首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 116 毫秒
1.
 Volcanic breccias form large parts of composite volcanoes and are commonly viewed as containing pyroclastic fragments emplaced by pyroclastic processes or redistributed as laharic deposits. Field study of cone-forming breccias of the andesitic middle Pleistocene Te Herenga Formation on Ruapehu volcano, New Zealand, was complemented by paleomagnetic laboratory investigation permitting estimation of emplacement temperatures of constituent breccia clasts. The observations and data collected suggest that most breccias are autoclastic deposits. Five breccia types and subordinate, coherent lava-flow cores constitute nine, unconformity-bounded constructional units. Two types of breccia are gradational with lava-flow cores. Red breccias gradational with irregularly shaped lava-flow cores were emplaced at temperatures in excess of 580  °C and are interpreted as aa flow breccias. Clasts in gray breccia gradational with tabular lava-flow cores, and in some places forming down-slope-dipping avalanche bedding beneath flows, were emplaced at varying temperatures between 200 and 550  °C and are interpreted as forming part of block lava flows. Three textural types of breccia are found in less intimate association with lava-flow cores. Matrix-poor, well-sorted breccia can be traced upslope to lava-flow cores encased in autoclastic breccia. Unsorted boulder breccia comprises constructional units lacking significant exposed lava-flow cores. Clasts in both of these breccia types have paleomagnetic properties generally similar to those of the gray breccias gradational with lava-flow cores; they indicate reorientation after acquisition of some, or all, magnetization and ultimate emplacement over a range of temperatures between 100 and 550  °C. These breccias are interpreted as autoclastic breccias associated with block lava flows. Matrix-poor, well-sorted breccia formed by disintegration of lava flows on steep slopes and unsorted boulder breccia is interpreted to represent channel-floor and levee breccias for block lava flows that continued down slope. Less common, matrix-rich, stratified tuff breccias consisting of angular blocks, minor scoria, and a conspicuously well-sorted ash matrix were generally emplaced at ambient temperature, although some deposits contain clasts possibly emplaced at temperatures as high as 525  °C. These breccias are interpreted as debris-flow and sheetwash deposits with a dominant pyroclastic matrix and containing clasts likely of mixed autoclastic and pyroclastic origin. Pyroclastic deposits have limited preservation potential on the steep, proximal slopes of composite volcanoes. Likewise, these steep slopes are more likely sites of erosion and transport by channeled or unconfined runoff rather than depositional sites for reworked volcaniclastic debris. Autoclastic breccias need not be intimately associated with coherent lava flows in single outcrops, and fine matrix can be of autoclastic rather than pyroclastic origin. In these cases, and likely many other cases, the alternation of coherent lava flows and fragmental deposits defining composite volcanoes is better described as interlayered lava-flow cores and cogenetic autoclastic breccias, rather than as interlayered lava flows and pyroclastic beds. Reworked deposits are probably insignificant components of most proximal cone-forming sequences. Received: 1 October 1998 / Accepted: 28 December 1998  相似文献   

2.
The summit cone of the Erebus volcano contains two craters. The Main crater is roughly circular (∼ 500 m diameter) and contains an active persistent phonolite lava lake ∼ 200 m below the summit rim. The Side Crater is adjacent to the southwestern rim of the Main Crater. It is a smaller spoon-shaped Crater (250–350 m diameter, 50–100 m deep) and is inactive. The floor of the Side Crater is covered by snow/ice, volcanic colluvium or weakly developed volcanic soil in geothermal areas (a.k.a. warm ground). But in several places the walls of the Side Crater provide extensive vertical exposure of rock which offers an insight into the recent eruptive history of Erebus. The deposits consist of lava flows with subordinate volcanoclastic lithologies. Four lithostratigraphic units are described: SC 1 is a compound lava with complex internal flow fabrics; SC 2 consists of interbedded vitric lavas, autoclastic and pyroclastic breccias; SC 3 is a thick sequence of thin lavas with minor autoclastic breccias; SC 4 is a pyroclastic fall deposit containing large scoriaceous lava bombs in a matrix composed primarily of juvenile lapilli-sized pyroclasts. Ash-sized pyroclasts from SC 4 consist of two morphologic types, spongy and blocky, indicating a mixed strombolian-phreatomagmatic origin. All of the deposits are phonolitic and contain anorthoclase feldspar.  相似文献   

