首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
人类活动引起的富营养化对太湖的碳循环模式可能产生严重影响,精细描述太湖藻华暴发-消退周期的溶解性有机质分子是了解太湖碳库动态变化的关键.本研究利用傅立叶变换离子回旋共振质谱技术,以太湖北部梅梁湾2017年5月至2018年5月的表层水体为研究对象,解析藻华暴发-消退周期溶解性有机质的来源和分子组成特征,进而理解浮游藻类异常增殖对水体溶解性有机质的影响及其在区域碳循环中的角色.研究结果表明,藻华暴发期浮游藻类生产力显著增加,使得表层水体的溶解性有机质从含量到分子组成均发生剧烈改变.含量上表现为溶解性有机碳浓度升高,分子组成上表现为CHO类化合物和以脂肪族类化合物为代表的活性组分占比增加,特征化合物以相对高饱和度和高含氧的小质量数分子为主.而在藻华消退期,随着藻类有机质贡献的减少和有机质降解过程的持续进行,含量上表现为溶解性有机碳浓度下降,分子组成上表现为CHOS、CHONS类化合物和富羧酸脂环类化合物等惰性分子占比增加,特征化合物以大质量数分子和相对低饱和度和低含氧的小质量数分子为主.研究结果表明,太湖水体的溶解性有机质分子组成在藻华暴发期受藻类有机质输入控制,在消退期受藻类有机质降解的影响.  相似文献   

2.
西太湖北部夏季藻类种间关系的初步研究   总被引:26,自引:9,他引:17  
利用1991年至1997年对太湖梅梁湾的定点监测资料和1997年8月对西太湖北部的三次水化学和藻类布点监测资料,初步探讨了西太湖北部夏季藻类分布和种间关系。结果显示,西太湖北部夏季藻类主要由蓝藻,隐藻,硅藻,绿藻,裸藻和甲藻六大门类组成,以微囊藻为优势种的蓝藻水化主要在夏秋季暴发,夏季梅梁湾内藻类光合效率较高是该地区蓝藻暴发的原因之一;自梅梁湾河口湖我向外太湖,藻类总生物量递减,且种类组成也发生变  相似文献   

3.
谭啸  石琳  段志鹏  曾庆飞  李聂贵  强娟 《湖泊科学》2022,34(5):1461-1470
太湖水体氮浓度及氮磷比的改变可能影响藻类对磷元素的赋存及分配,进而影响水体总磷浓度. 为此,本研究选取常见蓝藻(群体微囊藻和单细胞微囊藻)和绿藻(斜生栅藻),设置低氮磷比(N ∶P=2)和高氮磷比(N ∶P=20)培养实验,分析藻体胞内磷(INT-P)和胞外磷(EPS-P)含量、形态及分布,探究氮磷比对藻体磷元素赋存及分配的影响. 结果表明:低氮磷比组斜生栅藻和群体微囊藻的藻体磷(CTP,即INT-P与EPS-P之和)显著增加,分别为高氮磷比组的2.7和1.4倍. 斜生栅藻和群体微囊藻EPS-P含量(约占CTP的80%)分别增加了3.1和0.48倍,而INT-P含量对氮磷比无明显响应. 低氮磷比组的斜生栅藻和群体微囊藻EPS含量分别增加了51.7% 和63.5%. 此外,微囊藻的CTP与EPS-P主要以可交换态活性磷存在,而INT-P主要以铁铝结合态磷存在. 本研究发现低氮磷比促进了藻类EPS分泌,导致EPS-P升高,显著增加了藻体颗粒态磷的含量. 这或许是近年来太湖水体总磷波动的原因之一.  相似文献   

