首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 107 毫秒
1.
断层附近地面地震动空间分布   总被引:5,自引:3,他引:5       下载免费PDF全文
刘启方  袁一凡  金星 《地震学报》2004,26(2):183-192
运用震源位错模型, 分析矩形垂直断层及倾斜断层走向滑动和倾向滑动的近场地震动场,以地表地震动的傅立叶振幅谱比为参量考察断层附近地震动空间分布的特点. 结果表明, 断层附近的地震动强度主要受近旁子断层的控制,高强度的地震动分布在紧靠断层两侧有限的带状区域内,长周期分量受断层破裂传播方向性的影响. 走向滑动的方向性影响主要表现在垂直于断层走向的分量,倾向滑动则表现在平行于断层走向的分量,且深震在地面上引起的地震动强度分布比浅震要平缓,影响范围宽. 倾斜断层产生的地震动有明显的上盘效应,空间分布不对称,与观测结果相符. 最后给出了断层附近近场地震动强度分布拟合函数的表达式,并与美国的1997统一建筑规范规定的近场因子作了比较.   相似文献   

2.
提出一种近断层脉冲型地震动模拟的降维方法,将近断层脉冲型地震动分解为高频和低频2个部分:采用谱表示与随机函数方法生成高频加速度时程,并转化为相应的速度时程;采用Gabor小波模拟低频速度脉冲时程,将高低频的速度时程叠加得到合成的地震动速度时程,并转化得近断层脉冲型地震动的加速度和位移时程。结果表明:用3个基本随机变量模拟的近断层脉冲型地震动时程,可以反映近断层脉冲型地震动的方向性效应、速度大脉冲等特征,进而可为近断层区域工程结构的随机地震反应和抗震可靠度分析提供合理的输入。  相似文献   

3.
基岩地震动的一个相干函数模型-走滑断层情形h   总被引:5,自引:1,他引:5       下载免费PDF全文
目前研究地震动空间变化的主要方法是利用密集台阵(如SMART1台阵等)的强震观测记录进行统计分析,由于地震动观测资料的不足,因而缺少基岩及不同场地类别地震动相干函数模型. 本文利用数值方法了模拟理论地震图,进而研究采用震源位错模型的基岩随机地震动的空间变化规律,并考虑震源破裂速度、子源个数、震源深度和介质传播速度等因素的影响. 其具体思路为:首先对应于每个样本,用有限差分数值模拟方法计算弹性半空间近场地震动场,而后对所有样本的计算结果进行统计,给出了一个走滑断层情形下的近场基岩表面及沿基岩竖直方向水平分量地震动的相干函数模型.   相似文献   

4.
鲜水河断裂带断层间相互作用的触震与缓震效应   总被引:14,自引:0,他引:14       下载免费PDF全文
探讨了断层间相互作用产生的同震库仑应力改变及对地震的触发与延缓效应,并以鲜水河断裂带不同断裂段时间上连续发生的4次MS6.0以上地震为例,计算和分析了每次地震发生后,在周围其它断裂上产生的同震库仑应力改变及其对后续地震的触发,以及1973年炉霍MS7.6地震和1981年道孚MS6.9地震发生后,在其周围最易破坏失稳的微破裂上产生的同震库仑应力改变及对余震活动的影响.在其它条件保持不变的情况下,将这4次地震的累积触震与缓震效应加以定量考虑,对鲜水河断裂带各断裂段的地震潜势进行了重新计算,并与已有预测结果进行对比分析,检验和评估了鲜水河断裂带断层间相互作用触震与缓震效应的重要性.结果表明:鲜水河断裂带每次地震都发生于受其先前发生的地震影响而产生同震库仑应力增加的断裂段上,不同断层间相互作用的触震和缓震效应导致地震复发概率的改变可高达30.5%以上, 主震后的余震大多发生于同震库仑应力增加较高的微破裂上.   相似文献   

5.
断层带附近地震动场分布的研究,是当前地震工程领域研究的热点问题之一。近断层地震动场的分布对在断层附近进行抗震结构设计时,不仅是提供地震动输入,也是确定建设场地避让范围的重要依据之一。以区域地震构造背景分析、目标断层活动性鉴定、地震危险性评价为基础,结合断层探测结果,利用统计经验关系等最终确定发震断层,并建立相应的震源模型。采用显式有限元和并行计算技术计算目标区域场地的长周期地震动。利用有限断层随机合成的方法,计算高频地震动。将低频和高频地震动合成为目标区域内的宽频带地震动时程。对局部特殊场地条件地区,基于场地调查和勘探的数据,利用等效线性化等方法进行一维土层的非线性反应计算,给出这些特殊场地的宽频带地震动时程。最后,根据地震动时程获得设定地震发生时,目标区域的峰值加速度分布预测图和相应的反应谱。以长春市为例预测了在设定地震发生时,近断层地震动场的分布情况。当长春尖山子—卡伦断层发生6.0级地震时,潜在破坏性地震动的影响范围集中在附近,沿断层走向分布。加速度峰值沿断层垂直变化,主要为90 Gal~140 Gal。只是在长春市南部加速度峰值达到200 Gal。本研究的预测结果具备断层附近地震动的一些最基本的特征,符合当前对断层附近地震动的基本认识。  相似文献   