3.
In the Izu Peninsula (Japan), the Pliocene pumice-rich Dogashima Formation (4.55?±?0.87 Ma) displays exceptional preservation of volcaniclastic facies that were erupted and deposited in a below wave-base marine setting. It includes high-concentration density current deposits that contain clasts that were emplaced hot, indicating an eruption-fed origin. The lower part of the Dogashima 2 unit consists of a very thick sequence (<12 m) of massive grey andesite breccia restricted to the base of a submarine channel, gradationally overlain by pumice breccia, which is widespread but much thinner and finer in the overbank setting. These two breccias share similar mineralogy and crystal composition and are considered to be co-magmatic and derived from the destruction of a submarine dome by an explosive, pumice-forming eruption. The two breccias were deposited from a single, explosive eruption-fed, sustained, sea floor-hugging, water-supported, high-concentration density current in which the clasts were sorted according to their density. At the rim of the channel, localised good hydraulic sorting of clasts and stratification in the pumice breccia are interpreted to reflect local current expansion and unsteadiness rather than to be the result of hydraulic sorting of clasts during fall from a submarine eruption column and/or umbrella plume. A bimodal coarse (>1 m) pumice- and ash-rich bed overlying the breccias may be derived from delayed settling of pyroclasts from suspension. In Dogashima 1 and 2, thick cross- and planar-bedded facies composed of sub-rounded pumice clasts are intercalated with eruption-fed facies, implying inter-eruptive mass-wasting on the flank of a submarine volcano, and reworking and resedimentation by high-energy tractional currents in a below wave-base environment.  相似文献   

4.
Detailed mapping of Tok Island, located in the middle of the East Sea (Sea of Japan), along with lithofacies analysis and K-Ar age determinations reveal that the island is of early to late Pliocene age and comprises eight rock units: Trachyte I, Unit P-I, Unit P-II, Trachyandesite (2.7±0.1 Ma), Unit P-III, Trachyte II (2.7±0.1 Ma), Trachyte III (2.5±0.1 Ma) and dikes in ascending stratigraphic order. Trachyte I is a mixture of coherent trachytic lavas and breccias that are interpreted to be subaqueous lavas and related hyaloclastites. Unit P-I comprises massive and inversely graded basaltic breccias which resulted from subaerial gain flows and subaqueous debris flows. A basalt clast from the unit, derived from below Trachyte I, has an age of 4.6±0.4 Ma. Unit P-II is composed of graded and stratified lapilli tuffs with the characteristics of proximal pyroclastic surge deposits. The Trachyandesite is a massive subaerial lava ponded in a volcano-tectonic depression, probably a summit crater. A pyroclastic sequence containing flattened scoria clasts (Unit P-III) and a small volume subaerial lava (Trachyte II) occur above the Trachyandesite, suggesting resumption of pyroclastic activity and lava effusion. Afterwards, shallow intrusion of magma occurred, producing Trachyte III and trachyte dikes.The eight rock units provide an example of the changing eruptive and depositional processes and resultant succession of lithofacies as a seamount builds up above sea level to form an island volcano: Trachyte I represents a wholly subaqueous and effusive stage; Units P-I and P-II represent Surtseyan and Taalian eruptive phases during an explosive transitional (subaqueous to emergent) stage; and the other rock units represent later subaerial effusive and explosive stages. Reconstruction of volcano morphology suggests that the island is a remnant of the south-western crater rim of a volcano the vent of which lies several hundred meters to the north-east.  相似文献   

