首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
张彦君  年廷凯  郑路  刘凯  宋雷 《地震工程学报》2015,37(2):428-433,438
以往对平面破坏模式的岩质边坡稳定性评价,主要关注潜在滑坡体在自重、坡体内静水压力和地震荷载耦合作用下沿破坏面的抗滑稳定性,并未涉及各类外荷载作用线不通过潜在滑体重心而引起的绕坡趾倾覆稳定性。针对这一问题,提出地震与张裂缝水压耦合作用下的岩质边坡倾覆稳定性解析方法,基于力矩平衡原理推导出岩质边坡抗倾覆稳定性系数的一般表达式;通过深入的变动参数比较研究,探讨张裂缝水压和地震荷载对抗倾覆安全系数的影响,认为水压是控制岩质边坡倾覆破坏的决定性因素,而地震荷载处于次要因素,其在一定程度上增加或减小抗倾覆稳定性。在此基础上建立不同参数组合下的岩质边坡抗倾覆稳定图,为工程技术人员快速评估饱水岩质边坡地震倾覆稳定性提供直接依据。  相似文献   

2.
利用FLAC3D软件模拟地震作用下不同岩层倾角的顺倾向边坡,对比坡面峰值加速度放大系数、峰值位移、地震作用结束后坡体剪应变增量的变化规律,探讨岩层倾角对顺倾边坡地震效应的影响。研究表明:(1)在水平地震波作用下,坡面水平峰值加速度放大作用随岩层倾角增大而线性减小;(2)当岩层倾角小于软弱岩层内摩擦角时,坡面峰值位移较小且变化规律受岩层倾角影响不明显,当岩层倾角大于软弱岩层内摩擦角且小于30°时坡面峰值位移增大,大于60°时减小;(3)岩层倾角小于坡角时,残余剪应变增量最大值集中在坡面中下部软弱岩层处,反之,剪应变增量最大值出现在整个坡面并呈弧形区。  相似文献   

3.
强震区人工岩质路堑边坡的破坏及稳定性评价   总被引:1,自引:0,他引:1       下载免费PDF全文
山区道路沿线的人工边坡很多。强震时,这些边坡经常会出现严重的破坏,除直接造成的损失而外,还会断绝交通给防震、抗震救灾带来极大的困难。本文通过云南通海、昭通、辽宁海城等地震区、公路和铁路的人工岩质路堑边坡的宏观震害资料,试图对此类边坡的抗地震稳定性及其受震破坏的规律性进行分析以探求震区岩质边坡稳定条件,为设计此类的边坡提供必要的依据。  相似文献   

4.
顺层岩质边坡的抗震性指标大部分都是非确定的,无法用固定阈值衡量。提出基于非确定性分析法的顺层边坡抗震性性能研究,将顺层岩质边坡看作若干个叠加的薄板;运用非确定性分析法计算各个薄板的动力安全系数和动力极限状态方程,并对顺层边坡动力极限状态方程进行求解,可得在地震作用力下顺层边坡动力可靠度指标与顺层边坡失效概率之间的关系;评估地震作用力下顺层边坡整体稳定性,同时综合考量顺岩边坡的最小平均安全系数以及平均失效概率,得出评估结果。实验结果显示,在地震作用力下,顺层边坡坡高、坡角、岩层倾角对顺岩边坡抗震性能影响显著,评估结果与实际结果一致。  相似文献   

5.
垂直向地震作用对节理岩体失稳破坏的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
基于线弹性断裂力学理论分析了垂直向地震作用对节理岩体地震动力破坏的影响。在仅考虑峰值时,最不利的单向地震动加速度方向是水平倾向坡外,双向则依据破裂机制是拉剪或压剪,加速度分别是水平倾向坡外与向下或向上的组合。地震动的幅值、作用方向及双向地震动的组合都可使岩体的破坏机制发生转化,并且是突变的、不可逆的。较低峰值的双向地震动产生的应力强度因子可能大于较高峰值的单向地震动所产生的应力强度应子。在岩体节理分布特征和静态应力场一定的初始条件下,第一个导致岩体中产生破裂的地震动加速度幅值及其方向的组合唯一地决定了岩体不可逆破坏发展的方向、机制及最终的破坏特征,其复杂性远大于静力作用时的情况。对岩体地震动力破坏问题的认识应充分考虑垂直向地震动的重要影响。  相似文献   