6.
近场强地震动数值模拟的简化计算方法   总被引:1,自引:0,他引:1       下载免费PDF全文
近场强地震动除受场地条件的影响外,还受到震源破裂面上子源的空间分布特点、子源破裂先后顺序的强烈控制,基于数值格林函数法的近场强地震动数值模拟方法可以综合考虑震源、传播途径及局部场地条件的影响,对计算过程进行合理简化,分2步完成地震动模拟:第1步,在介质均匀区采用矩张量的解析解计算所有子源在盖层底面的位移,形成下一步有限元计算的输入场;第2步,在盖层介质不均匀区,结合局部人工透射边界技术,采用时、空解耦的波动显式有限元方法计算地表强地震动。在有限断层模型中,采用具有9个力偶的等效地震矩张量表达断层产状、滑动方向等的影响,采用Brune模型定义各子源的滑动时间函数,描述滑动的时、空不均匀分布特征,从而细化震源模型。通过对Northridge地震中4个基岩台站地表地震动的模拟结果和强震记录,验证了此简化计算方法的可行性  相似文献   

7.
利用中国台湾省内222个强震动台站以及Palert地震预警系统520个台站所观测的三分量加速度记录,研究此次花莲M_W6.4地震近场强地震动空间分布和衰减特征,将观测结果与美国NGA-West2地震动经验预测模型进行对比,揭示此次台湾花莲地震近场地震动的长周期特点,基于回归残差分析研究地震动峰值加速度(PGA)、峰值速度(PGV)和不同周期地震动的空间分布差异,定量考察近场地震动的方向性效应.研究结果表明:(1)整体上此次地震的近场PGV观测值和周期1.0s以上的长周期加速度谱值与美国NGA-West2地震动预测模型结果接近,PGA观测值和周期小于1.0s的加速度反应谱略低于预测模型结果.从空间分布来看,周期1.0s以上的长周期地震动在断层的不同方位有系统性差异,在破裂传播前方(震中西南方位),周期大于1.0s时的反应谱明显高于美国NGA-West2地震动经验预测模型,在破裂传播后方(震中东北方位),周期大于1.0s时的反应谱低于经验预测模型,表明此次地震近场地震动具有显著的方向性效应.(2)破裂传播的方向性效应主要影响周期超过1.0s的长周期,而对PGA以及周期小于1.0s的短周期地震动影响较弱.在破裂传播前方,周期1.0~10.0s的加速度反应谱值被增强到整体观测平均水平的1.16~1.52倍;在破裂传播后方,周期1.0~10.0s的加速度反应谱值被减弱到整体观测平均水平的0.36~0.70倍.(3)此次地震破裂方向性效应的影响表现出明显的窄带效应,破裂方向性的影响(包括破裂传播前方的增强作用和破裂传播后方的减弱作用)在周期T=3.0s时达到最大,在该周期破裂传播前方的增强系数为1.52,破裂传播后方的减弱系数为0.36.从周期T=3.0s到10.0s,破裂方向性效应的影响随周期增大总体上呈减弱趋势,这与2016年日本熊本M_W7.0地震破裂方向性效应的影响特点显著不同.  相似文献   

8.
直下型断层的破裂速度对盆地地震效应的影响   总被引:3,自引:2,他引:1       下载免费PDF全文
首先基于有限断层破裂下的运动学震源模型,对比验证了三维谱元法对于近场地震动的模拟精度。 进而通过含盆地模型与不含盆地的一维水平成层模型的地震动强度之间和放大系数分布特征之间的对比,详细研究了直下型断层的破裂速度对盆地地震效应的影响。结果表明,盆地的存在会显著改变近断层地震动的分布特征,同时盆地内不同分量强地震动的分布特征变化较大。断层破裂速度对盆地地震效应影响显著,随破裂速度的增大盆地地震动强度逐渐增加,但不同分量上地震动强度的增加速率显著不同,受盆地效应的影响,放大系数表现出与强地震动不同的分布特征。盆地放大系数整体表现出随破裂速度的增加而减小的趋势,但不同分量放大系数所受影响程度差异明显。同时,盆地内地震动强烈放大区域的位置也受破裂速度的显著影响,但其总体上集中在断层两侧区域及垂直于破裂方向的盆地边缘附近。   相似文献   