5.
Sinker Butte is the erosional remnant of a very large basaltic tuff cone of middle Pleistocene age located at the southern edge of the western Snake River Plain. Phreatomagmatic tephras are exposed in complete sections up to 100 m thick in the walls of the Snake River Canyon, creating an unusual opportunity to study the deposits produced by this volcano through its entire sequence of explosive eruptions. The main objectives of the study were to determine the overall evolution of the Sinker Butte volcano while focusing particularly on the tephras produced by its phreatomagmatic eruptions. Toward this end, twenty-three detailed stratigraphic sections ranging from 20 to 100 m thick were examined and measured in canyon walls exposing tephras deposited around 180° of the circumference of the volcano.Three main rock units are recognized in canyon walls at Sinker Butte: a lower sequence composed of numerous thin basaltic lava flows, an intermediate sequence of phreatomagmatic tephras, and a capping sequence of welded basaltic spatter and more lava flows. We subdivide the phreatomagmatic deposits into two main parts, a series of reworked, mostly subaqueously deposited tephras and a more voluminous sequence of overlying subaerial surge and fall deposits. Most of the reworked deposits are gray in color and exhibit features such as channel scour and fill, planar-stratification, high and low angle cross-stratification, trough cross-stratification, and Bouma-turbidite sequences consistent with their being deposited in shallow standing water or in braided streams. The overlying subaerial deposits are commonly brown or orange in color due to palagonitization. They display a wide variety of bedding types and sedimentary structures consistent with deposition by base surges, wet to dry pyroclastic fall events, and water saturated debris flows.Proximal sections through the subaerial tephras exhibit large regressive cross-strata, planar bedding, and bomb sags suggesting deposition by wet base surges and tephra fallout. Medial and distal deposits consist of a thick sequence of well-bedded tephras; however, the cross-stratified base-surge deposits are thinner and interbedded within the fallout deposits. The average wavelength and amplitude of the cross strata continue to decrease with distance from the vent. These bedded surge and fall deposits grade upward into dominantly fall deposits containing 75–95% juvenile vesiculated clasts and localized layers of welded spatter, indicating a greatly reduced water-melt ratio. Overlying these “dryer” deposits are massive tuff breccias that were probably deposited as water saturated debris flows (lahars). The first appearance of rounded river gravels in these massive tuff breccias indicates downward coring of the diatreme and entrainment of country rock from lower in the stratigraphic section. The “wetter” nature of these deposits suggests a renewed source of external water. The massive deposits grade upward into wet fallout tephras and the phreatomagmatic sequence ends with a dry scoria fall deposit overlain by welded spatter and lava flows.Field observations and two new 40Ar–39Ar incremental heating dates suggest the succession of lavas and tephra deposits exposed in this part of the Snake River canyon may all have been erupted from a closely related complex of vents at Sinker Butte. We propose that initial eruptions of lava flows built a small shield edifice that dammed or disrupted the flow of the ancestral Snake River. The shift from effusive to explosive eruptions occurred when the surface water or rising ground water gained access to the vent. As the river cut a new channel around the lava dam, water levels dropped and the volcano returned to an effusive style of eruption.  相似文献   

6.
The La Breña — El Jagüey Maar Complex, of probable Holocene age, is one of the youngest eruptive centers in the Durango Volcanic Field (DVF), a Quaternary lava plain that covers 2100 km2 and includes about 100 cinder and lava cones. The volcanic complex consists of two intersecting maars — La Breña and El Jagüey — at least two pre-maar scoria cones and associated lavas, and a series of nested post-maar lava and scoria cones that erupted within La Breña Maar and flooded its floor with lava to form one or more lava lakes. We believe that El Jagüey Maar formed first, but pyroclastic deposits associated with its formation are exposed at only a few places in the lower maar walls. A perennial lake in the bottom of El Jagüey marks the top of an aquifer about 60 m below the lava plain. Interaction of the rising basanitic magmas with this aquifer was probably responsible for the hydromagmatic eruptions at the maar complex. In the southeastern quadrant of La Breña and in most parts of El Jagüey, the upper maar walls expose a thick pyroclastic sequence of tuffs, tuff breccias, and breccias that is dominated by thinly layered sandwave and plane-parallel surge beds and contains minor interlayered scoria-fall horizons. We conclude that these deposits in the upper walls of both maars erupted during the formation of La Breña, based on: (1) thickness variations in a prominent scoria-fall marker bed interlayered with the surge deposits; (2) inferred transport directions for ballistic clasts, channels, and dune-like bedforms; and (3) lateral facies changes in the surge deposits. Some of the surge clouds from La Breña apparently travelled down the inner southwestern wall of El Jagüey, fanned out across its floor, and climbed up the opposite walls before emerging onto the surrounding lava plain. These clouds deposited steep, inward-dipping surge deposits along the lower walls of El Jagüey. Following this hydromagmatic phase, which was responsible for the formation of the maars, a series of strombolian eruptions took place from vents within La Breña. At many places along the maar rims these eruptions completely buried the surge beds under a thick sequence of post-maar scoriae and ashes. The outer flanks of the maar complex and the surrounding lava plain are also blanketed by post-maar ashes. The final phase of activity involved effusive eruptions of post-maar lavas from vents on the floor of La Breña. The evolutionary sequence from hydromagmatic eruptions during formation of the maars, through strombolian eruptions of the post-maar scoriae and ashes, and finally to the post-maar lavas appears to reflect the declining influence of magma-groundwater interactions with time. Basanitic magmas from all eruptive stages carried spinel-lherzolite and feldspathic-granulite xenoliths to the surface. The La Breña — El Jagüey Maar Complex contains the only known hydromagmatic vents in the DVF and the largest spinel-lherzolite xenoliths, which range up to 30 cm diameter. These two observations indicate an unusually rapid ascent rate for these basanitic magmas compared to those from other DVF vents.  相似文献   