4.
蓝藻水华暴发前,浮游植物群类结构的变化可通过其指示型色素的浓度变化来反映.为了同时反演叶绿素a、叶绿素b(绿藻门指示型色素)、叶绿素c(硅藻门指示型色素)和藻蓝素(蓝藻门的指示型色素)的浓度,利用偏最小二乘回归构建线性模型,通过2011年太湖实测吸收数据,较为准确地反演了叶绿素a和藻蓝素的浓度;针对无明显优势藻的春季数据集较为准确地反演了叶绿素b和叶绿素c的浓度.相对于经典最小二乘算法,偏最小二乘法在多色素混合的吸收光谱分析上更为有效.通过反演指示性色素浓度来反映藻类的分布,为富营养化湖泊主要藻类时空分布变化的遥感监测提供了一定的理论与技术支持.  相似文献   

5.
若干水华相关藻类对太湖水体异味物质贡献的初步研究   总被引:1,自引:0,他引:1  
太湖水体中嗅味物质2-甲基异莰醇(MIB)和土臭素(Geo)的出现与水华发生在时间上高度重叠,为探寻水华中常见藻类与嗅味的关系,本研究通过对实验室培养藻株和野外水样比较分析,探寻了部分藻株与太湖水体嗅味物质的关系.分析实验室培养的15株蓝藻(其中11株微囊藻)、4株绿藻和4株硅藻,仅硅藻培养物测定出了Geo,所有藻株均未检测出MIB;对太湖典型水样分析结果显示,水体中MIB与Geo的浓度与微囊藻细胞浓度无相关性;实验室模拟微囊藻水华腐败结果显示,无论是好氧还是厌氧条件下均未产生MIB和Geo;这些数据结果说明湖水中MIB和Geo与水华主要种群微囊藻无直接关系.在鱼腥藻水华中测出了高浓度的MIB,周年水样分析结果显示鱼腥藻细胞数与MIB浓度变化规律一致,因此鱼腥藻可能是MIB的重要来源.但实验室培养的Anabaena sp.PCC7120无论是在缺氮还是有氮培养条件下均不产MIB和Geo,说明嗅味物质的产生具有藻株特异性.  相似文献   

6.
基于2013年3月-2014年2月的长寿湖浮游藻类以及水质的监测结果,分析浮游藻类物种组成、密度以及多样性指数的季节动态,利用非度量多维尺度和相似性分析检验不同季节浮游藻类群落差异,同时利用典范对应分析法确定影响不同季节浮游藻类群落结构的关键环境因子.结果表明:泽丝藻(Limnothrix sp.)、小尖头藻(Raphidiopsis sp.)、汉斯冠盘藻(Stephanodiscus hantzschii)、具尾逗隐藻(Komma caudata)、鞘丝藻(Lyngbya sp.)和马索隐藻(Cryptomonas marssonii)为长寿湖优势种群,不同季节间浮游藻类群落组成结构存在较大差异.浮游藻类群落结构以春季最为简单,夏季次之,秋、冬季最为复杂.不同季节影响浮游藻类群落结构的环境因子差异较大,水温和营养盐是影响浮游藻类群落结构最重要的环境因子,光照强度、高锰酸盐指数、氧化还原电位、溶解有机碳在秋、冬季节同样成为影响浮游藻类群落结构的关键环境因子.  相似文献   

7.
李胜男  熊丽萍  彭华  余丽  纪雄辉 《湖泊科学》2020,32(5):1508-1518
不同粒径大小浮游藻类的养分吸收速率、沉降特性和能流方向等都不相同,浮游藻类生物量的粒级组成变化对湖泊生态系统的结构与功能具有重要影响.为了解通江湖泊浮游藻类粒级组成演替规律及其驱动机制,于2018年9月2019年9月对东洞庭湖进行了年度采样调查,研究了不同粒级浮游藻类的时空分布特征及其与环境因子的关系.结果表明:东洞庭湖浮游藻类叶绿素a总浓度呈现显著的时空分布差异;季节上表现为夏季(22.43μg/L)秋季(16.95μg/L)春季(11.69μg/L)冬季(3.28μg/L),空间上表现为北部湖区(26.12μg/L)南部湖区(15.81μg/L)东部行洪道(5.88μg/L).纳微型藻(3~20μm)是东洞庭湖浮游藻类生物量的主要贡献者,其在冬季优势度最高,为68.0%;春季开始,超微型藻(0~3μm)的贡献量逐渐增加,到夏季达到最高值,为42.1%;粒径最大的微型藻(20μm)占比最低,全年平均占比16.2%. RDA限制性排序结果表明,不同粒级浮游藻类对环境因子的响应趋势相同,但适应能力不同;温度、水位、营养盐和pH等是影响东洞庭湖浮游藻类粒级结构的重要因素.  相似文献   

