首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
True rhyolites are found in two contrasting occurrences in Central America: in recent obsidian domes in the basalt-rhyolite association of southeastern Guatemala, and in late Tertiary ignimbrites in Honduras and adjacent parts of Nicaragua. Both are on the inner side of the main volcanic axis in a region that is visibly underlain by older metamorphic and plutonic rocks. They have not been found in southern Central America where the basement series consists only of older volcanic rocks, eugeosynclinal sediments, and peridotite. Rhyolite obsidian has erupted alternately with basalts in the Obrajuelo Complex of southeastern Guatemala. Cumulate rocks and moderate compositional variations in the basalts provide evidence of limited crystal fractionation, but abundant venocrysts and partially fused xenoliths indicate that partial melting of the plutonic and metamorphic basement may also have been important. Extremely siliceous rhyolite ignimbrites with a volume of several thousands of cubic kilometers closely resemble the rhyolite obsidians in their major element compositions, but in contrast to the totally glassy obsidians they contain abundant phenocrysts of quartz and alkali feldspar. A few ignimbrites contain inclusions of partially melted basement rocks. The basalts with which they are associated have a limited compositional range. Melting experiments performed on rocks of the basement series, together with chemical, isotopic, and volumetric relations, indicate that the ignimbrites are products of partial fusion of the basement series, while obsidians of the Obrajuelo Complex have differentiated from more basic magmas by a process other than crystal fractionation.  相似文献   

2.
The oxygen isotope compositions and metamorphic mineral assemblages of hydrothermally altered rocks from the Del Puerto ophiolite and overlying volcaniclastic sedimentary rocks at the base of the Great Valley sequence indicate that their alteration occurred in a submarine hydrothermal system. Whole rock δ18O compositions decrease progressively down section (with increasing metamorphic grade): +22.4‰ (SMOW) to +13.8 for zeolite-bearing volcaniclastic sedimentary rocks overlying the ophiolite; +19.6 to +11.6 for pumpellyite-bearing metavolcanic rocks in the upper part of the ophiolite's volcanic member; +12.3 to +8.1 for epidote-bearing metavolcanic rocks in the lower part of the volcanic member; +8.5 to +5.7 for greenschist facies rocks from the ophiolite's plutonic member; +7.6 to +5.8 for amphibolite facies or unmetamorphosed rocks from the plutonic member.

Modelling of fluid-rock interaction in the Del Puerto ophiolite indicates that the observed pattern of upward enrichment in whole rock δ18O can be best explained by isotopic exchange with discharging18O-shifted seawater at fluid/rock mass ratios near 2 and temperatures below 500°C.18O-depleted plutonic rocks necessarily produced during hydrothermal circulation were later removed as a result of tectonism. Submarine weathering and later burial metamorphism at the base of the Great Valley sequence cannot by itself have produced the zonation of hydrothermal minerals and the corresponding variations in oxygen isotope compositions. The pervasive zeolite and prehnite-pumpellyite facies mineral assemblages found in the Del Puerto ophiolite may reflect its origin near an island arc rather than deep ocean spreading center.  相似文献   


3.
Two distinct major units are present in La Gomera island: the basal complex and the later volcanic formations. The basal complex is formed by basic and ultramafic layered plutonic rocks that show a zonal arrangement, and submarine sedimentary and volcanic rocks overlying them. The ensemble is cut by an extremely dense dyke swarm, amounting to 80% of the rock in volume. There is an important « stratigraphic » hiatus between the basal complex and the later volcanic formations. These are constituted of trachyticphonolitic and basaltic series separated by unconformities. A process of alkalinization of the host rocks produced by the intrusion of syenitic rocks is described. The consolidation of the plutonic rocks could have happened in a reservoir beneath a volcano or else at deep levels of the crust or in the upper mantle. In either case, after consolidation, they were uplifted and croded and then submarine materials covered them. New uplift accompanied by the intrusion of the dyke swarm took place later. This dyke swarm is thought to represent the roots of an important and now destroyed volcanic field. It is postulated that the repeated intrusion of magmas in the area was possible due to the development of a zone of weakness within a field of tensional stresses that could be related to the formation of the atlantic rift. The trachytic-phonolitic formation situated imediately over the main unconformity represents the roots of an croded volcanic field formed by the accumulation of cumulo domes and related materials.  相似文献   