9.
2010年4月14日玉树Ms7.1地震加速度场预测   总被引:10,自引:2,他引:8       下载免费PDF全文
王海云 《地球物理学报》2010,53(10):2345-2354
基于有限断层震源、且使用动力学拐角频率的地震动随机模拟方法预测玉树地震近断层的加速度场.首先,基于有限断层震源建模方法建立该次地震的震源模型;然后,基于上述地震动模拟方法预测玉树地震近断层191个节点的加速度时程.在此基础上,取每个结点的加速度峰值绘制该次地震的近断层加速度场.结果表明:(1)近断层加速度场主要受震源破裂过程和断层面上滑动分布的影响.断层面上凹凸体投影到地表的区域附近,加速度峰值最大,也是震害最严重的区域;(2)对于走滑地震,断层沿线附近的场地并非均会发生破裂方向性效应;发生破裂方向性效应的场地与凹凸体在断层面上的位置有关.  相似文献   

10.
倾斜断层不对称分布引起的几何效应-上下盘效应.   总被引:1,自引:0,他引:1       下载免费PDF全文
王栋  谢礼立  胡进军 《地震学报》2008,30(3):271-278
首先介绍了具有加权平均意义的均方根距离Drms. 与断层距Drup和发震断层距Dseis相比, 均方根距离可以真实地反映观测点与倾斜断层的整体靠近程度. 然后利用断层距、 发震断层距和均方根距离, 通过回归分析分别对1999年集集地震加速度峰值的上下盘效应进行研究. 残差分析表明上盘的加速度峰值明显大于相同断层距或发震断层距处下盘的加速度峰值, 而相同均方根距离处的上下盘观测点的加速度峰值没有明显差异. 这说明上下盘效应是一种由于倾斜断层的不对称分布引起的几何效应, 因此进行地震动衰减分析时, 如果采用均方根距离作为观测点与断层之间的距离标准, 上下盘效应对近断层地震动的影响可以忽略.   相似文献   

11.
A random synthesis procedure based on finite fault model is adopted for near field strong ground motion simulation in this paper.The fault plane of the source is divided into a number of sub-sources,the whole moment magnitude is also divided into more sub-events.The Fourier spectrum of ground motion caused by a sub-event in given sub-source,then can be derived by means of taking the point source spectrum,attenuation with distance,energy dissipation,and near surface effect,into account.A time history is synthesized from this amplitude spectrum and a random phase spectrum,and being combined with an envelope function.The ground motion is worked out by superposition of all time histories from each sub-event in each sub-source,with time lags determining by the differences between the triggering times of sub-events and ddistances of the sub-sources.From the example of simulations at 21 near field points in a scenario earthquake with 4 dip angles of the fault plane,it is illustrated that the procedure can describe the rupture directivity and hanging wall effect very well.To validate the procedure,the response spectra and time histories recorded at three near fault stations MCN,LV3 and PCD during the Northridge earthquake in 1994,are compared with the simulated ones.  相似文献   

12.
To carry out a realistic simulation of earthquake strong ground motion for applied studies, one needs an earthquake fault/source simulator that can integrate most relevant features of observed earthquake ruptures. A procedure of this kind is proposed that creates a broadband kinematic source model. At lower frequencies, the source is described as propagating slip pulse with locally variable velocity. The final slip is assumed to be a two-dimensional (2D) random function. At higher frequencies, radiation from the same running strip is assumed to be random and incoherent in space. The model is discretized in space as a grid of point subsources with certain time histories. At lower frequencies, a realistic shape of source spectrum is generated implicitly by simulated kinematics of slip pulse propagation. At higher frequencies, the original approach is used to generate signals with spectra that plausibly approximate the prescribed smooth far-field source spectrum. This spectrum is set on the basis of the assumedly known regional empirical spectral scaling law, and subsource moment rate time histories are conditioned so as to fit this expected spectrum. For the random function that describes final slip over the fault area, lognormal probability distribution of amplitudes is assumed, on the basis of exploratory analysis of inverted slip distributions. Similarly, random functions that describe local slip rate time histories are assumed to have lognormal distribution of envelope amplitudes. In this way one can effectively emulate expressed ??asperities?? of final slip and occasional occurrence of large spikes on near-source accelerograms. A special procedure is proposed to simulate the spatial coherence of high-frequency fault motion. This approach permits the simulation of fault motion plausibly at high spatial resolution, fulfilling the prerequisite for simulation of strong motion in the vicinity of a fault. A particular realization (sample) of a source created in a simulation run depends on several random seeds, and also on a considerable number of parameters. Their values can be selected so as to take into account expected source features; they can also be perturbed to examine the source-related component of uncertainty of strong motion. The proposed approach to earthquake source specification is well adapted to the study of deterministic seismic hazard: it may be used for simulation of individual scenario events, or suites of such events, as well as for analysis of uncertainty for expected ground motion parameters from a particular class of events. Examples are given of application of the proposed approach to strong motion simulations and related uncertainty estimation.  相似文献   