8.
张运林  秦伯强  朱广伟 《湖泊科学》2020,32(5):1348-1359
过去40年,全球气候变暖、辐射变暗和变亮、风速减弱、气候异常波动等自然环境变化以及筑坝建闸、岸堤硬质化和调水引流等强烈人类活动势必会深刻改变太湖湖泊物理环境和过程,驱动湖泊生态系统演化.基于历史文献、档案数据以及气象水文和透明度等长期观测数据,本文系统梳理了太湖气温、水温、风速、水位和透明度等物理环境空间分布和长期变化特征,探讨了气温和风速、水位和透明度相互协同作用机制及其潜在生态环境意义.受全球变化和城市化等影响,过去40年太湖气温和水温呈现显著升高趋势,而近地面风速则表现为持续下降,湖泊增温和风速下降有利于藻类生长和蓝藻水华漂浮聚集,某种程度上增加了蓝藻水华出现频次和集聚的面积.为防洪和满足流域日益增长的水资源需求,闸坝管控和调水引流使太湖水位呈现缓慢增加趋势,而入湖污染物增加和富营养化则造成水体透明度逐渐下降,致使透明度与水位(水深)的比值明显降低,减少了湖底可利用光强,恶化水下光环境,在一定程度上驱动了太湖水生植被和草型生态系统退化.湖泊物理环境长期变化逐渐拓展了太湖藻型生境空间而压缩了草型生境空间,加剧了草型生态系统向藻型生态系统转化和增强了藻型生态系统的自我长期维持.太湖湖泊物理环境的显著变化也会部分抵消流域营养盐削减和湖体营养盐下降对藻类生物量和蓝藻水华的控制,增加了太湖蓝藻水华防控和湖泊富营养化治理的难度.这意味着未来流域控源截污需要更加严格的标准,而湖泊水位等物理环境的有效管控是应对藻华加剧和恢复草型生态系统的适应性管理策略.  相似文献   

9.
曹晶  田泽斌  储昭升  牛远  郑丙辉 《湖泊科学》2022,34(4):1075-1089
藻类生长与营养盐浓度存在藻类几何级数增长的营养盐浓度变化的下限阈值和藻类生长不受氮磷浓度增加影响的上限阈值,但由于蓝藻水华的形成受多种因素的综合影响,不同湖泊、不同区域及不同时段的氮磷浓度对蓝藻水华的影响差别较大,使得蓝藻生长的氮磷控制阈值难以确定.针对控制蓝藻水华暴发的氮磷阈值的研究虽然有所开展,但多集中在实验室研究阶段或对经验值的判断,虽然也有基于野外实测数据的研究,但也限制于某一特定区域,而基于野外长序列实测数据并且覆盖整个湖泊的氮磷阈值研究则是空白.太湖作为具有较高营养背景的富营养化浅水湖泊,蓝藻水华的发生受氮磷影响较大.对太湖总磷(TP)、总氮(TN)和叶绿素a(Chl.a)浓度的时空变化分析发现,太湖西北湖区的TP、TN与Chl.a浓度明显较高,并且TP、TN与Chl.a均呈显著性正相关.为探究太湖蓝藻水华暴发的TP和TN控制阈值,以轻富营养化等级下的Chl.a分级标准(10,26]作为表征水华暴发的条件,采用郑丙辉等的频率分布法,确定了太湖蓝藻水华暴发的TP和TN控制阈值分别为0.05~0.06和1.71~1.72 mg/L;通过空间验证,太湖藻型区TP和TN浓度远高于同级营养水平下全湖区TP和TN控制阈值,表明藻型区高氮磷水平为蓝藻水华发生提供充足营养盐条件,即使氮磷全湖平均浓度控制在蓝藻水华暴发的氮磷阈值水平之下,但在气象水文等因素适宜条件下,藻型区水华发生风险仍然较高;并且在高氮磷背景下,即便在水华发生风险低的季节,水华发生风险仍然较大.近十几年来,虽然太湖经历了大规模的高强度治理,但由于环太湖流域的湖西区入湖负荷占比大,导致太湖藻型区氮磷浓度仍处于高位运行状态,为蓝藻水华的暴发提供了充足的营养盐基础,因此,湖西区的控源减排仍然是太湖富营养化及蓝藻水华防控的重点.  相似文献   

