首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

It is a new attempt to study thermal evolution related to mineralization using the fission track (FT) method. Apatite and zircon fission track data are reported for 6 samples collected from Jiama ore district as well as its periphery. The FT ages of apatites in the ore district are (16.1±0.9) Ma and (18.8±1.1) Ma and reflect the age of late period of hydrothermal mineralizing event. Apatite FT age of (22.0±4.3) Ma and zircon FT age of (20.9±2.0) Ma are related to the early period of mineralization. Another zircon FT age of (341.6±79.1) Ma, inheriting mineral source characteristic, has no connection with the mineralization. Based on the thermal history analysis, the mineralization began before 25–22 Ma. Cooling rate in the ore district is 5–6°C/Ma averagely, in which a slow cooling occurred at 90–80°C. About 2.7 km has been denuded and the denudation rate is higher than the uplifting rate.

  相似文献   

2.
Thermal evolution of the continental crust beneath the northeastern Siberian craton was studied based on the interpretation of apatite fission-track ages. The samples selected for AFT dating were collected from depths between 2 and 3 km along a 1000-km-long profile, from the crystalline basement of the Siberian platform. The AFT ages range from 185 to 222 Ma, indicating that in the late Triassic-early Cretaceous, the top of the crystalline basement was cooled below ∼100°C. Once the apatite cooled below this temperature, it began to accumulate and preserve tracks produced by spontaneous fissioning of 238U, and the number of tracks preserved is effective in determining the ages of events using the apatite fission-track method (AFT). The study showed that the apatite from Archean rocks was largely formed at 1.8–1.9 Ga as a result of a Paleoproterozoic metamorphic overprinting during the terrane collision and the subsequent accretion of the Siberian craton. The last thermal event, the self-heating of the collision prism, was terminated by cooling at ∼1.3 Ga. At that time, the Rb-Sr isotopic system became closed and the upper crust passed the ~300°C isograd. The calculation results showed that on further cooling, the ∼100°C isograd was passed at 1143 Ma. This age estimate could be obtained using AFT dating if the above event had been the last one in the thermal history of the Siberian craton. The obtained track ages indicate the existence of a repeated, significantly younger, heating of the crystalline crust due to some local reason.  相似文献   

3.
A comparison between conventional KAr (biotite) ages and fission track (zircon and apatite) and UPb (zircon) ages obtained from stratigraphically well-constrained Priabonian (Late Eocene) volcano-sedimentary deposits of northern Italy is presented. Two sections at Priabona (one level) and Possagno (two levels) were dated. The application of fission track dating appears fruitful for obtaining reasonably precise (±4 to 5% 2σ errors) ages useful for time-scale calibration. The concordancy of apatite and zircon fission track ages, and the reproducibility of results provide the time of volcanic eruption and deposition. The UPb analysis of the zircons has not been unsuccessful, but discordancy does not permit accurate dating. Significant dates obtained from Possagno are: KAr method, 35.0 ± 0.5 Ma (duplicate analysis on K-rich biotite from the same level); fission track dating method, 35.8 ± 1.4 Ma (weighted mean age on 2 apatite and 3 zircon separates from the same level); UPb method, 36.7 ± 1.0 Ma (maximum age of discordant zircons from the same level). The comparison between the present results and recent multi-method and multi-laboratory results obtained from time equivalent Priabonian (Late Eocene) biotite-rich layers from the Apennines shows perfect agreement and supports the location of a Priabonian stage between about 37.5 Ma and about 33.7 (±0.5) Ma; the alternative ages preferred by the Decade of North American Geology convention should be abandoned and a large portion of this scale revised accordingly.  相似文献   

