首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
基于提出水库水污染质迁移转化的三维数学模型,详细讨论了用无单元配点法求解三维水质模型的离散方法和计算过程.通过这些模型和方法,获取指定时间内密云水库库区水质状况、各种污染质分布、变化的三维定量描述.给出用2003年的边界条件对2003,2004,2005年库区的总氮总磷分布作出模拟和预测,得到其主要发展趋势.计算发现:底泥对总磷的贡献比较显著.从整体看,库区底泥及其它综合因素对总磷的影响因子很大.库东潮河流域表层水的生物或其它作用对总磷的影响比较突出.春夏秋库区内总氮浓度分布基本处于慢速递减趋势,而总磷浓度则逐步增高.秋冬春刚好相反,总氮浓度增高,总磷浓度降低.从年度发展整体看,总氮基本处于稳定态,总磷却存在逐年增长趋势,但这种趋势并不显著.  相似文献   

2.
为了确定百花水库营养盐变化特征,选取百花水库5个监测点2014年1月-2018年7月共28个月份的水质实测数据,分析溶解氧、高锰酸盐指数、氨氮、总磷和总氮的年际变化特征.采用基于熵权法赋权的贝叶斯理论对5个监测点的水质综合状况进行评价,并结合水库的实际状况,从生态修复、工业污染源、沉积物中营养盐、水库季节性热分层及农业与生活污染源5个方面对其水质变化的影响因素进行分析.结果表明:2014-2018年水体环境波动较大;除总氮外,各污染指标浓度均有不同程度的下降;综合水质后验概率表明百花水库水质有逐渐变差的趋势;总氮和总磷治理应成为百花水库污染治理的主要方面;生态修复工程的开展和工业污染源的削减是百花水库水质转好的主要影响因素,农业与生活污染源的增加是百花水库水质转差的主要影响因素.  相似文献   

3.
入库河流与水库存在空间上的连续性,河流污染物输入是水库水质恶化的主要原因,对大伙房水库及其入库支流61个采样点的水质状况进行调查,并运用聚类分析和主成分分析对大伙房水库及入库支流的水质空间特性和主要污染物进行分析.聚类分析显示,按照水质相似性将大伙房水库及入库支流水质可分为上游区、下游区和库区3个典型空间区域.分别对3个区域进行主成分分析,结果显示:入库支流上游区和下游区水质主要影响因素为氨氮、总氮和化学需氧量,库区影响水质的主要因素为温度、p H值、浊度、溶解氧、电导率、氨氮和总氮.对上游、下游和库区水质均有显著影响的因子为氨氮和总氮,上游区、下游区和库区氨氮浓度均值分别为0.06、0.10和0.19 mg/L,总氮浓度均值分别为0.13、0.16和0.26 mg/L.入库河流下游区对水库水质影响较大,受社河和浑河污染物输入的影响,大伙房水库水质在空间上呈现社河入库区水质优于浑河入库区水质.并且库区氨氮和总氮浓度均与距岸边距离呈负相关,溶解氧和p H值均与距入库口距离呈负相关,表明入库河流污染物输入和环库区面源污染均对大伙房水库水质产生一定影响.  相似文献   

4.
研究输水对水库水质时空变化的影响有助于科学预测水体富营养化及防控水华暴发.本文以于桥水库为例,基于2011-2015年实测资料分析入库水质——水温、总氮(TN)、总磷(TP)与流量的相关关系;并以2012年为典型年,运用平面二维"水动力-水质"数学模型模拟库区水质变化随入库流量的响应关系.研究表明:(1)11月-次年4月水库水温受气温控制,入库与库区水温差异不明显;5-10月,非输水期库区上游水温最高,输水期入库温差随流量增大呈线性升高趋势,库区上游水温明显降低且出现谷值;(2)营养物(TN、TP)浓度变化规律全年基本一致,非输水期入库TN浓度高、TP浓度低,营养物在果河段汇集,库区营养物衰减浓度降低且浓度梯度平缓;输水期入库TN浓度随流量增大呈幂函数降低趋势、TP浓度呈线性升高趋势,营养物被输移至库区上游导致库区TN、TP浓度升高且浓度梯度增大;(3)库区水温谷值及TN、TP浓度峰值均滞后于果河流量变化,且库区南岸比北岸更易受果河来流影响污染更严重.  相似文献   

