首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 44 毫秒
1.
Seismicity constraints on stress regimes along Sinai subplate boundaries   总被引:1,自引:0,他引:1  
The relative movement between African, Arabian and Eurasian plates has significantly controlled the tectonic process of Sinai subplate region, although its kinematics and precise boundaries are still doubtful. The respective subplate bounded on both sides by the Aqaba-Dead Sea transform fault to the east and the Gulf of Suez, the only defined part, to the west. Seismicity parameters, moment magnitude relation and fault plane solutions were combined to determine the active tectonics along the aforementioned boundaries. Seven shallow seismogenic zones were defined by the heterogeneity in stress field orientations. Along the eastern boundary, the average fault plane solution obtained from the moment tensor summation (MTS) reveals a sinistral strike-slip faulting mechanism. The corresponding seismic strain rate tensor showed that the present tectonic stress producing earthquakes along the boundary is dominated by both NW-SE compression and NE-SW dilatation. Towards the north, the average focal mechanism showed a normal faulting mechanism of N185°E compression and an N94°E extension in the Carmel Fairi seismic zone. On the other hand, the active crustal deformation along the western boundary (Gulf of Suez region) showed a prevailing tensional stress regime of NE to ENE orientations; producing an average fault plane solution of normal faulting mechanism. The seismic strain rate tensor reveals a dominant stress regime of N58°E extension and N145°E compression in consistence with the general tectonic nature in northeastern Africa. Finally, the extensional to strike-slip stress regimes obtained in the present study emphasize that the deformation accommodated along the Sinai subplate boundaries are in consistence with the kinematics models along the plate boundaries representing the northern extremity part of the Red Sea region.  相似文献   

2.
We estimate Lg wave attenuation using local and regional seismic phases in the Isparta Angle and the Anatolian Plateau (Turkey). The Isparta Angle (IA) is a tectonically active zone forming the boundary between the African Plate and the Anatolian Plateau, and is currently undergoing N–S extensional deformation. The Anatolian Plateau contains many intra-continental faults including the North Anatolian Fault Zone and the East Anatolian Fault Zone as well as the Menderes Massif. A large waveform data set was compiled from a variety of local and regional seismic networks including 121 digital seismic stations (broad-band and short period) between 1999 and 2008 spanning the IA, the Anatolian Plateau and Azerbaijan. The data set was used to determine the nature of Lg wave propagation and characterize the nature of seismic attenuation within the crust of these regions. Lg waveforms were used to calculate the frequency-dependent Lg-Q o and Lg- $ \eta $ . A wide range of Lg-Q o values was obtained between ~52 ± 6 and 524 ± 227. Low Lg-Q o values (~90–155) are calculated towards the north of IA, Iskenderun Gulf and its vicinity, Bingöl-Karl?ova, Izmit and its vicinity. Lg-Q o values are especially low (<90) along the Menderes Massif and the Aksehir-Simav Fault Zones. This may be due to intrinsic attenuation of Lg associated with the partially molten crust and young volcanism. The high Lg-Q o values (~350) are probably caused by the crust not being subject to large amounts of extensional deformation like the Antalya Gulf and apparently being thick enough to support Lg propagation. Relatively higher values along the border of this subduction zone and plate boundary might be related to the Taurus Mountain belts and Bitlis-Zagros Suture Zone. The lateral frequency dependency Lg- $ \eta $ is also consistent with high tectonic activity in this region.  相似文献   

3.
The collision between the Arabian and Eurasian plates in eastern Turkey causes the Anatolian block to move westward. The North Anatolian Fault (NAF) is a major strike-slip fault that forms the northern boundary of the Anatolian block, and the Erzincan Basin is the largest sedimentary basin on the NAF. In the last century, two large earthquakes have ruptured the NAF within the Erzincan Basin and caused major damage (M s = 8.0 in 1939 and M s = 6.8 in 1992). The seismic hazard in Erzincan from future earthquakes on the NAF is significant because the unconsolidated sedimentary basin can amplify the ground motion during an earthquake. The amount of amplification depends on the thickness and geometry of the basin. Geophysical constraints can be used to image basin depth and predict the amount of seismic amplification. In this study, the basin geometry and fault zone structure were investigated using broadband magnetotelluric (MT) data collected on two profiles crossing the Erzincan Basin. A total of 24 broadband MT stations were acquired with 1–2 km spacing in 2005. Inversion of the MT data with 1D, 2D and 3D algorithms showed that the maximum thickness of the unconsolidated sediments is ~3 km in the Erzincan Basin. The MT resistivity models show that the northern flanks of the basin have a steeper dip than the southern flanks, and the basin deepens towards the east where it has a depth of 3.5 km. The MT models also show that the structure of the NAF may vary from east to west along the Erzincan Basin.  相似文献   