10.
太湖浮游植物和各形态无机氮的时空分布特征   总被引:6,自引:1,他引:5  
冯露露  李正魁  周涛 《湖泊科学》2012,24(5):739-745
为研究太湖浮游植物和各形态无机氮的时空分布特征及其相互关系,于2010年3月至2011年2月在太湖全湖范围内选取9个采样点进行每月采样分析,结果表明:太湖无机氮主要以硝态氮和铵氮形式存在,前者占76%,后者占22%;太湖北部靠近西北沿岸的湖区以及竺山湾的铵氮和亚硝态氮浓度通常要明显高于其他点位.太湖各采样点TIN(总溶解性无机氮)的季节变化趋势很相似,都表现为春季最高,夏秋季降低,冬季又有所升高;夏季北部湖区TIN降幅明显大于南部,使得前者TIN/TSP(总溶解性磷)远小于后者.春季太湖南部的微囊藻复苏量大于北部,但夏秋季微囊藻的暴发主要发生在太湖北部,此时微囊藻大暴发的点位(如梅梁湾)通常都伴随着很低的硝态氮浓度和TIN/TSP,使得这些点位比其他地方更容易发生N限制;Chl.a/浮游植物的比值与浮游植物总数呈极显著负相关,而与TIN/TSP的比值呈极显著正相关,这说明当藻类大量暴发而TIN/TSP下降时,浮游植物单个细胞内的平均Chl.a含量会有所下降,这种现象的原因有待进一步研究;绿藻、硅藻、裸藻和隐藻在时空分布上有一定相似性,而这四种藻与微囊藻则有较大差异.  相似文献   

11.
江苏新沂河河漫滩表面流人工湿地对污染河水的净化试验   总被引:16,自引:6,他引:16  
通过对环太湖水文巡测资料水量统计方法比较入手,计算分析2000-2002年环太湖河流进出湖水量、水质、污染负荷量变化.结合太湖水质变化分析,得出自2000年后环太湖进出湖河流的水质污染恶化趋势总体得到初步遏制,湖州、苏州地区环太湖河流水质保持稳定并呈一定改善趋势,但无锡、常州地区的环太湖河流水质浓度仍呈升高趋势,尤其是常州地区入湖河流的TP、CODMn浓度升高较快.与此相对应,太湖水质在总体保持基本稳定中有所好转,水质总体恶化趋势已经得到初步控制,但位于西北部的竺山湖各项水质指标进一步恶化,明显劣于梅梁湖水质,应当引起当地有关部门重视,加大治理力度.环太湖河流的入湖和出湖污染负荷量总体呈现增加趋势,但从净入湖污染负荷量分析,CODMn呈波动性减少趋势,TP和TN呈增加趋势.  相似文献   