13.
近场地震动格林函数的解析法与数值法对比研究   总被引:3,自引:2,他引:3       下载免费PDF全文
分析了在均匀弹性介质中,分别用解析方法和三维波动有限元数值方法计算无限全空间近场地震动的格林函数的理论与方法。将震源处理分为:(1)计算单一位错点源单位脉冲引起的格林函数;(2)用有限断层模型将断面划分为若干子源并有时间延迟,叠加所有子源的格林函数。本以1994年美国北岭地震为例,用解析法和数值方法分别计算了LV3、PCD、MCN三个场地的格林函数,并进行了对比分析。  相似文献   

14.
快速确定断层破裂特征是烈度速报的一项重要技术,断层破裂特征可为烈度速报提供震源模型,提升烈度速报准确性。通过汶川地震加速度记录,提出一种快速计算震源破裂参数的方法。 假定断层为线源模型,以一定间距将断层离散化为若干子源,以震中为不动点,通过旋转获得所有断层可能的走向,通过每次移动一个子源,获得断层所有可能的破裂方式,将二者结合即可给出断层所有可能的空间分布;计算每种断层空间分布与每个台站的断层距,利用加速度记录峰值和断层距统计回归衰减关系,分析每个衰减关系的拟合残差,残差最小拟合效果最好的衰减关系所对应断层参数,能够对该次地震的地震动场有最合理的解释,也最有可能是实际地震中的断层空间分布。  相似文献   

15.
断层面上某一点的滑动时间函数需要用三个参数来表达:断层的平均位错量、上升时间和破裂传播的时间延迟。本文基于有限断层模型,根据断层面上每个子源的位错量时、空不均匀分布特征,采用Brune模型系统确定了相应滑动时间函数的三个参数,构建了位错量呈时、空不均匀分布的有限断层滑动模型。该方法可以表现破裂面上断层位错量在时间和空间上分布的不均匀特征,既能够表现震源的复杂性同时又能够简化震源模型的构建过程,为考虑断层附近的强地震动数值模拟计算提供了有效的途径。  相似文献   

16.
1 Introduction Earthquake disaster investigations show that numerous strong earthquakes were caused by remobilization of active faults. Major casualties and severe damage to buildings as well as signi?cant economic losses resulted from the ground motions of strongearthquakescausedbyactivefaultslocatedbeneath urban areas. Recently, the potential hazard prediction of and its mitigation against active faults located beneath urban areas have become an important research topic for seismologists and…  相似文献   

17.
We present a simple and efficient hybrid technique for simulating earthquake strong ground motion. This procedure is the combination of the techniques of envelope function (Midorikawa et al. Tectonophysics 218:287–295, 1993) and composite source model (Zeng et al. Geophys Res Lett 21:725–728, 1994). The first step of the technique is based on the construction of the envelope function of the large earthquake by superposition of envelope functions for smaller earthquakes. The smaller earthquakes (sub-events) of varying sizes are distributed randomly, instead of uniform distribution of same size sub-events, on the fault plane. The accelerogram of large event is then obtained by combining the envelope function with a band-limited white noise. The low-cut frequency of the band-limited white noise is chosen to correspond to the corner frequency for the target earthquake magnitude and the high-cut to the Boore’s f max or a desired frequency for the simulation. Below the low-cut frequency, the fall-off slope is 2 in accordance with the ω2 earthquake source model. The technique requires the parameters such as fault area, orientation of the fault, hypocenter, size of the sub-events, stress drop, rupture velocity, duration, source–site distance and attenuation parameter. The fidelity of the technique has been demonstrated by successful modeling of the 1991 Uttarkashi, Himalaya earthquake (Ms 7). The acceptable locations of the sub-events on the fault plane have been determined using a genetic algorithm. The main characteristics of the simulated accelerograms, comprised of the duration of strong ground shaking, peak ground acceleration and Fourier and response spectra, are, in general, in good agreement with those observed at most of the sites. At some of the sites the simulated accelerograms differ from observed ones by a factor of 2–3. The local site geology and topography may cause such a difference, as these effects have not been considered in the present technique. The advantage of the technique lies in the fact that detailed parameters such as velocity-Q structures and empirical Green’s functions are not required or the records of the actual time history from the past earthquakes are not available. This method may find its application in preparing a wide range of scenarios based on simulation. This provides information that is complementary to the information available in probabilistic hazard maps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号