7.
At Rakiraki in northeastern Viti Levu, the Pliocene Ba Volcanic Group comprises gently dipping, pyroxene-phyric basaltic lavas, including pillow lava, and texturally diverse volcanic breccia interbedded with conglomerate and sandstone. Three main facies associations have been identified: (1) The primary volcanic facies association includes massive basalt (flows and sills), pillow lava and related in-situ breccia (pillow-fragment breccia, autobreccia, in-situ hyaloclastite, peperite). (2) The resedimented volcaniclastic facies association consists of bedded, monomict volcanic breccia and scoria lapilli-rich breccia. (3) The volcanogenic sedimentary facies association is composed of bedded, polymict conglomerate and breccia, together with volcanic sandstone and siltstone-mudstone facies. Pillow lava and coarse hyaloclastite breccia indicate a submarine depositional setting for most of the sequence. Thick, massive to graded beds of polymict breccia and conglomerate are interpreted as volcaniclastic mass-flow deposits emplaced below wave base. Well-rounded clasts in conglomerate were reworked during subaerial transport and/or temporary storage in shoreline or shallow water environments prior to redeposition. Red, oxidised lava and scoria clasts in bedded breccia and conglomerate also imply that the source was partly subaerial. The facies assemblage is consistent with a setting on the submerged flanks of a shoaling basaltic seamount. The coarse grade and large volume of conglomerate and breccia reflect the high supply rate of clasts, and the propensity for collapse and redeposition on steep palaeoslopes. The clast supply may have been boosted by vigorous fragmentation processes accompanying transition of lava from subaerial to submarine settings. The greater proportion of primary volcanic facies compared with resedimented volcaniclastic and volcanogenic sedimentary facies in central and northwestern exposures (near Rakiraki) indicates they are more proximal than those in the southeast (towards Viti Levu Bay). The proximal area coincides with one of two zones where NW-SE-trending mafic dykes are especially abundant, and it is close to several, small, dome-like intrusions of intermediate and felsic igneous rocks. The original surface morphology of the volcano is no longer preserved, though the partial fan of bedding dip azimuths in the south and east and the wide diameter (exceeding 20 km) are consistent with a broad shield.  相似文献   

8.
Summary The application of the progressive thermal demagnetization procedure of volcanic rock debris has been frequently used to determine the emplacement temperatures of pyroclastic deposits and thus to characterize the nature of these volcanic deposits. This debris consists of a mixture of juvenile fragments derived from the explosive fragmentation of erupting magma and an assortment of lithic clasts derived mainly from the walls of a volcanic conduit, as well as from the ground. The temperature at which the clasts were deposited can be estimated by analyzing its remanent magnetization. To do this, oriented samples of clasts are subjected to progressive thermal demagnetization and the directions of the resulting remanent vectors provide the necessary information. Clasts of basalt, andesite, limestone, pumice and homebricks have previously been used to estimate the emplacement temperatures of pyroclastic deposits. According to our data, clasts of red sandstones also seem to be good carriers of thermoremanent magnetization. We have carried out a paleomagnetic study on a Quaternary, lithic-rich, massive, pyroclastic deposit from the Puig d'Adri volcano (Catalan Volcanic Zone), which contains a large number of red sandstone clasts. It is concluded that the studied deposit cannot be considered as a lahar or as a pyroclastic surge deposit, considering both the emplacement temperature and the morphological features.Presented at 3rd Biennial Meeting on New Trends in Geomagnetism, Smolenice Castle, West Slovakia, June 22–29, 1992  相似文献   

9.
10.
The formation of volcanic–sedimentary interaction features in extreme arid environments is not a commonly described process. Specifically the occurrence of dynamically mixed sediments and juvenile igneous clasts as peperites, for water has been considered one major important factor in the processes of magma dismantling and mingling with unconsolidated sediment to form such deposits. The study area, located in south Brazil, shows a sequence of lava flows and intertrapic sandstone layers from the Paraná Basin, associated with the formation of clastic dykes, flow striations, peperite and ‘peperite-like’ breccias. Four processes are suggested for the genesis of the peperites: (a) fragmentation of the flow front and base; (b) sand injection; (c) dune collapse; (d) magma cascade downhill. The continued flow of a lava, while its outer crust is already cooling, causes it to break, especially in the front and base, fragments falling in the sand and getting mixed with it, generating the flow front ‘peperite-like’ breccia. The weight of the lava flow associated to shear stress at the base cause sand to be injected inwards the flow, forming injection clastic dykes in the cooled parts and injection peperite in the more plastic portions. The lava flow may partially erode the dune, causing the dune to collapse and forming the collapse ‘peperite-like’ breccia. The shear stress at the base of a flowing lava striates the unconsolidated sand, forming the flow striations. The sand that migrates over a cooled, jointed lava flow may get caught in the cavities and joints, forming the filling clastic dykes. These deposits are analogous to those found in the Etendeka, NW Namibia, and show that sediment–lava interactions in arid settings are widespread throughout the Paraná-Etendeka province during the onset of flood volcanism.  相似文献   