4.
Abstract Apatite and zircon fission track ages from Ryoke Belt basement in northeast Kyushu show late Cretaceous, middle to late Eocene, middle Miocene and Quaternary groupings. The basement cooled through 240 ± 25°C, the closure temperature for fission tracks in zircon, mainly during the interval 74-90 Ma as a result of uplift and denudation, the pattern being uniform across northeast Kyushu. In combination with published K-Ar ages and the Turonian-Santonian age of sedimentation in the Onogawa Basin, active suturing along the Median Tectonic Line from 100-80 Ma, at least, is inferred. Ryoke Belt rocks along the northern margin of Hohi volcanic zone (HVZ) cooled rapidly through ∼100°C to less than 50°C during the middle Eocene to Oligocene, associated with 2.5-3.5 km of denudation. The timing of this cooling follows peak heating in the Eocene-Oligocene part (Murotohanto subbelt) of the Shimanto Belt in Muroto Peninsula (Shikoku) inferred previously, and coincides with the 43 Ma change in convergence direction of the Pacific-Eurasian plate and the demise of the Kula-Pacific spreading centre. Ryoke Belt rocks along the southern margin of HVZ have weighted mean apatite fission track ages of 15.3 ± 3.1 Ma. These reset ages are attributed to an increase in geothermal gradient in the middle Miocene combined with rapid denudation and uplift of at least 1.4 km. These ages indicate that heating of the overriding plate associated with the middle Miocene start of subduction of hot Shikoku Basin lithosphere extended into the Ryoke Belt in northeast Kyushu. Pleistocene apatite fission track ages from Ryoke Belt granites at depth in the centre of HVZ are due to modern annealing in a geothermal environment.  相似文献   

5.
Fission track ages have been determined on sphene and apatite from the granitic rocks of King Island in Bass Strait, southeastern Australia. In all cases sphene and apatite ages are markedly discordant. Sphene ages compare very closely to earlier KAr measurements and indicate an emplacement age of about 350 m.y. for the east coast group of granites and their important scheelite mineralization. Apatite ages are all younger by about 80–200 m.y. suggesting that fission tracks were not fully retained in this mineral until the Cretaceous. During the Cretaceous King Island was at the edge of the developing Otway Rift Valley which resulted in the breakup of Australia and Antarctica. Uplift of the basement rocks along the rift margin with consequent rapid erosion allowed the apatites to cool below about 110°C and begin accumulating fission tracks for the first time. Differing degrees of uplift, at least partly fault controlled, have produced a regular pattern of apatite ages across the island. A relationship between apatite fission track ages and continental breakup may be a widespread phenomenon which could give valuable insight into the thermal and tectonic development of rifted continental margins.  相似文献   

6.
文章以塔里木盆地东北缘库鲁克塔格隆起与孔雀河斜坡盆山系统为主要研究对象,在该地区露头和钻井样品开展碎屑磷灰石、锆石裂变径迹研究,对库鲁克塔格构造演化中关键构造事件提供热年代学约束.锫石样品在加里东晚期-早海西期达到最大古地温,之后经历了长期的抬升降温过程,锆石最小峰值年龄记录了371~392 Ma 和328~305.7...  相似文献   

7.
Illite crystallinity, K–Ar dating of illite, and fission‐track dating of zircon are analyzed in the hanging wall (Sampodake unit) and footwall (Mikado unit) of a seismogenic out‐of‐sequence thrust (Nobeoka thrust) within the Shimanto accretionary complex of central Kyushu, southwest Japan. The obtained metamorphic temperatures, and timing of metamorphism and cooling, reveal the tectono‐metamorphic evolution of the complex, and related development of the Nobeoka thrust. Illite crystallinity data indicate that the Late Cretaceous Sampodake unit was metamorphosed at temperatures of around 300 to 310°C, while the Middle Eocene Mikado unit was metamorphosed at 260 to 300°C. Illite K–Ar ages and zircon fission‐track ages constrain the timing of metamorphism of the Sampodake unit to the early Middle Eocene (46 to 50 Ma, mean = 48 Ma). Metamorphism of the Mikado unit occurred no earlier than 40 Ma, which is the youngest depositional age of the unit. The Nobeoka thrust is inferred to have been active during about 40 to 48 Ma, as the Sampodake unit started its post metamorphic cooling after 48 Ma and was thrust over the Mikado unit at about 40 Ma along the Nobeoka thrust. These results indicate that the Nobeoka thrust was active for more than 10 million years.  相似文献   