4.
The Dalrymple Trough marks part of the transform plate boundary between India and Arabia in the northern Arabian Sea. Oblique extension is presently active across this portion of the boundary at a rate of a few millimetres per year, and seismic reflection profiles across the trough confirm that it is an extensional structure. We present new swath bathymetric and wide-angle seismic data from the trough. The bathymetric data show that the trough is bounded by a single, steep, 3-km-high scarp to the southeast and a series of smaller, en-echelon scarps to the northwest. Wide-angle seismic data show that a typical oceanic crustal velocity structure is present to the northwest, with a crustal thickness of ~ 6 km. There is an abrupt change in crustal thickness and velocity structure at the northwestern edge of the trough, and the trough itself is underlain by 12-km-thick crust interpreted as thinned continental crust. Therefore we infer that Dalrymple Trough is an unusual obliquely extending plate boundary at which continental crust and oceanic crust are juxtaposed. The extensional deformation is focused on a single major fault in the continental lithosphere, but distributed over a region ~ 60 km wide in the oceanic lithosphere.  相似文献   

5.
马尼拉俯冲带北段增生楔前缘构造变形和精细结构   总被引:1,自引:0,他引:1       下载免费PDF全文
马尼拉俯冲带是南海的东部边界,记录了南海形成演化的关键信息,同时也是地震和海啸多发区域.本文利用过马尼拉俯冲带北段的高分辨率多道地震剖面,分析了研究区内海盆和海沟的沉积特征,精细刻画了区内增生楔前缘的构造变形、结构以及岩浆活动特征.研究区内增生楔下陆坡部分由盲冲断层、构造楔和叠瓦逆冲断层构成,逆冲断层归并于一条位于下中新统的滑脱面上,滑脱面向海方向的展布明显受到增生楔之下埋藏海山和基底隆起的影响;上陆坡的反射特征则因变形强烈和岩浆作用而难以识别;岩浆活动开始于晚中新世末期并持续至第四纪.马尼拉俯冲带北段增生楔的形成时间早于16.5 Ma,并通过前展式逆冲向南海方向扩展;马尼拉俯冲带的初始形成时间可能在晚渐新世,而此时南海海盆扩张仍在持续.南海东北缘19°N-21°N区域为南海北部陆坡向海盆的延伸,高度减薄的陆壳的俯冲造成马尼拉海沟北段几何形态明显地向东凹进.  相似文献   

6.
Due to its key position within the Africa–Europe convergence zone, Tunisia is marked by thrusting, folding, and faulting and has a major rupture zones associated with active faults. Consequently, most of Tunisian land is seismically active with significant active deformations, showing recent seismic events and their relative surface effects. This paper reports on several aspects of the seismotectonics, historical, and present-day seismicity and places them in the general tectonic and geodynamic framework of Tunisia. Field investigations, based on an integrated multidisciplinary approach, included (1) the identification of active faults, their motion and displacement, geomorphic aspects, and scarps and their relation with the general structural map of Tunisia and (2) an extensive analysis of brittle tectonic deformation affecting Quaternary deposits in several sites throughout Tunisia. The integration of field data within the existing data related to the seismic events that took place during the last decades allowed the establishment of an earthquake distribution map, as well as major seismic zones for better understanding of the seismicity database of Tunisia. To establish microzonation maps in seismic regions such as Gafsa and its surroundings, we have analyzed surface effects and secondary structures associated with active faults and correlated them with deformation rates, reconstructed for significant seismic events. Most faults exhibited typical left-stepping en-echelon with strike-slip component pattern suggesting that Tunisia is presently subjected to NNW–SSE compression. The focal mechanism of most Tunisia earthquakes combined with the existing tectonic and structural information and reconstruction of the Quaternary stress tensor allowed (a) better understanding of seismic zoning, (b) provided better assessment of the seismic hazard, and (c) facilitated the interpretation of the relationship between seismic zones and the geodynamic African–Eurasian plate boundary.  相似文献   