6.
边坡地震稳定性分析探讨   总被引:16,自引:0,他引:16  
传统的拟静力法和安全系数时程分析法在评价边坡地震稳定性时存在一定的局限性。在提出准确的评价边坡地震稳定性必需因素的基础上,建议对边坡地震稳定性分析方法重新进行分类。根据动力分析得到的边坡在地震作用下的破坏机制和破裂面的性质和位置,提出基于拉-剪破坏的动力时程分析法和强度折减动力分析法。第一种方法将FLAC计算得到破坏时刻的动应力施加到静力情况下边坡上,采用动力分析得到的拉-剪破裂面,结合极限平衡法求解边坡地震安全系数,是一种改进的动力有限元时程分析法;第二种方法考虑了拉-剪破坏的FLAC强度折减动力分析法,是完全动力的方法。最后通过算例分析验证了新方法的可行性,为边坡地震安全系数计算提供了一种新的思路。  相似文献   

7.
强震作用下层状岩质斜坡破坏的大型振动台试验研究   总被引:1,自引:1,他引:0  
以“5.12”汶川地震背景为基础,对不同岩性组合水平层状岩质边坡进行了大型振动台模型试验研究.文中介绍了振动台试验过程,通过对试验现象的观察处理分析,考察了边坡的破坏现象特征、变形破坏模式.实验结果表明,地震力作用下边坡的变形破坏程度、特征以及稳定性不仅与地震波的类型、加载方向、频率、振幅有关,同时还受边坡的岩体性质、...  相似文献   

8.
目前地震边坡和隧道稳定性分析方法尚有一些不尽如人意的地方,如地震边坡的破裂面假定为剪切破裂面,这与汶川地震边坡破坏现象不符;地震边坡稳定性分析采用时程分析法,假定在某一时刻加速度作用下,将其作为静力问题来计算边坡稳定安全系数,没有充分考虑加载的动力效应;同样,未考虑地震作用下隧洞围岩的拉破坏,对隧洞围岩破坏缺少动力稳定性标准,也不能充分考虑隧洞围岩与衬砌的动力效应。为此,基于有限元强度折减法,提出了一种完全的动力分析方法——强度折减动力分析法,计算中同时考虑剪切强度和抗拉强度参数的折减,并采用计算不收敛和位移突变综合判断边坡和隧道是否动力失稳破坏,以极限状态时的强度折减系数作为地震边坡和隧道的动力稳定系数,由此获得拉、剪组合破裂面与全动力稳定安全系数,充分考虑了动力效应。  相似文献   

9.
利用大型振动台试验,基于HHT边际谱理论,本文对含软弱夹层反倾岩质边坡地震破坏模式及其能量判识方法进行研究。振动台试验结果表明含软弱夹层反倾岩质边坡的地震破坏模式为中部岩层挤压滑出型。边际谱峰值的变化能清晰地表征边坡内部的震害损伤发展过程,且边际谱的识别结果与试验中坡面位移监测结果吻合较好。振动台试验和能量判识方法表明边坡的破坏过程为:0.1 g和0.2 g地震作用下,边坡未出现震害损伤,边际谱峰值随高程增加近似呈线性增加;0.3 g地震作用下坡顶附近出现震害损伤,坡顶出现局部掉块;0.4 g地震作用下,坡内震害损伤位置发展至相对高度0.295~0.6之间,坡体中部出现水平向微裂隙;0.6 g地震作用时,震害损伤位置进一步向坡脚发展,坡内震害损伤位置发展至相对高度0.295以下,上部坡体(相对高程0.8附近)向坡面方向滑出,坡面出现纵向裂隙,并与水平向裂隙贯通,中部软弱夹层被挤出,坡顶被震碎。边际谱辨识结果显示,边坡坡面附近的震害程度弱于坡体内部。本文的研究对认识含软弱夹层反倾岩质边坡的地震破坏模式具有指导意义。  相似文献   