11.
This study investigates the types of subaqueous deposits that occur when hot pyroclastic flows turbulently mix with water at the shoreline through field studies of the Znp marine tephra in Japan and flume experiments where hot tephra sample interacted with water. The Znp is a very thick, pumice-rich density current deposit that was sourced from subaerial pyroclastic flows entering the Japan Sea in the Pliocene. Notable characteristics are well-developed grain size and density grading (lithic-rich base, pumice-rich middle, and ash-rich top), preponderance of sedimentary lithic clasts picked up from the seafloor during transport, fine ash depletion in coarse facies, and presence of curviplanar pumice clasts. Flume experiments provide a framework for interpreting the origin and proximity to source of the Znp tephra. On contact of hot tephra sample with water, steam explosions produced a gas-supported pyroclastic density current that advanced over the water while a water-supported density current was produced on the tank floor from the base of a turbulent mixing zone. Experimental deposits comprise proximal lithic breccia, medial pumice breccia, and distal fine ash. Experiments undertaken with cold, water-saturated slurries of tephra sample and water did not produce proximal lithic breccias but a medial basal lithic breccia beneath an upper pumice breccia. Results suggest the characteristics and variations in Znp facies were strongly controlled by turbulent mixing and quenching, proximity to the shoreline, and depositional setting within the basin. Presence of abundant curviplanar pumice clasts in submarine breccias reflects brittle fracture and dismembering that can occur during fragmentation at the vent or during quenching. Subsequent transport in water-supported pumiceous density currents preserves the fragmental textures. Careful study is needed to distinguish the products of subaerial versus subaqueous eruptions.  相似文献   

12.
 Pliocene–Recent volcanic outcrops at Seal Nunataks and Beethoven Peninsula (Antarctic Peninsula) are remnants of several monogenetic volcanoes formed by eruption of vesiculating basaltic magma into shallow water, in an englacial environment. The diversity of sedimentary and volcanic lithofacies present in the Antarctic Peninsula outcrops provides a clear illustration of the wide range of eruptive, transportational and depositional processes which are associated with englacial Surtseyan volcanism. Early-formed pillow lava and glassy breccia, representing a pillow volcano stage of construction, are draped by tephra erupted explosively during a tuff cone stage. The tephra was resedimented around the volcano flanks, mainly by coarse-grained sediment gravity flows. Fine-grained lithofacies are rare, and fine material probably bypassed the main volcanic edifice, accumulating in the surrounding englacial basin. The pattern of sedimentation records variations in eruption dynamics. Products of continuous-uprush eruptions are thought to be represented by stacks of poorly bedded gravelly sandstone, whereas better bedded, lithologically more diverse sequences accumulated during periods of quiescence or effusive activity. Evidence for volcano flank failure is common. In Seal Nunataks, subaerial lithofacies (mainly lavas and cinder cone deposits) are volumetrically minor and occur at a similar stratigraphical position to pillow lava, suggesting that glacial lake drainage may have occurred prior to or during deposition of the subaerial lithofacies. By contrast, voluminous subaerial effusion in Beethoven Peninsula led to the development of laterally extensive stratified glassy breccias representing progradation of hyaloclastite deltas. Received: 5 February 1996 / Accepted: 17 January 1997  相似文献   