7.
Crustal deformation by the M w 9.0 megathrust Tohoku earthquake causes the extension over a wide region of the Japanese mainland. In addition, a triggered M w 5.9 East Shizuoka earthquake on March 15 occurred beneath the south flank, just above the magma system of Mount Fuji. To access whether these earthquakes might trigger the eruption, we calculated the stress and pressure changes below Mount Fuji. Among the three plausible mechanisms of earthquake–volcano interactions, we calculate the static stress change around volcano using finite element method, based on the seismic fault models of Tohoku and East Shizuoka earthquakes. Both Japanese mainland and Mount Fuji region are modeled by seismic tomography result, and the topographic effect is also included. The differential stress given to Mount Fuji magma reservoir, which is assumed to be located to be in the hypocentral area of deep long period earthquakes at the depth of 15 km, is estimated to be the order of about 0.001–0.01 and 0.1–1 MPa at the boundary region between magma reservoir and surrounding medium. This pressure change is about 0.2 % of the lithostatic pressure (367.5 MPa at 15 km depth), but is enough to trigger an eruptions in case the magma is ready to erupt. For Mount Fuji, there is no evidence so far that these earthquakes and crustal deformations did reactivate the volcano, considering the seismicity of deep long period earthquakes.  相似文献   

8.
—The plate boundary along the north-central Caribbean margin is geologically complex. Our understanding of this complexity is hampered by the fact that plate motions are relatively slow (1 to 2 cm/yr), so that recent seismicity often does not provide a complete picture of tectonic deformation. Studies of the faulting processes of instrumentally recorded earthquakes occurring prior to 1962 thus provide important information regarding the nature and rate of seismic deformation within the region, and are essential for a comprehensive assessment of seismic hazard. We have conducted body waveform modeling studies of eight earthquakes which occurred along the north-central Caribbean plate margin, extending from southeastern Cuba to the Swan Island fracture zone (75 to 83°W). None of these earthquakes has been previously studied and several occurred in regions where no recent (post-1962) seismicity has been recorded. The plate margin in the western portion of our study area is characterized by a transform fault-spreading center system. In the central and eastern portions of our study area the plate margin is a complex, diffuse region of deformation that couples transform motion in the Cayman trough to subduction along the Lesser Antilles arc. Our results show that the western portion of the study area has only experienced large strike-slip earthquakes. Off southeastern Cuba two earthquakes appear to have occurred on high angle, northward dipping, reverse faults with south to southeastward directed slip vectors. An earthquake in northern Jamaica in 1957 shows pure strike-slip faulting, most likely along an east-west trending fault. Finally, an unusual sequence of events located in the Pedro Bank region ~70 km southwest of Jamaica has a mainshock with a reverse-oblique mechanism, suggesting continuity of the plate interface stress field well south of the northern Caribbean margin.  相似文献   

9.
Francesca  Liberi  Lauro  Morten  Eugenio  Piluso 《Island Arc》2006,15(1):26-43
Abstract Slices of oceanic lithosphere belonging to the neo‐Tethys realm crop out discontinuously in the northern Calabrian Arc, Southern Apennines. They consist of high‐pressure–low‐temperature metamorphic ophiolitic sequences formed from metaultramafics, metabasites and alternating metapelites, metarenites, marbles and calcschist. Ophiolites occupy an intermediate position in the northern Calabrian Arc nappe pile, situated between overlying Hercynian continental crust and the underlying Apenninic limestone units. In the literature, these ophiolitic sequences are subdivided into several tectonometamorphic units. Geochemical characteristics indicate that metabasites were derived from subalkaline basalts with tholeiitic affinity (transitional mid‐oceanic ridge basalt type), and a harzburgitic‐lherzolitic protolith is suggested for the serpentinites. The pressure–temperature‐deformation paths of the metabasites from different outcrops display similar features: (i) the prograde segment follows a typical Alpine geothermal gradient up to a metamorphic climax at 350°C and 0.9 GPa and crystallization of the high‐pressure mineral assemblage occurs along a pervasive foliation developed during a compressive tectonic event; and (ii) the retrogression path can be subdivided in two segments, the first is characterized by nearly isothermal decompression to approximately 400°C and 0.3 GPa and the second follows a cooling trajectory. During low‐pressure conditions, a second deformation event produces millimetric to decametric scale asymmetric folds that describe west‐verging major structures. The third deformation event is characterized by brittle extensional structures. The tectonometamorphic evolution of the ophiolitic sequences from the different outcrops is similar. Both thermobarometric modeling and tectonic history indicate that the studied rocks underwent Alpine subduction and exhumation processes as tectonic slices inside a west‐verging accretionary wedge. The subduction of oceanic lithosphere was towards the present east; therefore, the Hercynian continental crust, overthrusted on the ophiolitic accretionary wedge after the neo‐Tethys closure, was part of the African paleomargin or a continental microplate between Africa and Europe.  相似文献   