10.
为了探讨地震和煤矿采动耦合作用下的露天矿边坡及采空区的稳定性,以辽宁排山楼金矿露天转井工开采为研究对象,基于FLAC3D有限元分析平台,采用强度折减法研究了未进行煤炭开采时和煤矿采动单独作用下露天矿边坡的安全系数,重点探讨了煤矿采动和地震耦合作用下露天矿边坡及采空区应力场、位移场及塑性区的分布规律。结果表明:未经采动时,露天矿边坡的安全系数为1.21,边坡处于稳定状态;煤矿采动后露天矿边坡安全系数降为1.12,仍处于稳定状态,单独的煤矿采动作用不会导致露天矿边坡失稳;在地震和煤矿采动耦合作用下,露天矿边坡坡体内出现了较大的拉应力,采空区顶板出现冒落现象,底板出现底鼓现象;在地震和采动耦合作用下,边坡将出现失稳破坏,破坏形式主要为采动区顶板的大面积冒落和边坡的崩塌。  相似文献   

11.
黄土高原地震作用下黄土滑坡滑距预测方法   总被引:4,自引:3,他引:1       下载免费PDF全文
为评估黄土高原地区地震滑坡致灾区域,提出一种基于模糊信息优化处理的地震滑坡滑距预测方法。在野外调查、室内试验和分析的基础上,对黄土高原的地震滑坡类型、性质和影响因素进行分析。以摩根斯坦-普莱斯法计算黄土边坡的稳定性,建立边坡最小安全系数与影响因素的关系,其影响因素主要包括地震烈度、比高、坡角、容重、内黏聚力、内摩擦角等,并在此基础上得到纯黄土地震滑坡滑距的影响关系。将黄土高原地区数次大震中采集到的93个样本数据进行归纳分析,建立模糊信息优化处理模型。所得的计算结果通过误差校验和与其他滑坡滑距预测方法进行对比,来证明本模型有较高的准确性。最后对天水市22个潜在滑坡的边坡进行滑距预测。  相似文献   

12.

Uncertainty in input fracture geometric parameters during analysis of the stability of jointed rock slopes is inevitable and therefore the stochastic discrete fracture network (DFN) — distinct element method (DEM) is an efficient modeling tool. In this research, potentially unstable conditions are detected in the right abutment of the Karun 4 dam and downstream of the dam body as a case study. Two extreme states with small and relatively large block sizes are selected and a series of numerical DEM models are generated using a number of validated DFN models. Stability of the rock slope is assessed in both static and dynamic loading states. Based on the design basis earthquake (DBE) and maximum credible earthquake (MCE) expected in the dam site, histories of seismic waves are applied to analyze the stability of the slope in dynamic earthquake conditions. The results indicate that a MCE is likely to trigger sliding of rock blocks on the rock slope major joint. Furthermore, the dynamic analysis also shows a local block failure by the DBE, which can consequently lead to slope instability over the long term. According to the seismic behavior of the two models, larger blocks are prone to greater instability and are less safe against earthquakes.

  相似文献   

13.
目前在地震滑坡影响因素的研究中,一般认为岩性、地形地貌、坡度、地震烈度、震中距等因素对滑坡的空间分布有重要的影响作用,忽视了发震断裂的运动方式对滑坡分布所起作用.5.12汶川地震诱发的大量滑坡崩塌灾害主要沿龙门山断裂带发育,但在断裂带两侧呈不对称分布,80%以上的滑坡、特大型滑坡主要分布于断裂带的上盘.这一现象在汶川地...  相似文献   

14.
越来越多的地震滑坡相对于地震断层的不对称分布震例让人们意识到断层上盘效应的存在。 然而,目前有关断裂运动方式与滑坡空间分布关系的研究还不够充分和深入。在收集大量地震滑坡震例资料并获得其分布规律的基础上,建立了一个简化的断层模型,以地震波在地表与断层面之间反射传播特性为基础,探讨断层倾角改变对地表地震动强度的影响。进而,以汶川地震触发的大型滑坡为例,研究了断层的几何特征和运动方式对诱发滑坡空间分布的影响。结果表明,断层的倾角对滑坡空间分布范围具有控制作用,随着倾角的增加,垂直断层走向的滑坡分布范围逐渐减小;并且,大型滑坡的初始坡面受到断裂运动方向的影响,与断裂运动方向一致的坡面更容易发生滑坡。所获结果不仅有助于提高区域性地震滑坡危险区域的预测精度,而且对认识大型滑坡的滑动机制、主控因素以及可能的滑动规模、滑距等也起到促进作用。通过对滑坡崩塌的认识来辅助提高对地质构造、地震断层等的认识,应是地震诱发滑坡崩塌研究的新的意义所在。  相似文献   