5.
密云水库被围堰隔为东、西两个库区.由于1999年以来华北地区的连续干旱,水库蓄水量迅速下降,两库区水体交换很少,相对稳定.2001年至2002年的调研结果显示,东库区比西库区BOD5、TN、TP、Fe、浮游藻类细胞密度分别高出16.7%、40.2%、46.7%、161.1%和41.8%,TSIm显示西库区的营养程度低于东库区,主要原因是:(1)西库区水体深于东库区,自净能力相对较强.(2)东库区以氮、磷为主的植物营养物的污染大于西库区;(3)由于潮河(东库区的主要入库河流)流域数座小铁矿的污染,东库区铁含量大于西库区.东库区水体中铁的浓度在适合浮游藻类生长的范围内,对浮游藻类,特别是蓝藻(Cyanophyta)的增殖有促进作用.有效地防治密云水库水体富营养化,应在统筹规划、分步实施的基础上,把防治的重点放在潮河流域.  相似文献   

6.
密云水库区域大气-土-水污染过程复合相关源   总被引:5,自引:1,他引:5  
采用密云水库15km处WMO区域空气污染本底站——上甸子站1990~2001年降水化学资料,并结合2002~2003年现场科学试验阶段获取的大气干沉降和湿沉降资料,从大气-土-水污染过程的复合相关源角度,综合分析了大气干、湿沉降以及白河沿岸农田、矿区和城镇污染源对密云水库的水质综合影响特征.分析结果表明,该时段密云水库区域大气降水中离子以SO42?,NO3?,NH4+和Ca2+为主;密云水库湿酸沉降量夏半年(4~9月)大于冬半年(10~3月),其年际变化呈上升趋势,年平均达1038.45t,最高年份(1996)达1766.31t,最低年份(1994)为604.02t;密云水库区域大气降水pH的多年平均值为5.20,降水呈弱酸性,pH值年际变化呈下降趋势.密云水库水体不同深层的pH值均大于7.0.pH值垂直和水平空间分布呈非均一性特征,同一区域pH值随水深呈下降趋势;2002年和2003年密云水库降尘量分别为13513.08t和3577.64t,春季降尘量为全年之首,分别占其全年的61.91%和44.56%.由于大气干、湿沉降中含有多种重金属元素及有害元素,它们可能在一定程度上对库水富营养化、潜在重金属污染以及库水酸化起“加剧”作用.上述综合分析结果揭示出密云水库区域大气-土-水污染过程复合相关源特征及其多圈层相互作用效应.另外,夏季(雨季)是局地土壤污染源由于受暴雨或强降水冲刷后通过入库水系山谷坡地汇流,引起区域性大气-土-水连锁污染过程,导致水库或河流水质污染.统计分析亦发现密云水库水质污染可能与水库周边及上游局部区域降水冲刷和汇流因素相关.水库污染物浓度变化与水库上游局地区域降水量呈较显著的相关,这些相关特征揭示了水库水质污染过程大气-土-水多圈层相互作用效应.提出了水库污染复合相关源分析法观点及其追踪入库水系上游污染源空间分布技术途径.  相似文献   

7.
李涛  夏润亮  夏军强  张俊华  俞彦  吴丹 《湖泊科学》2021,33(5):1532-1540
支流作为水库综合效益发挥的重要组成部分,其河口泥沙大幅淤积会影响水库综合效益的发挥.选取多沙河流水库黄河小浪底库区畛水、石井两支流作为典型实例,在对1999-2015年汛后水库的来水来沙、水库调度、库区干支流淤积量与形态分析基础上,研究干支流淤积形态的变化,重点研究支流口门拦门沙坎抬升变化特征,结果表明:支流的分流及淤积与入库流量、含沙量及库区的淤积形态有关.入库流量越大,支流分流比小,支流淤积规模小;入库含沙量越大,支流分沙比越大,支流淤积规模越大.  相似文献   