4.
Magnetic anisotropy of rocks and its application in geology and geophysics   总被引:49,自引:0,他引:49  
Magnetic anisotropy in sedimentary rocks is controlled by the processes of deposition and compaction, in volcanic rocks by the lava flow and in metamorphic and plutonic rocks by ductile deformation and mimetic crystallization. In massive ore it is due to processes associated with emplacement and consolidation of an ore body as well as to ductile deformation. Hence, it can be used as a tool of structural analysis for almost all rock types. Morcover, it can influence considerably the orientation of the remanent magnetization vector as well as the configuration of a magnetic anomaly over a magnetized body. For these reasons it should be investigated in palaeomagnetism and applied geophysics as well.  相似文献   

5.
The Izumi Group in southwestern Japan is considered to represent deposits in a forearc basin along an active volcanic arc during the late Late Cretaceous. The group consists mainly of felsic volcanic and plutonic detritus, and overlies a Lower to Upper Cretaceous plutono‐metamorphic complex (the Ryoke complex). In order to reconstruct the depositional environments and constrain the age of deposition, sedimentary facies and U–Pb dating of zircon grains in tuff were studied for a drilled core obtained from the basal part of the Izumi Group. On the basis of the lithofacies associations, the core was subdivided into six units from base to top, as follows: mudstone‐dominated unit nonconformably deposited on the Ryoke granodiorite; tuffaceous mudstone‐dominated unit; tuff unit; tuffaceous sandstone–mudstone unit; sandstone–mudstone unit; and sandstone‐dominated unit. This succession suggests that the depositional system changed from non‐volcanic muddy slope or basin floor, to volcaniclastic sandy submarine fan. Based on a review of published radiometric age data of the surrounding region of the Ryoke complex and the Sanyo Belt which was an active volcanic front during deposition of the Izumi Group, the U–Pb age (82.7 ±0.5 Ma) of zircon grains in the tuff unit corresponds to those of felsic volcanic and pyroclastic rocks in the Sanyo Belt.  相似文献   

6.
Samples were systematically collected from metamorphic basic volcanic rocks in the Jiehekou and Xiyupi areas on both sides of the Lüliang Mountains, Shanxi Province and analyzed for their major elements, trace elements and rare earth elements (REE). The geochemical characteristics of their major, trace and rare-earth elements indicated that the metamorphic basic volcanic rocks in this area were emplaced in the tectonic environment like a modern continental rift. Sm-Nd and Rb-Sr isotope chronological studies demonstrated that the Jiehekou Group metamorphic basic volcanic rocks were formed during the 2600-Ma crust/mantle differentiation event, and were transformed by granulite facies metamorphism during the late Neo-Archaean period (2500 Ma ±), making the Sm-Nd systematics of the rocks reset. During the late Paleoproterozoic period (1800 Ma ±) the Rb-Sr systematics of the rocks were disturbed again in response to the Lüliang movement. Since the extent of disturbance was so weak that the Sm-Nd systematics was not affected, the age of 1600 Ma ± obtained from this area seems to be related to local magmatic activities within the craton. Research results lend no support to the idea that the Lüliang Group was formed during the Archaean. Instead, it should be formed during the Proterozoic.  相似文献   

7.
Origin of the Kunlun Mountains by arc-arc and arc-continent collisions   总被引:12,自引:0,他引:12  
Abstract The Kunlun Mountains were formed by early Mesozoic arc-arc and arc-continent collisions. The Middle Kunlun Are was the outer volcanic arc of the Paleozoic Asiatic continent, and the arc-related magmatic activities from the Proterozoic to Mesozoic are recorded by numerous volcanic and plutonic rocks of the area. Several back-arc basins and relic arcs exist north of the arc and the north Kunlun arc is one of these. The Kudi mélange of Kunlun was formed in a south-dipping subduction zone when the basin between the north and middle Kunlun arcs was consumed by the process of back-arc basin collapse, and the ophiolite mélange marked the suture zone where the two arcs collided. The Mazar mélange was formed in the north-dipping subduction zone under the middle Kunlun arc, and the mélange marks the main Paleotethys suture where the Qogir-Karamilan rocks of the Qangtang block (a fragment of Gondwanaland) is sutured on to Laurentia. The geology of Kunlun emphasizes the importance of arc-arc and arc-continent collisions in mountain-building processes.  相似文献   