13.
 Coarse, co-ignimbrite lithic breccia, Ebx, occurs at the base of ignimbrite E, the most voluminous and widespread unit of the Kos Plateau Tuff (KPT) in Greece. Similar but generally less coarse-grained basal lithic breccias (Dbx) are also associated with the ignimbrites in the underlying D unit. Ebx shows considerable lateral variations in texture, geometry and contact relationships but is generally less than a few metres thick and comprises lithic clasts that are centimetres to a few metres in diameter in a matrix ranging from fines bearing (F2: 10 wt.%) to fines poor (F2: 0.1 wt.%). Lithic clasts are predominantly vent-derived andesite, although clasts derived locally from the underlying sedimentary formations are also present. There are no proximal exposures of KPT. There is a highly irregular lower erosional contact at the base of ignimbrite E at the closest exposures to the inferred vent, 10–14 km from the centre of the inferred source, but no Ebx was deposited. From 14 to <20 km from source, Ebx is present over a planar erosional contact. At 16 km Ebx is a 3-m-thick, coarse, fines-poor lithic breccia separated from the overlying fines-bearing, pumiceous ignimbrite by a sharp contact. This grades downcurrent into a lithic breccia that comprises a mixture of coarse lithic clasts, pumice and ash, or into a thinner one-clast-thick lithic breccia that grades upward into relatively lithic-poor, pumiceous ignimbrite. Distally, 27 to <36 km from source Ebx is a finer one-clast-thick lithic breccia that overlies a non-erosional base. A downcurrent change from strongly erosional to depositional basal contacts of Ebx dominantly reflects a depletive pyroclastic density current. Initially, the front of the flow was highly energetic and scoured tens of metres into the underlying deposits. Once deposition of the lithic clasts began, local topography influenced the geometry and distribution of Ebx, and in some cases Ebx was deposited only on topographic crests and slopes on the lee-side of ridges. The KPT ignimbrites also contain discontinuous lithic-rich layers within texturally uniform pumiceous ignimbrite. These intra-ignimbrite lithic breccias are finer grained and thinner than the basal lithic breccias and overlie non-erosional basal contacts. The proportion of fine ash within the KPT lithic breccias is heterogeneous and is attributed to a combination of fluidisation within the leading part of the flow, turbulence induced locally by interaction with topography, flushing by steam generated by passage of pyroclastic density currents over and deposition onto wet mud, and to self-fluidisation accompanying the settling of coarse, dense lithic clasts. There are problems in interpreting the KPT lithic breccias as conventional co-ignimbrite lithic breccias. These problems arise in part from the inherent assumption in conventional models that pyroclastic flows are highly concentrated, non-turbulent systems that deposit en masse. The KPT coarse basal lithic breccias are more readily interpreted in terms of aggradation from stratified, waning pyroclastic density currents and from variations in lithic clast supply from source. Received: 21 April 1997 / Accepted: 4 October 1997  相似文献   

14.
Pacaya volcano is an active composite volcano located in the volcanic highlands of Guatemala about 40 km south of Guatemala City. Volcanism at Pacaya alternates between Strombolian and Vulcanian, and during the past five years there has been a marked increase in the violence of eruptions. The volcano is composed principally of basalt flows interbedded with thin scoria fall units, several pyroclastic surge beds, and at least one welded tuff. Between 400 and 2000 years BP the W-SW sector of the volcano collapsed producing a horseshoeshaped amphitheater (0.65 km3) and providing a window into the cone's infrastructure. Lava flows and tephra exposed in the amphitheater are more then 200 m thick and when combined with flows erupted recently represent between 30 and 40% of the cone's history. Pacaya is ideally suited for a paleomagnetic study into the timing and duration of eruption episodes at a large, composite volcano. We drilled 27 paleomagnetic sites (25 aa flows, 1 dike, and 1 welded tuff) from four lava-flow sequences with between 4 and 14 sites per sequence. The four sequences represent initial through historic activity at Pacaya. We resolved, what appear to be, 22 time-independent paleomagnetic sites by averaging together directions from successive sites where the sitemean directions were indistinguishable at the 95% level of confidence. However, mean-sequence directions of individual lava-flow sequences yielded unusually high Fisher precision parameters (k=44–224) and small circles of 63% confidence (a63=1.6–6.1°) suggesting as few as three or four time-independent sites were collected. This indicates that activity as Pacaya is strongly episodic and that episodes are characterized by voluminous outpouring of lavas. Modelling the data using Holocene PSV rates confirms this and shows that differences in within-sequence directions (6–11.5°) are consistent with emplacement of lava-flow sequences in less than 100 years to as many as 300 years. Relatively larger differences in directions (18–23°) between subjacent lava-flow sequences indicates that repose is at least 300–500 years and could be even longer.  相似文献   