10.
Various xenoliths have been found in lavas of the 1763 (“La Montagnola”), 2001, and 2002–03 eruptions at Mt. Etna whose petrographic evidence and mineral chemistry exclude a mantle origin and clearly point to a cognate nature. Consequently, cognate xenoliths might represent a proxy to infer the nature of the high-velocity body (HVB) imaged beneath the volcano by seismic tomography. Petrography allows us to group the cognate xenoliths as follows: i) gabbros with amphibole and amphibole-bearing mela-gabbros, ii) olivine-bearing leuco-gabbros, iii) leuco-gabbros with amphibole, and iv) Plg-rich leuco gabbros. Geobarometry estimates the crystallization pressure of the cognate xenoliths between 1.9 and 4.1 kbar. The bulk density of the cognate xenoliths varies from 2.6 to 3.0 g/cm3. P wave velocities (V P ), calculated in relation to xenolith density, range from 4.9 to 6.1 km/s. The integration of mineralogical, compositional, geobarometric data, and density-dependent V P with recent literature data on 3D V P seismic tomography enabled us to formulate the first hypothesis about the nature of the HVB which, in the depth range of 3–13 km b.s.l., is likely made of intrusive gabbroic rocks. These are believed to have formed at the “solidification front”, a marginal zone that encompasses a deep region (>5 km b.s.l.) of Mt. Etna’s plumbing system, within which magma crystallization takes place. The intrusive rocks were afterwards fragmented and transported as cognate xenoliths by the volatile-rich and fast-ascending magmas of the 1763 “La Montagnola”, 2001 and 2002–03 eruptions.  相似文献   

11.
Three thousand kilometres of multichannel (MCS) and wide-angle seismic profiles, gravity and magnetic, multibeam bathymetry and backscatter data were recorded in the offshore area of the west coast of Mexico and the Gulf of California during the spring 1996 (CORTES survey). The seismic images obtained off Puerto Vallarta, Mexico, in the Jalisco subduction zone extend from the oceanic domain up to the continental shelf, and significantly improve the knowledge of the internal crustal structure of the subduction zone between the Rivera and North American (NA) Plates. Analyzing the crustal images, we differentiate: (1) An oceanic domain with an important variation in sediment thickness ranging from 2.5 to 1 km southwards; (2) an accretionary prism comprised of highly deformed sediments, extending for a maximum width of 15 km; (3) a deformed forearc basin domain which is 25 km wide in the northern section, and is not seen towards the south where the continental slope connects directly with the accretionary prism and trench, thus suggesting a different deformational process; and (4) a continental domain consisting of a continental slope and a mid slope terrace, with a bottom simulating reflector (BSR) identified in the first second of the MCS profiles. The existence of a developed accretionary prism suggests a subduction–accretion type tectonic regime. Detailed analysis of the seismic reflection data in the oceanic domain reveals high amplitude reflections at around 6 s [two way travel time (twtt)] that clearly define the subduction plane. At 2 s (twtt) depth we identify a strong reflection which we interpret as the Moho discontinuity. We have measured a mean dip angle of 7° ± 1° at the subduction zone where the Rivera Plate begins to subduct, with the dip angle gently increasing towards the south. The oceanic crust has a mean crustal thickness of 6.0–6.5 km. We also find evidence indicating that the Rivera Plate possibly subducts at very low angles beneath the Tres Marias Islands.  相似文献   