8.
合肥盆地构造热演化的裂变径迹证据   总被引:12,自引:0,他引:12       下载免费PDF全文
运用裂变径迹分析方法,探讨分析了合肥盆地中新生代的构造热演化特征. 上白垩统和古近系下段样品的磷灰石裂变径迹(AFT)数据主体表现为靠近部分退火带顶部温度(±65℃)有轻度退火,由此估算晚白垩世至古近纪早期合肥盆地断陷阶段的古地温梯度接近38℃/km,高于盆地现今地温梯度(275℃/km).下白垩统、侏罗系及二叠系样品的AFT年龄(975~25Ma)和锆石裂变径迹(ZFT)年龄(118~104Ma)均明显小于其相应的地层年龄,AFT年龄-深度分布呈现冷却型曲线形态,且由古部分退火带、冷却带或前完全退火带及其深部的今部分退火带组成,指示早白垩世的一次构造热事件和其随后的抬升冷却过程. 基于AFT曲线的温度分带模式和流体包裹体测温数据的综合约束,推算合肥盆地早白垩世走滑压陷阶段的古地温梯度接近67℃/km. 径迹年龄分布、AFT曲线拐点年龄和区域抬升剥蚀时间的对比分析结果表明,合肥盆地在早白垩世构造热事件之后的104Ma以来总体处于抬升冷却过程,后期快速抬升冷却事件主要发生在±55Ma.  相似文献   

9.
Granites sampled from Garzê-Litang thrust, Longmen Shan thrust, Garzê and Litang strike-slip faults in the eastern Tibetan Plateau have been analyzed with apatite fission track thermochronological method in this study. The measured fission track apparent ages, combined with the simulated annealing mod- eling of the thermal history, have been used to reconstruct the thermal evolutionary histories of the samples and interpret the active history of the thrusts and faults in these areas. Thermal history mod- eling shows that earlier tectonic cooling occurred in the Garzê-Litang thrust in Miocene (~20―16 Ma) whereas the later cooling occurred mainly in the Longmen Shan thrust since ~5 Ma. Our study sug- gests that the margin of eastern Tibetan Plateau was extended by stages: through strike-slip faults deformations and related thrusts, the upper crust formed the Garzê-Litang margin in the Miocene epoch and then moved to the Longmen Shan margin since ~5 Ma. During this process, the deformations of different phases in the eastern Tibetan Plateau were absorbed by the thrusts within them and conse- quently the tectonic events of long-distance slip and extrusion up to hundreds of kilometers have not been found.  相似文献   

10.
鄂尔多斯盆地东南缘处于渭北隆起、晋西挠褶带和东秦岭造山带的转折地带,构造位置独特,演化历史复杂.本文选取东缘韩城地区和南缘东秦岭洛南地区上三叠统延长组为研究对象,采集6件砂岩样品进行锆石、磷灰石裂变径迹分析,对关键构造-热事件提供热年代学约束,恢复盆地东南缘不同构造带的热演化史,深化对盆地东南部油气资源赋存条件的认识,以期实现油气勘探的新突破.研究表明韩城和洛南地区的抬升冷却史存在明显差异.磷灰石裂变径迹年龄表现为从南到北减小的趋势.东缘韩城剖面磷灰石裂变径迹记录51.6~66.3 Ma、33 Ma两次抬升冷却的峰值年龄.南缘洛南剖面锆石裂变径迹年龄和磷灰石裂变径迹年龄分别记录89~106 Ma和59~66 Ma的冷却抬升年龄.洛南地区抬升冷却时间较早,剥蚀速率(106m/Ma)大于韩城地区(68m/Ma),且持续时间长.磷灰石裂变径迹(Apatite Fission Track,AFT)热史模拟显示,晚中生代,受燕山运动的影响,东秦岭地区发生强烈的构造岩浆事件,洛南地区热演化程度明显高于韩城地区.洛南剖面的热演化主要受岩浆活动的控制,韩城剖面为埋藏增温型.鄂尔多斯盆地东南缘的裂变径迹年龄格局基本受控于白垩纪以来的抬升冷却事件.  相似文献   