15.
The Highway–Reward massive sulphide deposit is hosted by a silicic volcanic succession in the Cambro-Ordovician Seventy Mile Range Group, northeastern Australia. Three principal lithofacies associations have been identified in the host succession: the volcanogenic sedimentary facies association, the primary volcanic facies association and the resedimented syn-eruptive facies association. The volcanogenic sedimentary facies association comprises volcanic and non-volcanic siltstone and sandstone turbidites that indicate submarine settings below storm wave base. Lithofacies of the primary volcanic facies association include coherent rhyolite, rhyodacite and dacite, and associated non-stratified breccia facies (autoclastic breccia and peperite). The resedimented volcaniclastic facies association contains clasts that were initially formed and deposited by volcanic processes, but then redeposited by mass-flow processes. Resedimentation was more or less syn-eruptive so that the deposits are essentially monomictic and clast shapes are unmodified. This facies association includes monomictic rhyolitic to dacitic breccia (resedimented autoclastic facies), siltstone-matrix rhyolitic to dacitic breccia (resedimented intrusive hyaloclastite or resedimented peperite) and graded lithic-crystal-pumice breccia and sandstone (pumiceous and crystal-rich turbidites). The graded lithic-crystal-pumice breccia and sandstone facies is the submarine record of a volcanic centre(s) that is not preserved or is located outside the study area. Pumice, shards, and crystals are pyroclasts that reflect the importance of explosive magmatic and/or phreatomagmatic eruptions and suggest that the source vents were in shallow water or subaerial settings.The lithofacies associations at Highway–Reward collectively define a submarine, shallow-intrusion-dominated volcanic centre. Contact relationships and phenocryst populations indicate the presence of more than 13 distinct porphyritic units with a collective volume of 0.5 km3. Single porphyritic units vary from <10 to 350 m in thickness and some are less than 200 m in diameter. Ten of the porphyritic units studied in the immediate host sequence to the Highway–Reward deposit are entirely intrusive. Two of the units lack features diagnostic of their emplacement mechanism and could be either lavas and intrusions. Direct evidence for eruption at the seafloor is limited to a single partly extrusive cryptodome. However, distinctive units of resedimented autoclastic breccia indicate the presence nearby of additional lavas and domes.The size and shape of the lavas and intrusions reflect a restricted supply of magma during eruption/intrusion, the style of emplacement, and the subaqueous emplacement environment. Due to rapid quenching and mixing with unconsolidated clastic facies, the sills and cryptodomes did not spread far from their conduits. The shape and distribution of the lavas and intrusions were further influenced by the positions of previously or concurrently emplaced units. Magma preferentially invaded the sediment, avoiding the older units or conforming to their margins. Large intrusions and their dewatered envelope may have formed a barrier to the lateral progression and ascent of subsequent batches of magma.  相似文献   

16.
The Peperino Albano (approximately 19–36 ka old) is a phreatomagmatic pyroclastic flow deposit, cropping out along the slopes of the associated Albano maar (Colli Albani volcano, Italy). The deposit exhibits lateral and vertical transitions from valley pond to veneer facies, as well as intracrater facies. We present the results of a paleomagnetic study of thermal remanent magnetization (TRM) of the lithic clasts of the Peperino Albano ignimbrite that provide quantitative estimates of the range of emplacement temperatures across the different facies of the ignimbrite. Emplacement temperatures estimated for the Peperino Albano ignimbrite range between 240° and 350°C, with the temperatures defined in the intracrater facies being generally lower than in the valley pond and veneer facies. This is possibly due to the large size of the sampled clasts in the intracrater facies which, when coupled with low temperature at the vent, were not completely heated throughout their volume during emplacement. The emplacement temperatures derived from the paleomagnetic results are in good agreement with the presence of un-burnt plants at the base of the ignimbrite, indicating that the temperature of the pyroclastic flow was lower than the temperature of ignition of wood. Paleomagnetic results from the Peperino Albano confirm the reliability of the paleomagnetic approach in defining the thermal history of pyroclastic flow deposits.  相似文献   

17.
The Milos volcanic field includes a well-exposed volcaniclastic succession which records a long history of submarine explosive volcanism. The Bombarda volcano, a rhyolitic monogenetic center, erupted ∼1.7 Ma at a depth <200 m below sea level. The aphyric products are represented by a volcaniclastic apron (up to 50 m thick) and a lava dome. The apron is composed of pale gray juvenile fragments and accessory lithic clasts ranging from ash to blocks. The juvenile clasts are highly vesicular to non-vesicular; the vesicles are dominantly tube vesicles. The volcaniclastic apron is made up of three fades: massive to normally graded pumice-lithic breccia, stratified pumice-lithic breccia, and laminated ash with pumice blocks. We interpret the apron beds to be the result of water-supported, volcaniclastic mass-How emplacement, derived directly from the collapse of a small-volume, subaqueous eruption column and from syn-eruptive, down-slope resedimentation of volcaniclastic debris. During this eruptive phase, the activity could have involved a complex combination of phreatomagmatic explosions and minor submarine effusion. The lava dome, emplaced later in the source area, is made up of flow-banded lava and separated from the apron by an obsidian carapace a few meters thick. The near-vertical orientation of the carapace suggests that the dome was intruded within the apron. Remobilization of pyroclastic debris could have been triggered by seismic activity and the lava dome emplacement. Published online: 30 January 2003 Editorial responsibility: J. McPhie  相似文献   