12.
太湖水体3种典型水质参数的高光谱遥感反演   总被引:7,自引:3,他引:4  
张兵  申茜  李俊生  张浩  吴迪 《湖泊科学》2009,21(2):182-192
以富营养化污染严重的太湖为研究区,设计并实施了2次太湖航空遥感综合实验,获取了太湖7条航带、冬夏两个时相的航空高光谱遥感图像;通过6次太湖地面试验,采集了多时相的太湖水体固有光学量和表观光学量数据,分析了它们的空间分布规律,建立了单化固有光学量数据库;面向叶绿素、悬浮物和黄色物质3种典型水质参数,发展了基于生物光学模型和单位固有光学量数据库的水质参数反演分析方法;利用航空高光谱遥感器Will图像和航天高光谱遥感器CHRIS图像对这些方法进行了检验,获得了较好的水质参数图像反演结果.  相似文献   

13.
太湖流域水环境综合治理力度空前,太湖总磷浓度却于2015、2016年重回升势,蓝藻大面积暴发情况也未得到有效遏制.本文从2015和2016年环太湖河道的进出太湖水量、总磷负荷量计算入手,结合雨情、水情、太湖调蓄以及人为影响等各方面因素,分别开展水量和总磷负荷质量的平衡分析.在此基础上,结合20102017年环太湖河流多年平均进出太湖总磷负荷量对比,分析太湖总磷的外源、内源变化趋势及来源,探讨2015和2016年太湖总磷升高的原因及控制重点方向.结果表明,2015和2016年为太湖流域丰水年,尤其是2016年发生特大洪水,太湖年内最高水位达4.87 m,仅次于1999年的4.97 m的历史最高水位.2015和2016年大量外源总磷负荷进入太湖,其中环太湖河道带入的总磷负荷量占年度太湖总磷负荷总量的66.8%和74.2%,成为进入太湖的总磷负荷的主要外源;加之,2015年太湖水生植物收割造成当年沉水植物面积较上年同期下降88.7%,水生植物骤减导致对磷的吸收转化能力下降,滞留在湖体中的总磷负荷量占年度太湖总磷负荷总量的21.5%和27.5%,成为影响太湖水体总磷浓度的重要内源.太湖总磷浓度升高又为太湖蓝藻暴发进一步提供了营养盐基础,亟需强化太湖总磷源头的控制、减少总磷入湖总量.  相似文献   

14.
巢湖、太湖蓝藻湖靛及其提取物的动物毒性初步研究   总被引:1,自引:0,他引:1  
瞿文川  苏晨伟 《湖泊科学》1996,8(2):156-160
对国内淡水湖泊巢湖、太湖中的蓝藻湖靛及其提取物(藻胆蛋白),进行了动物毒性实验。实验动物为昆明种小白鼠,采用灌胃法给药。给药后小白鼠均无中毒症状,一周内无死亡。说明巢湖、太湖中蓝藻湖靛及其提取物,对以小白鼠为代表的哺乳类动物消化系统,基本不产生毒性。这对于开发两湖中的蓝藻作为鱼、家禽等饲料和提取其中的植物蛋白(藻胆蛋白)作为营养食品添加剂等有一定意义。  相似文献   

15.
江苏省入太湖污染量分析(1998-2007年)   总被引:14,自引:8,他引:6  
近年来,太湖水体受到了严重污染,水环境质量逐年下降,太湖水环境的状况直接影响了地区的经济和社会发展,保护太湖已列为国家重点治理项目。本文根据1998-2007年环太湖水文巡测资料及主要入湖河道水质监测成果,分析入湖水量、入湖河道水质、入湖污染物量及其变化趋势,为太湖地区水环境综合整治提供技术支撑和决策依据。  相似文献   

16.
长薄鳅耗氧率与窒息点的研究   总被引:8,自引:2,他引:6  
太湖位于太湖流域中央,对汛情起着控制作用,通过分析近40年来太湖流域梅雨期,太湖水位,环太湖进出水量的时空分布,得出梅雨决定太湖主汛期,东太湖泄洪能力降低,围湖减少蓄水,淤滩影响泄洪,太浦河.望虞河通而不畅的现实是太湖汛期水们居高不下的重要原因,提出预降太湖水位,加快工程建设,加强工程管理是太湖安全渡汛的主要措施。  相似文献   