11.
U–Pb Sensitive High‐Resolution Ion MicroProbe (SHRIMP) dating of zircon in combination with (U–Th)/He dating of zircon and apatite is applied to constrain the emplacement and exhumation history of the youngest granitic rocks in the Western Carpathians collected in the Central Slovakian Neovolcanic Field. Two samples of diorite from the locality Banky, and granodiorite from Banská Hodru?a yield the U–Pb zircon concordia ages of 15.21 ±0.19 Ma and 12.92 ±0.27 Ma, respectively, recording the time of zircon crystallization and the intrusions’ emplacement. Zircon (U–Th)/He ages of 14.70 ±0.94 (Banky) and 12.65 ±0.61 Ma (Banská Hodru?a), and apatite (U–Th)/He ages of 14.45 ±0.70 Ma (diorite) and 12.26 ±0.77 Ma (granodiorite) are less than 1 Myr younger than the corresponding zircon U–Pb ages. For both diorite and granodiorite rocks their chronological data thus document a simple cooling process from magmatic crystallization/solidification temperatures to near‐surface temperatures in the Middle Miocene, without subsequent reheating. Geospeedometry data suggest for rapid cooling at an average rate of 678 ±158 °C/Myr, and the exhumation rate of 5 mm/year corresponding to active tectonic‐forced exhumation. The quick cooling is interpreted to record the exhumation of the studied granitic rocks complex that closely followed its emplacement, and was likely accompanied by a drop in the paleo‐geothermal gradient due to cessation of volcanic activity in the area.  相似文献   

12.
The Nanling Mountains lying in the southern part of South China are an economically important gran-ite-related multi-metallogenic province. The Nanling Mountains granites can be described as: temporally spanning from Caledonian to Yanshanian and spatially distributed as three EW trending zones: the north one in Zhuguangshan-Qingzhangshan, the middle one in Dadongshan-Guidong, and the south one in Fogang-Xinfengjiang with two neighboring zones’ midline having an interval of ca. latitude …  相似文献   

13.
依据钻孔系统稳态测温、静井温度资料与实测热导率数据分析了柴达木盆地地温场分布特征,建立了柴达木盆地热导率柱,新增了17个大地热流数据.柴达木盆地现今地温梯度介于17.1~38.6℃·km-1,平均为28.6±4.6℃·km-1,大地热流介于32.9~70.4mW·m-2,平均55.1±7.9mW·m-2.盆地不同构造单元地温场存在差异,昆北逆冲带、一里坪坳陷属于"高温区",祁南逆冲带属于"中温区",三湖坳陷、德令哈坳陷及欧龙布鲁克隆起属于"低温区",盆地现今地温场分布特征受控于地壳深部结构、盆地构造等因素.以现今地温场为基础,采用磷灰石、锆石裂变径迹年龄分布特征定性分析与径迹长度分布数据定量模拟相结合,研究了柴达木盆地晚古生代以来的沉积埋藏、抬升剥蚀和热演化史,并结合区域构造背景,对柴达木盆地构造演化过程进行了探讨,研究表明柴达木盆地晚古生代以来经历了六期(254.0—199 Ma,177—148.6 Ma,87—62 Ma,41.1—33.6 Ma,9.6—7.1 Ma,2.9—1.8 Ma)构造运动,六期构造事件与研究区构造演化的动力学背景相吻合.其中白垩纪末期(87—62 Ma)的构造事件导致了柴达木盆地东部隆升并遭受剥蚀,欧龙布鲁克隆起形成雏形,柴达木盆地北缘在弱挤压环境下形成坳陷盆地;中新世末的两期构造事件(9.6—7.1 Ma和2.9—1.8 Ma)使柴达木盆地遭受强烈挤压,盆地快速隆升,构造变形强烈,基本形成现今的构造面貌.  相似文献   

