e. higher occurrence of summer droughts and low precipitation amounts accompanied by a substantial drop of flow rates, increase of air and water temperatures), as described in the respective scenarios for the territory of the Czech Republic. Simulations by the regional climate models HIRHAM and RCAO and emission scenario SRES indicated the increase of air temperature by 2.5–5 °C, decrease of precipitation amount by 6–25% and decline of flows by 14–43% in the Berounka River for the scenario period 2071–2100.  相似文献   

18.
Summary The mean monthly precipitable water at four tropical stations Madras (13°00N, 80°11E), Waltair (17°42N, 83°18E), Bombay (18°54N, 72°49E) and Nagpur (21°06N, 79°03E) are evaluated for the layer surface to 500 mb (0–5.4 km) of the atmosphere using radiosonde data available for seven years period (1959–1965). The mean monthly precipitable water for the above four stations is also estimated from dew point temperature.The precipitable water in the air column at any station is examined in relation to monsoon flow. The higher values of precipitable water are found to occur over the regions when there is good supply of moisture by the monsoon flow as well as low level convergence. These studies are believed to provide useful information in forecasting the monsoon circulation over the country.  相似文献   

19.
The extensive sea grass meadows in Torres Strait enable it to be a globally important habitat for the dugong, Dugong dugon, a marine mammal of cultural and dietary significance to Torres Strait Islanders and the basis for the substantial island-based fishery in the Torres Strait Protected Zone. Torres Strait sea grass communities are subjected to episodic diebacks which are now believed to be largely natural events. Information on dugong life history was obtained from specimens obtained from female dugongs as they were butchered for food by Indigenous hunters at two major dugong hunting communities in Torres Strait: Daru (9.04°S, 143.21°E) in 1978–1982 (a time of sea grass dieback and recovery) and Mabuiag Island (9.95°S, 142.15°E) in 1997–1999 (when sea grasses were abundant). Dugongs sampled in 1997–1999 had their first calf at younger ages (minimum of 6 cf. 10 years), and more frequently (interbirth interval based on all possible pregnancies 2.6±0.4 (S.E.) yr cf. 5.8±1.0 yr) than the dugongs sampled in 1978–1982. Pregnancy rates increased monotonically during 1978–1982, coincident with sea grass recovery. The age distribution of the female dugongs collected in 1997–1999 also suggested a low birth rate between 1973 and 1983 and/or or a high level of mortality for animals born during this period. These results add to the evidence from other regions that the life history and reproductive rate of female dugongs are adversely affected by sea grass loss, the effect of which cannot be separated from a possible density-dependent response to changes in dugong population size. Many green turtles in Torres Strait were also in poor body condition coincident with the 1970s sea grass dieback. The impacts of future sea grass diebacks need to be anticipated when management options for the traditional Torres Strait fisheries for dugongs and green turtles are evaluated.  相似文献   

20.
It is well known that upwelling of subsurface water is dominant around the Taiwan Bank (TB) and the Penghu (PH) Islands in the southern Taiwan Strait in summertime. Sea surface temperature (SST) frontal features and related phenomena around the TB upwelling and the PH upwelling were investigated using long-term AVHRR (1996–2005) and SeaWiFS (1998–2005) data received at the station of National Taiwan Ocean University. SST and chlorophyll-a (Chl-a) images with a spatial resolution of 0.01° were generated and used for the monthly SST and Chl-a maps. SST fronts were extracted from each SST images and gradient magnitudes (GMs); the orientations were derived for the SST fronts. Monthly maps of cold fronts where the cooler SSTs were over a shallower bottom were produced from the orientation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号