17.
吴浩云 《湖泊科学》1998,10(1):37-41
本文建立了一个大气,水耦合数值模型来研究琵琶湖的环流机制,模拟计算结果表明:1)在湖面上存在一个正的风涡度场以及白天的正散度场,晚上的负散度场,在温度分层的季节里,这一特殊的琵琶湖流流域大气边界层可以产生并维持北湖一稳定,强度较弱的气旋式环流。2)当考虑大气边界层的不均匀风场的影响时,湖中形成的环流比均匀风场驱动形成的环流比均匀风场驱动形成的环流更加稳定且维持时间更长.3)局地风场可以在湖中驱动形  相似文献   

18.
太湖梅梁湾冬季湖流特征   总被引:1,自引:1,他引:1  
2003年元月在盛行西北偏北风的情况下,对位于太湖北部的梅梁湾进行了面上湖流调查,发现梅梁湾湾口的湖流较为稳定,以向南流为主,且流速相对较大,最大达8cm/s,梅梁湾西岸有稳定的向北流,而从五里湖口至拖山附近的梅梁湾东线湖水由北向南流动,且在中部附近分为两支,一支向西,再流向北以补偿西岸的向北流,另一支扩散至整个梅梁湾南部,向南流经湾口进入太湖.在梅梁湾东北部,发现有弱辐合中心,该范围内Chl.a和TP、TN的含量明显高于周围水域.从所有点的垂直运动判断,梅梁湾水流以弱上升运动为主,大小为2cm/s以下.从水量平衡分析,以梅梁湾流入太湖为主要特征,水量补给主要来自于北部的五里湖和直湖港及武进港.  相似文献   

19.
太湖的泥沙与演变   总被引:2,自引:2,他引:0  
吴小根 《湖泊科学》1992,4(3):54-60
历史时期,太湖是不断扩展的,其平均扩展速率为0.37km~2/a。据沙量平衡分析与计算表明。因湖岸崩塌和太湖水系的输沙作用,近期太湖的泥沙淤积量为9.28×10~5t/a.泥沙数量虽然不大,但经过长期的积累,对太湖演变具有深刻影响。就自然演变趋势而言,近期太湖面积仍以0.168km~2/a的速率扩大,容积则以3.95×10~5m~3/a的速率减小,太湖正进一步向浅平方向演变。然而,因围湖造田,建国以来,太湖的面积则以4.58km~2/a的速率在减小。  相似文献   

20.
朱伟  薛宗璞  刘环  程林  张昱  赵帅  冯甘雨  王若辰 《湖泊科学》2022,34(4):1175-1185
“新孟河引水”作为“二引三排”格局的关键组成,将长江水直接引入太湖的竺山湖区,在新的引排格局下,“新孟河引水”对太湖水环境尤其是总磷会有怎样的影响?针对“新孟河引水”工程,如何设计出水路线才能趋利避弊,改善太湖总磷?本文实测并收集了2007—2020年太湖的水文水质数据为基础,模拟了不同路线对太湖分湖区总磷的影响,力求将“新孟河引水”对太湖的影响进行一个清晰的分析,并为形成最为合理的出水路线提供支撑.结果表明:太湖不同湖区对出水路线的响应不同.从单一出水路线的角度来看,新孟河引水后,太浦闸增加出水会使得太湖西北部浊水加快来到太湖东南部,对太湖东南部有不利的影响.而梁溪河或新沟河出水的西北小循环是“新孟河引水”工程优化出水路线,在降低竺山湖、梅梁湖总磷的同时,没有恶化太湖东南部水质,对太湖总磷也有降低的效果.在应用中可以组合各种出水路线,形成联动方案.从物料平衡的角度看,太湖底泥目前仍是磷汇.引水后4种出水路线年均滞留量为1435 t,其中出水河道设置在东太湖(太浦闸)磷滞留量最大,年滞留1513 t;出水河道设置在梅梁湖(新沟河、梁溪河)磷滞留量最小,年滞留1404 t左右.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号