14.
The Cretaceous Toki granitic pluton of the Tono district, central Japan was emplaced in the East Asian continental margin at about 70 Ma. The Toki granite has apatite fission‐track (AFT) ages ranging from 52.1 ±2.8 Ma to 37.1 ±3.6 Ma (number of measurements, n = 33); this indicates the three‐dimensional thermal evolution during the pluton's low‐temperature history (temperature in the AFT partial annealing zone: 60–120 °C). The majority of the Toki granite has a spatial distribution of older ages in the shallower parts and younger ages in the deeper parts, representing that the shallower regions arrived (were exhumed) at the AFT closure depth earlier than the deeper regions. Such a cooling pattern was predominantly constrained by the exhumation of the Toki granitic pluton and was related to the regional denudation of the Tono district. The age–elevation relationships (AERs) of the Toki granite indicate a fast exhumation rate of about 0.16 ±0.04 mm/year between 50 Ma and 40 Ma. The AFT inverse calculation using HeFTy program gives time‐temperature paths (tT paths), suggesting that the pluton experienced continuous slow cooling without massive reheating since about 40 Ma until the present day. A combination of the AERs and AFT inverse calculations represents the following exhumation history of the Toki granite: (i) the fast exhumation at a rate of 0.16 ±0.04 mm/year between 50 Ma and 40 Ma; (ii) slow exhumation at less than 0.16 ±0.04 mm/year after 40 Ma; and (iii) exposure at the surface prior to 30–20 Ma. The Tono district, which contains the Toki granite, underwent slow denudation at a rate of less than 0.16 ±0.04 mm/year within the East Asian continental margin before the Japan Sea opening at 25–15 Ma and then within the Southwest Japan Arc after the Japan Sea opening, which is in good agreement with representative denudation rates obtained in low‐relief hill and plain fields.  相似文献   

15.
The Xigaze fore-arc basin is adjacent to the Indian plate and Eurasia collision zone. Understanding the erosion history of the Xigaze fore-arc basin is significant for realizing the impact of the orogenic belt due to the collision between the Indian plate and the Eurasian plate. The different uplift patterns of the plateau will form different denudation characteristics. If all part of Tibet Plateau uplifted at the same time, the erosion rate of exterior Tibet Plateau will be much larger than the interior plateau due to the active tectonic action, relief, and outflow system at the edge. If the plateau grows from the inside to the outside or from the north to south sides, the strong erosion zone will gradually change along the tectonic active zone that expands to the outward, north, or south sides. Therefore, the different uplift patterns are likely to retain corresponding evidence on the erosion information. The Xigaze fore-arc basin is adjacent to the Yarlung Zangbo suture zone. Its burial, deformation and erosion history during or after the collision between the Indian plate and Eurasia are very important to understand the influence of plateau uplift on erosion. In this study, we use the apatite fission track(AFT)ages and zircon and apatite(U-Th)/He(ZHe and AHe)ages, combined with the published low-temperature thermochronological age to explore the thermal evolution process of the Xigaze fore-arc basin. The samples' elevation is in the range of 3 860~4 070m. All zircon and apatite samples were dated by the external detector method, using low~U mica sheets as external detectors for fission track ages. A Zeiss Axioskop microscope(1 250×, dry)and FT Stage 4.04 system at the Fission Track Laboratory of the University of Waikato in New Zealand were used to carry out fission track counting. We crushed our samples finely, and then used standard heavy liquid and magnetic separation with additional handpicking methods to select zircon and apatite grains. The new results show that the ZHe age of the sample M7-01 is(27.06±2.55)Ma(Table 2), and the corresponding AHe age is(9.25±0.76)Ma. The ZHe and AHe ages are significantly smaller than the stratigraphic age, indicating suffering from annealing reset(Table 3). The fission apatite fission track ages are between(74.1±7.8)Ma and(18.7±2.9)Ma, which are less than the corresponding stratigraphic age. The maximum AFT age is(74.1±7.8)Ma, and the minimum AFT age is(18.7±2.9)Ma. There is a significant north~south difference in the apatite fission track ages of the Xigaze fore-arc basin. The apatite fission track ages of the south part are 74~44Ma, the corresponding exhumation rate is 0.03~0.1km/Ma, and the denudation is less than 2km; the apatite fission track ages of the north part range from 27 to 15Ma and the ablation rate is 0.09~0.29km/Ma, but it lacks the exhumation information of the early Cenozoic. The apatite(U-Th)/He age indicates that the north~south Xigaze fore-arc basin has a consistent exhumation history after 15Ma. The results of low temperature thermochronology show that exhumation histories are different between the northern and southern Xigaze fore-arc basin. From 70 to 60Ma, the southern Xigaze fore-arc basin has been maintained in the depth of 0~6km in the near surface, and has not been eroded or buried beyond this depth. The denudation is less than the north. The low-temperature thermochronological data of the northern part only record the exhumation history after 30Ma because of the young low-temperature thermochronological data. During early Early Miocene, the rapid erosion in the northern part of Xigaze fore-arc basin may be related to the river incision of the paleo-Yarlungzangbo River. The impact of Great Count Thrust on regional erosion is limited. The AHe data shows that the exhumation history of the north-south Xigaze fore-arc basin are consistent after 15Ma. In addition, the low-temperature thermochronological data of the northern Xigaze fore-arc basin constrains geographic range of the Kailas conglomerate during the late Oligocene~Miocene along the Yarlung Zangbo suture zone. The Kailas Basin only develops in the narrow, elongated zone between the fore-arc basin and the Gangdese orogenic belt. The southern part of the Xigaze fore-arc basin has been uplifted from the sea level to the plateau at an altitude of 4.2km, despite the collision of the Indian plate with the Eurasian continent and the late fault activity, but the plateau has been slowly denuded since the early Cenozoic. The rise did not directly contribute to the accelerated erosion in the area, which is inconsistent with the assumption that rapid erosion means that the orogenic belt begins to rise.  相似文献   