8.
The Sawadani greenstone in the Chichibu Paleozoic System is an ancient submarine volcanic complex consisting of pillow lavas and hyaloclastites. The volcanism is divided into two periods. Alkali basalt was erupted in the first period and two shield-shaped cones were formed. After a period of dormancy the volcanism of the second period took place and a cone was formed by eruptions of lavas ranging in composition from mildly alkaline to tholeiitic basalt. The top of the volcano nearly reached the sea surface and was finally about 3.7 km above the base. A limestone cap and volcanic conglomerate were deposited on the summit. The base rests conformably on upper Carboniferous sandstone and subordinate mudstone derived from a continent or mature island arc. Many feeding channels of lava cut the volcanic body and underlying sedimentary formation. Sedimentation proceeded concurrently on the surrounding sea floor, so that volcanic and sedimentary material is interlayered.The Sawadani greenstone, although it occurs in the high-P/T metamorphic belt, is not believed to be a fragment of oceanic crust (ophiolite complex) formed by oceanic ridge volcanism and later carried into a convergent zone. It is a seamount formed on and within a sedimentary sequence near a continent or island arc. The magma changed from alkaline to tholeittic as the volcano grew.It cannot be assumed that all metavolcanic rocks formed in high-pressure metamorphic terranes are fragments of oceanic crust.  相似文献   

9.
The petrology of the last few decades considers two main divisions of magmatic associations: the volcanic and the plutonic ones. But new field data obviously show that modern systems of igneous rocks should have three, rather than two, main divisions: volcanic, plutonic and volcano-plutonic. These three types of rock assemblages reflect the overall progress of igneous activity within the diverse natural processes. Only by admitting the presence of accompanying volcanic phenomena from shallow to intermediate plutonic phenomena, and vice versa, one can gain an understanding of magmatic evolution actually existing under certain geological conditions. The principal type of volcano-plutonic formations is associated with the late and postorogenic stages of tectono-magmatic cycles and is endowed with common petrographic and metallogenic features. The well studied volcano-plutonic complexes from the Late Mesozoic « East Asian belt », here described, illustrate this point of view. Some additional examples from certain other belts of folding have proved the regularity of such a trend in the tectono-magmatic evolution.  相似文献   

10.
Makoto Takeuchi 《Island Arc》2013,22(4):477-493
In this study, the chemical and optical features of detrital garnets from the Middle Permian to Upper Triassic sandstones in the South Kitakami Belt, Northeast Japan, were examined to reveal the tectonic movement in the provenance. The sandstones contain a large amount of detrital grandite garnet grains with a wide range of andradite content. Among them, some grandite garnet grains show optically anisotropic features and rarely oscillatory zoning and sector twinning. The proportion of the detrital anisotropic grandite garnet increases from the Permian to the Middle Triassic and decreases in the Late Triassic. Such grandite garnets with various andradite contents occur in skarn deposits. Isotropic grandite garnets in the early stage of skarn evolution are distributed widely around a pluton, which affects the thermal metamorphism of the surrounding strata. However, anisotropic grandite garnets are formed along veinlets and fractures in the middle to late hydrothermal stage as the pluton cools, and their distribution is limited to a narrower area near the pluton compared to the metamorphic aureoles formed in the early stage. Changes in the chemical and optical features of the detrital garnets indicate a progressive denudation of the plutonic body accompanying skarn deposits in the provenance. The proportion of detrital anisotropic grandite garnet grains among all of the detrital grandite garnet is considered to be a sensitive indicator of the denudation level in a deeper part of the volcanic arc in association with skarn deposits, together with traditional sandstone composition datasets. This newly proposed method should be useful for clarifying the paleogeography during the Permian to Triassic in the East Asian continental margin, associated with uplift and denudation of the Permian volcanic arc, which seems to have been induced by the collision of the North China and South China Blocks.  相似文献   