8.
百花湖是贵阳市重要的城市饮用水源地,并且近年来经常发生水质异常现象.本文利用2009-2018年百花湖长时间序列的监测数据,采用综合营养状态指数法和Pearson相关性分析,研究了百花湖10年间的水质变化特征和影响因素.结果表明:1)库区叶绿素a(Chl.a)、总磷(TP)、总氮(TN)、高锰酸盐指数(CODMn)和透明度(SD)的浓度范围分别是3.43~39.72 mg/m3、0.034~0.115 mg/L、1.200~2.759 mg/L、1.41~5.51 mg/L和0.75~2.07 m,且高氮磷比(12~63)表明百花湖是磷限制型.2)在空间上,TP、TN、氨氮、CODMn和Chl.a浓度沿水体流向逐渐降低,SD呈相反变化趋势.3)10年来,百花湖水质由Ⅳ类转变为Ⅲ类,综合营养状态由轻度富营养化状态转变为中营养状态,水质整体向好.4)入库支流是影响百花湖库区水质的主要因素,长期以来,东门桥河、南门河水质TP和TN等超标严重,给库区水质稳定达标带来威胁.5)百花湖Chl.a浓度与气温、水位、风速和TP等指标显著相关,是受水文、气象及营养盐因素的综合控制.未来在百花湖水环境保护治理过程中,应加大对东门桥河、南门河等重点支流的污染治理,加强对水动力学、气候变化等水文气象因素影响库区水质(藻类水华)的机制研究.  相似文献   

9.
2017年5月—2019年10月,对"南水北调"中线水源水库——丹江口水库库区水体7个监测位点、0~20 m间4个水层的垂向叶绿素a (Chl.a)浓度与水质因子进行了季度性调查,以期了解不同位点、不同水层Chl.a分布的主要驱动因子.结果表明,丹江口水库各位点营养状态指数(TSI)均为中营养化状态.水体Chl.a浓度具有逐年增加的趋势,且极高值有逐渐增加的趋势.营养盐和Chl.a浓度均存在较大的空间异质性,入库区具有较高的总磷和氨氮浓度,汉江库区具有最高的Chl.a浓度,源头污染源控制和监测仍然是丹江口水库管理的重中之重.不同位点Chl.a浓度的驱动因子存在较大差异,汉江入库和大坝区Chl.a浓度分别受到硝态氮和p H的影响,而出水口大坝位点主要受到了水深、水温和氨氮的影响.丹江入库区Chl.a浓度受到了水深、氨氮、总磷和水温的影响,但丹江库区表现出了与其他生态区较大的区别,其Chl.a浓度主要受到水深和有机质输入的影响.因此,对丹江口水库各位点的管理,应该分不同生态区采取针对性的管理措施.本研究旨在为南水北调中线工程可持续的生态调度提供基础生态数据支持,为完善水库水源地的有效管理提供理论支撑.  相似文献   

10.
白洋淀浮游植物群落的时空变化及其与环境因子的关系   总被引:2,自引:0,他引:2  
浮游植物和环境因子是水生态中重要的组成部分,研究浮游植物与环境因子的相关关系可为白洋淀水资源管理及水生态保护提供理论基础.本研究于2018年非汛期(5月)和汛期(8月)分别对白洋淀淀区8个采样点的浮游植物及环境因子进行调查分析.采用Pearson相关性分析法筛选主要环境因子,分析白洋淀浮游植物群落结构变化和主要环境因子的分布特征,以及两者间的相互关系.结果表明,汛期主要环境因子为溶解氧(DO)、高锰酸盐指数(CODMn)、总氮(TN)和总磷(TP),非汛期主要环境因子为DO、CODMn、氨氮(NH_3-N)和TP.汛期和非汛期检出浮游植物分别为5门38种和6门43种,浮游植物丰度分别为415.30×10~5~1018.14×10~5cells/L和249.62×10~5~454.21×10~5cells/L,优势种分别为6种和10种,且基本为蓝藻和绿藻.浮游植物群落Shannon-Wiener多样性指数(H')、Margalef物种丰富度指数(d M)、Pielou均匀度指数(J)和物种多样性阈值4项指数均表明汛期浮游植物多样性小于非汛期.浮游植物群落特征与水质关联性较强,水质较好区域(如淀区中心) H'和J均较高,反之在水质较差区域(如府河、孝义河等汇入口) H'和J较低.TP和DO是影响汛期浮游植物群落特征的关键因素,CODMn和TP是影响非汛期浮游植物群落特征关键因素.水质评价结果表明白洋淀水质整体处于富营养状态,与2005年以来对白洋淀进行的3次浮游植物生态调查结果相比,淀区浮游植物多样性与均匀度显著下降,表明淀区富营养化程度持续加深.  相似文献   