16.
Fission track analysis of apatites from basement rocks of the Wright Valley in southern Victoria Land provides information about the timing, the amount and hence the rate of uplift of the Transantarctic Mountains in this area. Apatite ages increase systematically with elevation, and a pronounced break in the age versus elevation profile has been recognised at about 800 m on Mt. Doorly near the mouth of Wright Valley. The apatite age of about 50 Ma at this point approximates the time at which uplift of the mountain range began. Samples lying above the break in slope lay within the apatite fission track annealing zone prior to uplift, during a Cretaceous to Early Cenozoic period of relative thermal and tectonic stability. At the lower elevations samples had a zero apatite fission track age before the onset of rapid uplift and have track length distributions indicating rapid cooling. Some 4.8–5.3 km of uplift are estimated to have occurred at an average rate of about 100 ± 5m/Ma since uplift began. From the total stratigraphic thickness known above the uplifted apatite annealing zone it can be estimated that the Late Cretaceous/Early Cenozoic thermal gradient in the area was about 25–30°C/km.The occurrence and pattern of differential uplift across the Transantarctic Mountains can be estimated from the vertical offsets of different apatite fission track age profiles sampled across the range. These show the structure of the mountain range to be that of a large tilt block, dipping gently to the west under the polar ice-cap and bounded by a major fault zone on its eastern side. Offset dolerite sills at Mt. Doorly show the mountain front to be step-faulted by 1000 m or more down to the McMurdo Sound coast from an axis of maximum uplift just inland from Mt. Doorly.  相似文献   

17.
High-pressure mafic granulites occurring as lenticular bodies within garnet-amphibolites in Kangxiwar Fault have been first reported in this paper. The P-T conditions of two metamorphic stages were ob-tained using calibrated geothermal barometers and ThermoCalc Program. The peak metamorphic con-dition of these high-pressure granulites is about 760―820℃,1.0―1.2 GPa and the retrograde meta-morphic condition is about 620―720℃,0.7―0.8 GPa. The petrological studies show that they have a near-isobaric cooling P-T...  相似文献   