11.
Stratovolcanoes and lava domes are particularly susceptible to sector collapse resulting from wholesale rock failure as a consequence of decreasing rock strength. Here, we provide insights into the influence of thermal and cyclic stressing on the strength and mechanical properties of volcanic rocks. Specifically, this laboratory study examines the properties of samples from Mount St. Helens; chosen because its strength and stability have played a key role in its history, influencing the character of the infamous 1980 eruption. We find that thermal stressing exerts different effects on the strengths of different volcanic units; increasing the heterogeneity of rocks in situ. Increasing the uniaxial compressive stress generates cracking, the timing and magnitude of which was monitored via acoustic emission (AE) output during our experiments. AEs accelerated in the approach to failure, sometimes following the pattern predicted by the failure forecast method (Kilburn 2003). Crack damage during the experiments was tracked using the evolving static Young’s modulus and Poisson’s ratio, which represent the quasi-static deformation in volcanic edifices more accurately than dynamic elastic moduli which are usually implemented in volcanic models. Cyclic loading of these rocks resulted in a lower failure strength, confirming that volcanic rocks may be weakened by repeated inflation and deflation of the volcanic edifice. Additionally, volcanic rocks in this study undergo significant elastic hysteresis; in some instances, a material may fail at a stress lower than the peak stress which has previously been endured. Thus, a volcanic dome repeatedly inflated and deflated may progressively weaken, possibly inducing failure without necessarily exceeding earlier conditions.  相似文献   

12.
Abstract The petrogenesis of the Ulsan carbonate rocks in the Mesozoic Kyongsang Basin of South Korea, which have previously been interpreted as limestone of Paleozoic age, is reconsidered in the present study. Within the Kyongsang Basin, a small volume of carbonate rocks, containing a magnetite deposit and spatially associated ultramafic rocks, is surrounded by sedimentary, volcanic and granitic rocks of the Mesozoic age. The simple cross‐cutting relationships and other outcrop features of the area indicate that the carbonate rocks are an intrusive phase and younger than the other surrounding Mesozoic rocks. The Ulsan carbonates have low concentrations of rare earth elements (REE) and trace elements with the carbon and oxygen isotope values in the range of δ13CPDB = 2.4 to 4.0‰ and δ18OSMOW = 17.0 to 19.5‰. Outcrop evidence and geochemical signatures indicate that the Ulsan carbonates were formed from crustal carbonate melts, which were generated by the melting/fluxing of crustal carbonate materials, caused by the emplacement‐related processes of alkaline A‐type granitic rocks. Compared to typical mantle‐derived carbonatites associated with silica‐undersaturated, strongly peralkaline systems, the relatively small size and geochemical characteristics of the Ulsan carbonates reflect carbonatite genesis in a silica‐saturated, weakly alkali intrusive system. Major deep‐seated tectonic fractures formed by the collapse of the cauldron or the rift system associated with the opening of the East Sea (Japan Sea) might have facilitated the ascent of the crustal carbonate melts.  相似文献   

13.
For lack of reliable isotopic chronological data, the metamorphic rock series in the Faku region of northern Liaoning has long been regarded as the platform basement. Recent studies reveal that these deformed and metamorphosed rocks, with a variety of protoliths of plutonic intrusions and supracrustal volcanic and sedimentary rocks, were genetically related to later ductile shearing events, and they, together with the syntectonic intrusions, constituted the large-scale Faku tectonites. In this paper, we report new 40Ar/39Ar data on hornblende, biotite, and K-feldspar from typical granitic mylonites in this suite of tectonites. The plateau age 256 Ma of FK53 hornblende and the high-temperature plateau age 262 Ma of Fk51-1 biotite should represent the cooling ages when the granites, formed as a result of Paleozoic oceanic crustal subduction beneath the continental crust or collision of multiple micro-continental blocks, were exhumed into shallow crustal levels. The plateau age 231 Ma of FK51-1 boitite and the apparent age 227 Ma of Fk51-2 K-feldspar are interpreted to record the time of ductile deformation occurring under greenschist facies conditions, i.e. the formation age of the Faku tectonites, while the age gradient from 197 Ma to 220 Ma of Fk51-2 K-feldspar probably record the subsequent stable uplift-cooling process. The tectonic exhumation event indicated by the plateau age 180 Ma of Fk51-2 K-feldspar may be associated with the onset of paleo-Pacific subduction beneath the North China plate. In addition, the U-Pb dating of FK54 zircon from later-intruded granite yields the age of crystallization of this super-unit intrusion at 159 Ma, thus establishing an upper limit for the formation age of the Faku tectonites, while the plateau age 125 Ma of Fk54 K-feldspar most likely corresponds to the rapid cooling and tectonic denudation event associated with the final collision between the Siberian plate and the North China plate. These isotopic ages provide important geochronological constraints for re-evaluating the tectonic essence of the Faku Faulted Convex and ascertaining the suturing boundary between the North China Platform and the Xingmeng Fold System.  相似文献   