12.
On 3 December 1828 at half past six in the evening, the border region between Belgium and Germany was stricken by a moderate earthquake. Up to now, the available information on this event has been essentially provided by a few contemporaneous scientific studies. To better evaluate its impact, location and magnitude, we have searched for new original historical reports. We collected 57 additional witness testimonies, which complete those previously collected about the earthquake effects. Among the testimonies, we also retrieved a questionnaire sent by the Prussian government to local authorities with the purpose of quickly obtaining information on the earthquake effects in the western part of the kingdom of Prussia. This inquiry is the oldest of its kind that has been discovered to date in this part of Europe, suggesting a rare concern by a national authority about the seismic hazard, and prefiguring the seismic inquiries that scientific institutions use today. The analysis of these new data made it possible to evaluate the intensity in 50 cities out of the 75 where the earthquake was observed. From these intensity data, we determine that the epicentre was in the Hautes-Fagnes region [lat. 50.38°N/long. 6.19°E?±?30 km] where moderate damage, corresponding to EMS-98 intensity VI–VII, was observed. At large distances, the earthquake was felt as far as Düsseldorf to the north, Brussels to the west, Metz to the south and Wiesbaden to the east. These distances correspond to a perceptibility radius of about 150 km. The magnitude of this earthquake is evaluated to be ML?=?4.7 (?0.2/+0.5) and MW?=?4.2 (+0.4/?0.2).  相似文献   

13.
A structural study in the SW section of the Colorado River delta using seismic reflection data is presented. The study area is located along the Cerro Prieto transform fault, which extends from the northern Gulf of California through the Mexicali Valley and is an active fault within the Pacific-North American plate boundary zone. The research was supported by a database of five seismic profiles with a total length of 215 km, collected in the early 80’s by Petróleos Mexicanos. The results show a high density of faults, most of which are buried by sediments. Within the Cerro Prieto fault zone, several faults were identified, such as: Palmas, Mesa, and Pangas Viejas, until now unknown. In addition, even though the Indiviso fault was investigated and superficially identify prior to this work, herein mapped at depth. West of the Cerro Prieto fault zone lies the Las Tinajas basin, bound by the Dunas and Saldaña faults and by the Montague basin to the southeast. The deformation zone along the plate boundary is 18-km-wide, stretching from the Cerro Prieto fault in the east to the Pangas Viejas fault in the west. The orientations of the faults are NW–SE, and if projected from the southern side of the Sierra Cucapah southward, the faults tend to join the Cerro Prieto fault. In the Las Tinajas basin, the acoustic basement is deeper than 5,000 m. Some of the largest vertical displacements generated by the 2010 7.2-Mw El Mayor-Cucapah earthquake occurred southeast of the epicenter and coincided with the location of the Pangas Viejas Fault, which is buried by sediments. Before this event, seismic activity was very low, and no structures were known in the area. In this paper, we demonstrate that there are at least seven major faults that may now pose a high seismic hazard.  相似文献   

14.
Neo-deterministic seismic hazard assessment in North Africa   总被引:2,自引:2,他引:0  
North Africa is one of the most earthquake-prone areas of the Mediterranean. Many devastating earthquakes, some of them tsunami-triggering, inflicted heavy loss of life and considerable economic damage to the region. In order to mitigate the destructive impact of the earthquakes, the regional seismic hazard in North Africa is assessed using the neo-deterministic, multi-scenario methodology (NDSHA) based on the computation of synthetic seismograms, using the modal summation technique, at a regular grid of 0.2?×?0.2°. This is the first study aimed at producing NDSHA maps of North Africa including five countries: Morocco, Algeria, Tunisia, Libya, and Egypt. The key input data for the NDSHA algorithm are earthquake sources, seismotectonic zonation, and structural models. In the preparation of the input data, it has been really important to go beyond the national borders and to adopt a coherent strategy all over the area. Thanks to the collaborative efforts of the teams involved, it has been possible to properly merge the earthquake catalogues available for each country to define with homogeneous criteria the seismogenic zones, the characteristic focal mechanism associated with each of them, and the structural models used to model wave propagation from the sources to the sites. As a result, reliable seismic hazard maps are produced in terms of maximum displacement (D max), maximum velocity (V max), and design ground acceleration.  相似文献   