18.
A thermal event reduces the number of previously registered fission tracks in a mineral dependent upon the track retention properties of the individual mineral. Apatite, sphene and zircon have retention properties over a wide range of temperatures (from 100° to 550°C); apatite data reveal information at lowest temperatures while sphene and zircon data are useful for higher temperatures.Thermal events within this temperature range of 100°C to about 550°C are suitable for study with this technique. The age of the event is determined from samples in which the fission tracks are completely erased, while minerals containing partially removed (erased) tracks provide information on the temperatures occurring during the thermal event.As a test case, the analysis of the temperatures developed by the meteorite impact which produced the Ries crater at 14.7 m.y. ago is presented.  相似文献   

19.
Accurate pressure–temperature–time (P–T–t) paths of rocks from sedimentation through maximum burial to exhumation are needed to determine the processes and mechanisms that form high‐pressure and low‐temperature type metamorphic rocks. Here, we present a new method combining laser ablation–inductively coupled plasma–mass spectrometry (LA–ICP–MS) U–Pb with fission track (FT) dates for detrital zircons from two psammitic rock samples collected from the Harushinai unit of the Kamuikotan metamorphic rocks. The concordant zircon U–Pb ages for these samples vary markedly, from 1980 to 95 Ma, with the youngest age clusters in both samples yielding Albian‐Cenomanian weighted mean ages of 100.8 ± 1.1 and 99.3 ± 1.0 Ma (2σ uncertainties). The zircon U–Pb ages were not reset by high‐P/T type metamorphism, because there is no indication of overgrowth within the zircons with igneous oscillatory zoning. Therefore, these weighted mean ages are indicative of the maximum age of deposition of protolithic material. By comparison, the zircon FT data yield a pooled age of ca. 90 Ma, which is almost the same as the weighted mean age of the youngest U–Pb age cluster. This indicates that the zircon FT ages were reset at ca. 90 Ma while still at their source, but have not been reset since. This conclusion is supported by recorded temperature conditions of less than about 300 °C (the closure temperature of zircon FTs), as estimated from microstructures in the deformed detrital quartz grains in psammitic rocks, and no shortening of fission track lengths in the zircon. Combining these new data with previously reported white mica K–Ar ages indicates that the Harushinai unit was deposited after ca. 100 Ma, and underwent burial to its maximum depth before being subjected to a localized thermal overprint during exhumation at ca. 58 Ma.  相似文献   

20.
Abstract Apatite and zircon fission-track (FT) analyses of the Shimanto accretionary complex and its vicinities, southwest Japan, unraveled the episodic material migration of the deep interiors of the accretionary complex. Apatite data with 100°C closure temperature (Te) generally indicate ~10 Ma cooling throughout the Shimanto complex. In contrast, zircon data with 260°C Te exhibit a wide range of apparent ages as a consequence of paleotemperature increase to the zircon partial annealing zone. In the Muroto and Kyushu regions, maximum temperatures tend to have been higher in the northern, older part of the complex, with indistinguishable temperature differences between coherent and melange units adjacent to each other. It thus suggests, along with vitrinite reflectance data, that older accretionary units occurring to the north sustain greater maximum burial during the accretion-burial-exhumation process. Zircon data suggest two cooling episodes: ~70 Ma cooling at widespread localities in the Cretaceous Shimanto Belt and Sambagawa Belt, and ~15 Ma cooling in the central Kii Peninsula. The former is consistent with 40Ar/39Ar cooling ages from the Sambagawa Belt, whereas the latter slightly predates the widespread 10 Ma apatite cooling ages. These data imply that the extensive material migration and exhumation took place in and around the Shimanto complex in Late Cretaceous as well as in Middle Miocene. Considering tectonic factors to control evolution of accretionary complexes, the episodic migration is best explained by accelerated accretion of sediments due to increased sediment influx at the ancient Shimanto trench, probably derived from massive volcano-plutonic complexes contemporaneously placed inland. Available geo- and thermochronologic data suggest that extensive magmatism triggered regional exhumation twice in the past 100 Ma, shedding new light on the cordilleran orogeny and paired metamorphism concepts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号