14.
Abstract The Mariana Trough is an active back-arc basin, with the rift propagating northward ahead of spreading. The northern part of the Trough is now rifting, with extension accommodated by combined stretching and igneous intrusion. Deep structural graben are found in a region of low heat flow, and we interpret these to manifest a low-angle normal fault system that defines the extension axis between 19°45' and 21°10'N. A single dredge haul from the deepest (∼5.5 km deep) of these graben recovered a heterogeneous suite of volcanic and plutonic crustal rocks and upper mantle peridotites, providing the first report of the deeper levels of back-arc basin lithosphere. Several lines of evidence indicate that these rocks are similar to typical back-arc basin lithosphere and are not fragments of rifted older arc lithosphere. Hornblende yielded an 40Ar/39Ar age of 1.8 ± 0.6 Ma, which is interpreted to approximate the time of crust formation. Harzburgite spinels have moderate Cr# (<40) and coexisting compositions of clinopyroxene (CPX) and plagioclase (PLAB) fall in the field of mid-ocean ridge basalt (MORB) gabbros. Crustal rocks include felsic rocks (70-80% SiO2) and plutonic rocks that are rich in amphibole. Chemical compositions of crustal rocks show little evidence for a 'subduction component', and radiogenic isotopic compositions correspond to that expected for back-arc basin crust of the Mariana Trough. These data indicate that mechanical extension in this part of the Mariana Trough involves lithosphere that originally formed magmatically. These unique exposures of back-arc basin lithosphere call for careful study using ROVs and manned submersibles, and consideration as an ocean drilling program (ODP) drilling site.  相似文献   

15.
During the geological survey of the metamorphic rocks in Xingning-Wuhua region on the western side of Wuyi Mountain, South China, we discovered the Neoproterozoic rhyolite and rhyolitic greywacke for the first time that outcrop in the Proterozoic metamorphic rocks near Jingnan Town of Xingning County, eastern Guangdong Province. A systematic research on petrology, geochemistry and geochronology of rhyolitic rocks was conducted to understand their tectonic setting and formation age. The Jingnan rhyolite is interbedded with a coeval greywacke, with a total thickness of 60 m; both rhyolite and greywacke display a similar folding and metamorphic pattern. Meta-rhyolite consists of groundmass and phenocrystals including sanidine, orthoclase, and quartz with distinct undulose extinction; the groundmass has been recrystallized into fine-grain feldspar, quartz and sericite aggregation. Meta-greywacke is composed of crystallinoclastic grains (sanidine, orthoclase, quartz and oligoclase) and clay groundmass. Zircon grains used for the SHRIMP U-Pb analysis are light brown-colored and euhedral or subeuhedral. Dating data suggest two age groups; eight grains of magmatype zircon with an idiomorphic form yield an age of 972±8 Ma, and the other seven weakly corroded grains of zircon with euhedral to subeuhedral shape construct an average age of 1097±11 Ma, which were captured from older rocks by an uplifting magma, implying that a late Mesoproterozoic basement exists in the Nanling region. In addition, one Paleoproterozoic age, 2035±11 Ma, is obtained from a rounded detrital zircon, indicating that a Paleoproterozoic thermal event took place in the South China. Geochemically, the Jingnan rhyolitic rocks are characterized by high K2O content, intermediate Al2O3 content, with the ACNK value 0.98―1.11, and belonging to high-K alkaline series. They are rich in ΣREE, Rb, Th and Ce, depleted in Ba, Sr, Eu, Ti, P and Nb-Ta, and with moderate negative Eu and Sr anomalies. These features indicate that the Jingnan volcanic rocks have an affinity of continental arc that is similar to those of acid volcanic rocks in the SE-China Coastal Region, in other words, a Neoproterozoic tectonomagma event might have taken place in the western Wuyi region, leading to an eruption of high-K calc-alkaline granitic magma.  相似文献   

16.
The oxygen isotope systematics of Tertiary volcanic rocks of east-central Nevada and of plutonic and metamorphic rocks of the Ruby Mountains-East Humboldt Range core complex provide complementary evidence for major18O-depletion and 18O/16O homogenization of mid-crustal rocks during metamorphism and magmatism. The δ18O value of crustal source material for silicic volcanic rocks decreased from between +9 and +11‰ to between +7 and +8‰ over 5 Ma. Mid-crustal metasedimentary and granitic rocks in the East Humboldt Range have δ18O values very similar to the volcanic rocks and values are lower and more homogeneous at deeper structural levels. Exchange with deep-seated mantle-derived igneous rocks, or fluids derived therefrom, is the most plausible18O-depletion mechanism. Intrusion of these mafic magmas promoted crustal melting and fluid migration. Homogenization of 18O/16O resulted from migration of high-temperature fluids and melts at mid-crustal levels, and was less effective at higher structural levels where the crust was dominated by less permeable carbonate rocks.  相似文献   