11.
洞庭湖湖区水质时空演化(1983-2004年)   总被引:6,自引:2,他引:6       下载免费PDF全文
根据洞庭湖湖区的1983-2004年的水质监测数据,参照GB3838-2002中Ⅲ类水质标准,运用内梅罗水污染指数法进行水质评价,分析了洞庭湖湖区22年来的水质时空变化.结果表明:洞庭湖湖区水质污染在时间上呈有升有降的波动变化.洞庭湖湖区丰水期和洪水期的水质较差,但是从2002年以后,丰水期的水质逐渐好于平水期.污染空间变化表现为入湖河道的污染程度高于湖体,湖体污染呈西洞庭湖的污染较为严重,南洞庭湖其次,东洞庭湖的水质仍较好的格局.  相似文献   

12.
近200年来黑河下游天鹅湖湖泊沉积记录的环境变迁   总被引:12,自引:2,他引:12  
根据2002-2004年洞庭湖水质监测数据,参照GB3838-2002中Ⅲ类水质标准,选用内梅罗水污染指数法和黄浦江污染指数对洞庭湖水质现状进行评价,结果表明:(1)洞庭湖水体的主要污染指标是总磷,总氮和粪大肠菌群;(2)黄浦江污染指数平均值为0.27,所以洞庭湖12个断面水质无黑臭现象发生;(3)枯水期西洞庭湖和南洞庭湖水质污染最严重,平水期西洞庭湖水质污染最严重,洞庭湖丰水期的污染程度小于平水期;(4)洞庭湖的大部分水体的水质主要处于轻度污染的状态,局部水体的水质在枯水期达到重污染的状态.  相似文献   

13.
Abstract

An artificial neural network, mid- to long-term runoff forecasting model of the Nenjiang basin was established by deciding predictors using the physical analysis method, combined with long-term hydrological and meteorological information. The forecasting model was gradually improved while considering physical factors, such as the main flood season and non-flood season by stage, runoff sources and hydrological processes. The average relative errors in the simulation tests of the prediction model were 0.33 in the main flood season and 0.26 in the non-flood season, indicating that the prediction accuracy during the non-flood season was greater than that in the main flood season. Based on these standards, forecasting accuracy evaluation was conducted by comparing forecasting results with actual conditions: for 2001 to 2003 data, the pass rate of forecasting in the main flood season was 50%, while it was 93% in the non-flood season; for 2001–2010, the respective values were 45% and 72%. The accuracy of prediction was found to decrease as the length of record increases.

Editor D. Koutsoyiannis, Associate editor A. Viglione

Citation Li, H.-Y. Tian, L., Wu, Y., and Xie, M., 2013. Improvement of mid- to long-term runoff forecasting based on physical causes: application in Nenjiang basin, China. Hydrological Sciences Journal, 58 (7), 1414–1422.  相似文献   

14.
三峡工程运行前后洞庭湖水质变化分析   总被引:2,自引:1,他引:1  
张光贵  王丑明  田琪 《湖泊科学》2016,28(4):734-742
为了解三峡工程运行前后洞庭湖水质变化,基于1996 2013年洞庭湖水质监测数据,采用内梅罗污染指数(IP)法对三峡工程运行前后洞庭湖水质进行评价,并对洞庭湖水质与主要污染物的时空变化特征进行分析.结果表明,1996 2013年洞庭湖IP值在1.10~2.20之间,平均值为1.63,水质属轻污染~污染,总体变化平稳,但从2010年起,洞庭湖IP值连续低于其多年平均值,总体水质趋好;主要污染物为总磷和总氮,总磷浓度变化平稳,总氮浓度则呈显著上升趋势.与三峡工程运行前相比,三峡工程运行后洞庭湖全年和汛期总氮浓度以及南洞庭湖IP值和总氮浓度显著升高,南洞庭湖水质显著恶化.洞庭湖IP值和总磷浓度的水期分布格局均由三峡工程运行前的汛期非汛期变化为三峡工程运行后的非汛期汛期,其空间分布格局均由三峡工程运行前的西洞庭湖东洞庭湖南洞庭湖变化为三峡工程运行后的西洞庭湖南洞庭湖东洞庭湖;从2010年起,洞庭湖IP值的空间分布格局发生新的变化,其大小顺序变化为东洞庭湖南洞庭湖西洞庭湖.三峡工程运行前后洞庭湖IP值与总磷浓度的时空变化与其水沙条件变化有关,总氮浓度的空间分布受三峡工程运行影响较小,主要受湘江、资水等"四水"流域氮污染的影响.  相似文献   