15.
The topography, occurrence mechanism and lithology are the important factors of landslide movement. The lithology, seismic intensity, geological structure and topography in the travel path of 215 incomplete obstruction landslides with volumes more than 104m3 induced by Wenchuan earthquake were studied. Based on the classification of the factors established, we studied the factors influencing the movement distance of incomplete obstruction landslides. The following results are drawn. In the influence factors of topography in the travel path, the distance is largest in the straight valley topography, followed by the concave, ladder, turning valley, slope toe-type and slope-type landslides, in turn. The topography not only has remarkable influence on the distance of large-scale landslides, but also on the medium and small-scale landslides as well, which is the most important factor influencing the distance. The formation mechanism controlled by lithology, seismic intensity and geological structure has little influence on the mobility of medium-and small-scale landslides. For the large-scale landslides with volume more than 106m3, the distance of landslide with medium hard rock is larger than landslides with hard and soft rock. In the seismic intensity Ⅸ to Ⅺ areas, the landslide distance decreases with intensity increasing, contrary to the distribution of landslide-point density and landslide-area density. The geological structure has influence on the slide aspect of landslides and occurrence mechanism, but the influence is not remarkable to the landslide movement distance.  相似文献   

16.
选取宁夏西吉县为目标区,对区内1920年海原8.5级特大地震所诱发的347处黄土地震滑坡进行野外调查,获取了详实的基础数据.在此基础上结合遥感影像解译,总结了研究区内黄土地震滑坡的分布特征,并依此提出了宏观、定性的黄土斜坡地震稳定性快速判别方法.基于分布特征选取了坡高、坡角、坡向及地震动强度作为基本参数,应用MLP神经...  相似文献   

17.
The 3 August 2014 Ludian, Yunnan MS6.5 earthquake has spawned more than 1, 000 landslides which are from several tens to several millions and over ten millions of cubic meters in volumes. Among them, the Hongshiya and Ganjiazai landslides are the biggest two with volumes over 1 000×104m3. The Hongshiya and Ganjiazai landslides are two typical landslides, the former belongs to tremendous rock avalanche, and the latter belongs to unconsolidated werthering deposit landslide developed in concave mountain slope. Based on field investigations, causes and formation mechanism of the two landslides are discussed in this study. The neotectonic movement in the area maintains sustainable uplifting violently all the time since Cenozoic. The landform process accompanied with the regional tectonic uplifting is the violent downward erosion along the Jinshajiang River and its tributary, forming landforms of high mountains and canyons, deeply cut valleys, with great height difference. The regional seismo-tectonics situation suggests that:Ludian earthquake region is situated on the southern frontier boundary of Daliangshan secondary active block, and is seismically the strongest active area with one earthquake of magnitude greater than M5.0 occurring every 6 years. Frequent and strong seismicity produces accumulated effects on the ground rock to gradually lower the mechanical strength of slopes and their stability, which is the basis condition to generate large-scale collapse and landslide at Hongshiyan and Ganjiazhai. The occurring of Hongshiyan special large rock avalanche is associated with the large terrain height difference, steep slope, soft interlayer structure and unloading fissures and high-angle joints. The formation mechanism of Hongshiyan rock avalanche may have three stages as follows:Stage 1, when P wave arriving, under the situation of free surface, rocks shake violently, the pre-existent joints(in red)parallel to and normal to the river and unloading cracks are opened and connected. Stage 2, on the basis of the first stage, when S wave arriving, the ground movement aggravates. Joints(in green)along beds develop further, resulting in rock masses intersecting each other. Stage 3, rock masses lose stability, sliding downward, collapsing, and moving over a short distance along the sliding surface to the inside of the valley, blocking the river to form the dammed lake. The special large landslide at Ganjiazhai is a weathering layer landslide occurring in the middle-lower of a large concave slope. Its formation process may have two stages as follows:Firstly, under strong ground shaking and gravity, the ground rock-soil body around moves and assembles to the lower of the central axis of the large concave slope, which suffers the largest earthquake inertia force and firstly yields plastic damage to generate compression-expansion deformation, because of the largest water content and volume-weight within the loose soil of it. Secondly, in view of the steep slope, along with the compression, the plastic deformation area enlarges further in the lower of slope, giving rise to a tensional stress area along the middle of the slope. As soon as the tensional stress exceeds the tensile strength of the weathering layer, a tensional fracture will occur and the landslide rolls away immediately making use of momentum. This two large landslides are the basic typical ones triggered by the MS6.5 Ludian earthquake, and their causes and mechanism have a certain popular implication for the landslides occurring in this earthquake region.  相似文献   