17.
Ryota  Mori  Yujiro  Ogawa 《Island Arc》2005,14(4):571-581
Abstract   Structures developed in metamorphic and plutonic blocks that occur as knockers in the Mineoka Ophiolite Belt in the Boso Peninsula, central Japan, were analyzed. The aim was to understand the incorporation processes of blocks of metamorphic and plutonic rocks with an arc signature into the serpentinite mélange of the Mineoka Ophiolite Belt in relation to changes in metamorphic conditions during emplacement. Several stages of deformation during retrogressive metamorphism were identified: the first faulting stage had two substage shearing events (mylonitization) under ductile conditions inside the crystalline blocks in relatively deeper levels; and the second stage had brittle faulting and brecciation along the boundaries between the host serpentinite bodies in relatively shallower levels (zeolite facies). The first deformation occurred during uplift before emplacement. The blocks were intensively sheared by the first deformation event, and developed numerous shear planes with spacing of a few centimeters. The displacement and width of each shear plane were a few centimeters and a few millimeters, respectively, at most. In contrast, the fault zone of the second shearing stage reached a few meters in width and developed during emplacement of the Mineoka Ophiolite. Both stages occurred under a right-lateral transpressional regime, in which thrust-faulting was associated with strike-slip faulting. Such displacement on an outcrop scale is consistent with the present tectonics of the Mineoka Belt. This implies that the same tectonic stress has been operating in the Boso trench–trench–trench-type triple junction area in the northwest corner of the Pacific since the emplacement of the Mineoka Ophiolite. The Mineoka Ophiolite Belt must have worked as a forearc sliver fault during the formation of a Neogene accretionary prism further south.  相似文献   

18.
As for the metamorphic rock series distributed on the “Faku Faulted Convex (FFC)”[1] of the northern Liaoning, the earliest geologic investigation divided it into the Langzishan, Dashiqiao and Gaixian forma-tions1) and considered it to be equivalent to the Liaohe Group in the eastern Liaoning, whereas Liaoning Bu-reau of Geology and Mineral Resources (LBGMR) included it into the Lower Proterozoic basement[1]. Recent 1︰50000 scale geological mapping2) reveals that this deformed and …  相似文献   

19.
Aeromagnetic data of the Akonolinga-Mbama region are analyzed in order to elucidate the subsurface geology of the area. The available data in the form of a residual aeromagnetic map is interpreted as a vast magnetically quiet region, and complex zones which do not correlate with the surface geology of the region.Within the magnetically quiet zone, a high negative circular elongated anomaly zone seems to represent an intrusion of a plutonic rock into the metamorphic formations of the region. Spectral analysis and two-and-a-half dimensional (2½-D) modeling are used to estimate the depth of the causative bodies and determine the source rocks along three profiles crossing the suspected areas. Models from various zones of granitic intrusions are obtained, thereby proposing some shallow fault lines along zones of contact. This permits us to mark out the northern margin of the Congo Craton, thus enabling us to distinguish the cratonic formations from the Pan African fold belt. Part of the belt has been thrust over the northern portion of the Congo Craton in Cameroon.  相似文献   

20.
Oxygen isotope data are reported for 27 igneous rocks of Mesozoic to Quaternary age from the Central Andes. 26–29°S. The plutonic rocks, and most of the volcanics, have δ18O values between 6.2 and 8.3‰.The whole-rock δ18O values show a weak correlation with initial87Sr/86Sr data. This O-Sr array differs from documented trends for calc-alkaline plutonic suites from California, Scotland and northern Italy, but overlaps with data for volcanic and plutonic rocks from Ecuador, northern Chile and southern Perú.The oxygen isotope results indicate that the magmas evolved without significant contamination from supracrustal rocks (e.g., rocks that experienced18O enrichment during surficial weathering). The available O, Sr and Pb isotopic data for these rocks are best explained by magma generation in the upper mantle or lower crust. From the Late Mesozoic on, the87Sr/86Sr values were modified at depth by isotopic exchange between the magma and a continually thickening crust of plutonic rocks of Late Precambrian to early Mesozoic age.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号