15.
The Medina Wrenth in the central Mediterranean is a transform fault connecting the plate collision in northwest Africa and northern Sicily with that occurring at the Aegean plate boundary, south of Greece. The more than 800 km long crescent-shaped wrench zone is currently seismically quiet but exhibits major deformation since 5 Ma within a belt 30–100 km wide. It forms the southern boundary of two microplates moving eastward with respect to Africa and Europe. A simple plate rotation model constrained by recent paleomagnetic data indicates that a continental Iblean microplate and a hybrid continental/oceanic Ionian microplate, separated along the Malta Escarpment, have rotated anticlockwise by 11° and 12°, respectively, around poles in southern Italy. These rotations involved some 100 km of dextral eastward movement relative to Africa of the Ionian Basin north of the Medina Wrench since 5 Ma. Combining the published 26° clockwise rotation of the Peloponnesus and northwest half of the Aegean with the 12° anticlockwise rotation of the Ionian microplate results in (a) a 99% agreement between the length of the seismic Benioff Zone beneath Greece and the total convergence of the microplates, and (b) an average rate of convergence across the Aegean plate boundary southwest of the Peloponnesus of 6.6 ± 1cm a−1 since the Miocene. Relative motion between microplates in a collision zone thus may be as much as 6 times faster than convergence between the major plates which spawned them, and they can be considered rigid to the first order over the time span involved.  相似文献   

16.
During late Mesozoic subduction of paleo‐Pacific lithospheric plates, numerous gold vein deposits formed in the Dabie–Sulu Belt of east‐central China plus its east‐Asian extensions, and in the Klamath Mountains plus Sierran Foothills of northern California. In eastern Asia, earlier transpression and continental collision at about 305–210 Ma generated a high pressure–ultrahigh pressure orogen, but failed to produce widespread intermediate to felsic magmatism or abundant hydrothermal gold deposits. Similarly in northern California, strike‐slip ± minor transtension–transpression over the interval of about 380–160 Ma resulted in the episodic stranding of oceanic terranes, but generated few granitoid magmas or Au ore bodies. However, for both continental margin realms, nearly head‐on Cretaceous destruction of oceanic lithosphere involved sustained underflow; reaching magmagenic depths of about 100 km, the descending mafic‐ultramafic plates dewatered, producing voluminous calc‐alkaline arc magmas. Ascent of these plutons into the middle and upper crust released CO2 ± S‐bearing aqueous fluids and/or devolatilized the contact‐metamorphosed wall rocks. Such hydrothermal fluids transported gold along fractures and fault zones, precipitating it locally in response to cooling, fluid mixing, and/or reactions with wall rocks of contrasting compositions (e.g. serpentinite, marble). In contrast, where sialic crust was subducted to depths of about 100 km, only minor production of granitoid melts occurred, and few major coeval Au vein deposits formed. The mobilization of precious metal‐bearing fluids in continental margin and island arc environments apparently requires long‐continued, nearly orthogonal descent of oceanic, not continental, lithosphere.  相似文献   

17.
The attenuation properties of the crust in the Chamoli region of Himalaya have been examined by estimating the frequency-dependent relationships of quality factors for P waves (Qα) and for S waves (Qβ) in the frequency range 1.5–24 Hz. The extended coda normalization method has been applied on the waveforms of 25 aftershocks of the 1999 Chamoli earthquake (M 6.4) recorded at five stations. The average value of Qα is found to be varied from 68 at 1.5 Hz to 588 at 24 Hz while it varies from 126 at 1.5 Hz to 868 at 24 Hz for Qβ. The estimated frequency-dependent relations for quality factors are Qα = (44 ± 1)f(0.82±.04) and Qβ = (87 ± 3)f(0.71±.03). The rate of increase of Q(f) for P and S waves in the Chamoli region is comparable with the other regions of the world. The ratio Qβ/Qα is greater than one in the region which along with the frequency dependence of quality factors indicates that scattering is an important factor contributing to the attenuation of body waves in the region. A comparison of attenuation relation for S wave estimated here (Qβ = 87f0.71) with that of coda waves (Qc = 30f1.21) obtained by Mandal et al. (2001) for the same region shows that Qc > Qβ for higher frequencies (>8 Hz) in the region. This indicates a possible high frequency coda enrichment which suggests that the scattering attenuation significantly influences the attenuation of S waves at frequencies >8 Hz. This observation may be further investigated using multiple scattering models. The attenuation relations for quality factors obtained here may be used for the estimation of source parameters and near-source simulation of earthquake ground motion of the earthquakes, which in turn are required for the assessment of seismic hazard in the region.  相似文献   