18.
We present field observations from Bláhnúkur, a small volume (<0.1 km3) subglacial rhyolite edifice at the Torfajökull central volcano, south-central Iceland. Bláhnúkur was probably emplaced during the last glacial period (ca. 115–11 ka). The characteristics of the deposits suggest that they were formed by an effusive eruption in an exclusively subglacial environment, beneath a glacier >400 m thick. Lithofacies associations attest to complex patterns of volcano-ice interaction. Erosive channels at the base of the subglacial sequence are filled by both eruption-derived material and subglacial till, which show evidence for deposition by flowing meltwater. This suggests that meltwater was able to drain away from the vent area during the eruption. Much of the subglacial volcanic deposits consist of conical-to-irregularly shaped lava lobes typically 5–10 m long, set in poorly sorted breccias with an ash-grade matrix. A gradational lavabreccia contact at the base of lava lobes represents a fossilised fragmentation interface, driven by magma-water interaction as the lava flowed over poorly consolidated, waterlogged debris. Sets of columnar joints on the upper surfaces of lobes are interpreted as ice-contact features. The morphology of the lobes suggests that they chilled within conically shaped subglacial cavities 2–5 m high. Avalanche deposits mantling the flanks of Bláhnúkur appear to have been generated by the collapse of lava lobes and surrounding breccia. A variety of deposit characteristics suggests that this occurred both prior to and after quenching of the lava lobes. Collapse events may have occurred when the supporting ice walls were melted back from around the cooling lava lobes and breccias. Much larger lava flows were emplaced in the latter stages of the eruption. Columnar joint patterns suggest that these flowed and chilled within subglacial cavities 20 m high and 100–200 m in length. There is little evidence for magma-water interaction at lava flow margins which suggests that these larger cavities were drained of meltwater. As rhyolite magma rose to the base of the glacier, the nature of the subglacial cavity system played an important role in governing the style of eruption and the volcanic facies generated. We present evidence that the cavity system evolved during the eruption, reflecting variations in both melting rate and edifice growth that are best explained by a fluctuating eruption rate.  相似文献   

19.
The contribution of intrusive complexes to volcano growth is attested by field observations and by the monitoring of active volcanoes. We used numerical simulations to quantitatively estimate the relative contributions to volcano growth of elastic dislocations related to dyke intrusions and of the accumulation of lava flows. The ground uplift induced by dyke intrusions was calculated with the equations of Okada (Bull. Seismol. Soc. Am., 75 (1985) 1135). The spreading of lava flows was simulated as the flow of a Bingham fluid.With realistic parameters for dyke statistics and lava-flow rheology we find the contribution of dyke intrusions to the growth of a basaltic shield archetype to be about 13% in terms of volume and 30% in terms of height. The result is strongly dependent on the proportion of dykes reaching the surface to feed a lava flow. Systematic testing of the model indicates that edifices tend to be high and steep if dykes are thick and high, issued from a small and shallow magma chamber, and if they feed lava flows of high yield strength.The simulation was applied to Ko'olau (O'ahu Is., Hawai'i) and Piton de la Fournaise (Réunion Is.) volcanoes. The simulation of Ko'olau with dyke parameters as described by Walker (Geology, 14 (1986) 310; U.S. Geol. Surv. Prof. Pap., 1350 (1987) 961) and with lava-flow characteristics collected at Kilauea volcano (Hawai'i Is.) results in an edifice morphology very close to that of the real volcano. The best fit model of the Piton de la Fournaise central cone, with its steep slope and E–W elongation, is obtained by the intrusion of 10 000 short and thick dykes issued from a very small and shallow magma chamber and feeding only 700 low-volume lava flows. The same method may be applied to the growth of basaltic shields and other volcano types in different environments, including non-terrestrial volcanism.  相似文献   

20.
During the past 500 thousand years, Unzen volcano, an active composite volcano in the Southwest Japan Arc, has erupted lavas and pyroclastic materials of andesite to dacite composition and has developed a volcanotectonic graben. The volcano can be divided into the Older and the Younger Unzen volcanoes. The exposed rocks of the Older Unzen volcano are composed of thick lava flows and pyroclastic deposits dated around 200–300 ka. Drill cores recovered from the basal part of the Older Unzen volcano are dated at 400–500 ka. The volcanic rocks of the Older Unzen exceed 120 km3 in volume. The Younger Unzen volcano is composed of lava domes and pyroclastic deposits, mostly younger than 100 ka. This younger volcanic edifice comprises Nodake, Myokendake, Fugendake, and Mayuyama volcanoes. Nodake, Myokendake and Fugendake volcanoes are 100–70 ka, 30–20 ka, and <20 ka, respectively. Mayuyama volcano formed huge lava domes on the eastern flank of the Unzen composite volcano about 4000 years ago. Total eruptive volume of the Younger Unzen volcano is about 8 km3, and the eruptive production rate is one order of magnitude smaller than that of the Older Unzen volcano.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号