18.
地震滑坡会对自然环境和人民生活带来极大破坏,在大区域范围内对边坡遭受地震影响的程度进行评价判断,主要采用具有预测性质的潜在地震诱发滑坡危险性评估的方法。因此,深入研究边坡地震危险性分析的基本理论并作出符合实际的危险性分布图对工程建设和灾害防治具有较大意义。梳理并阐述具有预测性质的边坡地震危险性分析所需数据资料及各类数据的研究进展,将利用永久位移法进行边坡地震危险性评价所需数据归纳为三种:(1)边坡在地震影响下破坏程度的判定依据;(2)区域地震动参数如峰值加速度、阿里亚斯强度;(3)边坡坡体基本参数如黏聚力、摩擦角、重度、滑块厚度、坡角等。边坡地震危险性评价的准确程度与这三类数据的研究程度与准确性有关。文章对三类数据分别详细阐述各自的研究现状与成果应用,最后分析理论存在的部分问题以及以后的研究方向。  相似文献   

19.
The 1927 Gulang M8.0 earthquake has triggered a huge number of landslides, resulting in massive loss of people''s life and property. However, integrated investigations and results regarding the landslides triggered by this earthquake are rare; such situation hinders the deep understanding of these landslides such as scale, extent, and distribution. With the support of Google Earth software, this study intends to finish the seismic landslides interpretation work in the areas of Gulang earthquake (VIII-XI degree) using the artificial visual interpretation method, and further analyze the spatial distribution and impact factors of these landslides. The results show that the earthquake has triggered at least 936 landslides in the VIII-XI degree zone, with a total landslide area of 58.6 km2. The dense area of seismic landslides is located in the middle and southern parts of the X intensity circle. Statistical analysis shows that seismic landslides is mainly controlled by factors such as elevation, slope gradient, slope direction, strata, seismic intensity, faults and rivers. The elevation of 2 000-2 800 m is the high-incidence interval of the landslide. The landslide density is larger with a higher slope gradient. East and west directions are the dominant sliding directions. The areas with Cretaceous and Quaternary strata are the main areas of the Gulang seismic landslides. The X intensity zone triggered the most landslides. In addition, landslides often occur in regions near rivers and faults. This paper provides a scientific reference for exploring the development regularities of landslides triggered by the 1927 Gulang earthquake and effectively mitigating the landslide disasters of the earthquake.  相似文献   

20.
The investigation on damages to frozen soil sites during the West Kunlun Mountains Pass earthquake with Ms 8.1 in 2001 shows that the frozen soil in the seismic area is composed mainly of moraine, alluvial deposit, diluvial deposit and lacustrine deposit with the depth varying greatly along the earthquake rupture zone. The deformation and rupture of frozen soil sites are mainly in the form of coseismic fracture zones caused by tectonic motion and fissures,liquefaction, seismic subsidence and collapse resulting from ground motion. The earthquake fracture zones on the surface are main brittle deformations, which, under the effect of sinlstral strike-slip movement, are represented by shear fissures, tensional cracks and compressive bulges. The distribution and configuration patterns of deformation and rupture such as fissures, liquefaction, seismic subsidence and landslides are all related to the ambient rock and soil conditions of the earthquake area. The distribution of earthquake damage is characterized by large-scale rupture zones, rapid intensity attenuation along the Qinghai-Xizang (Tibet) Highway, where buildings distribute and predominant effect of rock and soil conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号