18.
The North Anatolian Fault showed a remarkable seismic activity especially between 1939 and 1999, when the westward migrating earthquake sequence created surface ruptures more than 1000 km, leaving unbroken only the Marmara segments, to the west, and the Yedisu Segment, to the east along the main strand of the fault. To understand the palaeoseismicity of the Yedisu Seismic Gap, we undertook trench investigations close to the village of Balaban Sar?kaya, on the western part of the Yedisu Segment. We found evidence for at least five surface faulting earthquakes, from which only two are correlated with the 18 July 1784 CE and 27 June 1583 CE historical events. Although the surface rupture of the 1784 CE was reported by other trench studies, the evidence of 1583 CE event is presented for the first time. In consideration with other historical earthquakes, affecting the region east of Erzincan, we suggest that this particular section of the North Anatolian Fault may be in a seismically quiescent period, following a cluster of earthquakes in its near history. In order to test this hypothesis, further studies are needed to increase our knowledge on the temporal and spatial seismic behaviour of the Yedisu Segment, which has potential to create an earthquake with M w ~7.2 in the near future.  相似文献   

19.
In this work we use the thin-shell approximation to model the neotectonics of the western part of the Africa–Eurasia plate boundary, extending from the Mid-Atlantic ridge to Tell Atlas (northern Algeria). Models assume a nonlinear rheology and include laterally variable heat flow, elevation, and crust and lithospheric mantle thickness. Including the Mid-Atlantic ridge permits us to evaluate the effects of ridge push and to analyse the influence of the North America motion on the area of the Africa–Eurasia plate boundary. Ridge push forces were included in a self-consistent manner and have been shown to exert negligible effects in the neotectonics of the Iberian Peninsula and northwestern Africa. Different models were computed with systematic variation of the fault friction coefficient. Model quality was scored by comparing predictions of anelastic strain rates, vertically integrated stresses and velocity fields to data on seismic strain rate computed from earthquake magnitude, most compressive horizontal principal stress direction, and seafloor spreading rates on the Mid-Atlantic ridge. The best model scores were obtained with fault friction coefficients as low as 0.06–0.1. The velocity boundary condition representing spreading on the Mid-Atlantic ridge is shown to produce concentrated deformation along the ridge and to have negligible effect in the interior of the plates. However, this condition is shown to be necessary to properly reproduce the observed directions of maximum horizontal compression on the Mid-Atlantic ridge. The maximum fault slip rates predicted by the model are obtained along the Mid-Atlantic ridge, Terceira ridge and Tell Atlas front. Relatively high slip rates are also obtained in the area between the Gloria fault and the Gulf of Cadiz. We infer from our modelling a significant long-term seismic hazard for the Gloria fault, and interpret the absence of seismicity on this fault as possibly due to transient elastic strain accumulation. The present study has also permitted better understanding of the geometry of the Africa–Eurasia plate boundary from the Azores triple junction to the Algerian Basin. The different deformational styles seem to be related to the different types of lithosphere, oceanic or continental, in contact at the plate boundary.  相似文献   

20.
Recent seismic activity in southern Lebanon is of particular interest since the tectonic framework of this region is poorly understood. In addition, seismicity in this region is very infrequent compared with the Roum fault to the east, which is seismically active. Between early 2008 and the end of 2010, intense seismic activity occurred in the area. This was manifested by several swarm-like sequences and continuous trickling seismicity over many days, amounting in total to more than 900 earthquakes in the magnitude range of 0.5?≤?M d?≤?5.2. The region of activity extended in a 40-km long zone mainly in a N-S direction and was located about 10 km west of the Roum fault. The largest earthquake, with a duration magnitude of M d?=?5.2, occurred on February 15, 2008, and was located at 33.327° N, 35.406° E at a depth of 3 km. The mean-horizontal peak ground acceleration observed at two nearby accelerometers exceeded 0.05 g, where the strongest peak horizontal acceleration was 55 cm/s2 at about 20 km SE of the epicenter. Application of the HypoDD algorithm yielded a pronounced N-S zone, parallel to the Roum fault, which was not known to be seismically active. Focal mechanism, based on full waveform inversion and the directivity effect of the strongest earthquake, suggests left-lateral strike-slip NNW-SSE faulting that crosses the NE-SW traverse faults in southern Lebanon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号