15.
《水文科学杂志》2013,58(1):124-134
Abstract

The three-route South-to-North Water Diversion Project (SNWDP), transferring water from the water-rich Yangtze River and its tributaries to the much drier area of North China for irrigation, industrial and domestic use, has been implemented in China since 2002. Thus, water quality in the Danjiangkou Reservoir, the water source area of the SNWDP's Middle Route, is of great concern. We investigate its water quality from 2004 to 2006 by monitoring some important physical (T, turbidity and SPM) and chemical (DO, pH, alkalinity, TDS, SpCond, ORP, CODMn and BOD) parameters and nutrient (nitrogen and phosphorus) contents. Consequently, their spatial and temporal patterns in the reservoir were examined. The results indicate that the water of the reservoir is of a Ca and HCO3 type, and the major pollutants are nitrogen and CODMn. Comparisons among the sampling sites show that water quality increases downstream, implying the self-purification capacity of the reservoir. The reservoir in general has better water quality in the dry season than in the wet season. Integrated basin management would be critical of the water quality in the Danjingkou Reservoir for the interbasin water transfer project.  相似文献   

16.
长时间序列水沙数据分析有助于科学评价流域尺度水土保持减流减沙效应,为科学开展区域水土保持成效评估提供实现路径.本文选取南方红壤区水土保持工程最为集中、持续时间最长的典型流域——平江流域,基于1975-2014年的逐日降水量、流量、含沙量数据,综合应用预置白M-K检验法、Theil-Sen趋势度估计法、Pettitt检验法与累积量斜率变化率比较法,开展河流水沙变化特征及归因分析,揭示长期水土流失治理对河流水沙的影响.结果表明:(1)1975-2014年平江年输沙量、汛期输沙量和非汛期输沙量均存在显著减少趋势,年均减少率分别为2.38×104、1.75×104和0.44×104t/a,汛期输沙量在流域开始实施系统水土流失治理时即发生突变,而年输沙量和非汛期输沙量在系列国家水土保持重点工程实施一段时间后方开始突变;(2)流域长期水土保持显著减少平江输沙,但对径流无显著影响,重点治理期、治理后期以水土保持为主的生态保护工程对输沙量减少的贡献均在94.0%以上,且生态保护工程对汛期输沙量减少的贡献较非汛期的更为突出;(3)以水土保持为主的长期生态保护工程导致平江全年、汛期、非汛期输沙量分别减少59.3%、60.7%和55.7%;(4)在剔除大型水利工程(尤其是大中型水库)建设影响后,南方红壤区可以基于长时间序列水沙数据分析科学评价流域尺度水土保持减流减沙效应.研究结果可以为南方红壤区流域尺度水土保持减流减沙效应评价提供参考,并有望为区域系列国家生态保护与建设工程的布局和管理提供科学依据.  相似文献   

17.
滇池新运粮河水质季节变化及河岸带生态修复的影响   总被引:3,自引:1,他引:2  
新运粮河作为一条重要的滇池入湖河流,其水质直接影响滇池的生态健康与环境安全.运用单因子水质标识指数法探讨新运粮河下游水质季节变化规律及影响因子,并分析河岸带修复方式(护岸改造)对河流水质的影响.结果表明:铵氮,总氮,总磷,化学需氧量随时间变化明显.在5-10月的雨季,各指标浓度呈下降趋势,11月至次年4月的旱季,降水量少,各指标浓度呈上升趋势,且显著高于雨季时浓度,监测河段全年水质为劣Ⅴ类.木桩护岸河段营养盐去除率明显高于直立混凝土堤岸河段的去除率,同一护岸类型河段夏季去除率显著高于冬季.  相似文献   

18.
Casey Lee  Guy Foster 《水文研究》2013,27(10):1426-1439
In‐stream sensors are increasingly deployed as part of ambient water quality‐monitoring networks. Temporally dense data from these networks can be used to better understand the transport of constituents through streams, lakes or reservoirs. Data from existing, continuously recording in‐stream flow and water quality monitoring stations were coupled with the two‐dimensional hydrodynamic CE‐QUAL‐W2 model to assess the potential of altered reservoir outflow management to reduce sediment trapping in John Redmond Reservoir, located in east‐central Kansas. Monitoring stations upstream and downstream from the reservoir were used to estimate 5.6 million metric tons of sediment transported to John Redmond Reservoir from 2007 through 2010, 88% of which was trapped within the reservoir. The two‐dimensional model was used to estimate the residence time of 55 equal‐volume releases from the reservoir; sediment trapping for these releases varied from 48% to 97%. Smaller trapping efficiencies were observed when the reservoir was maintained near the normal operating capacity (relative to higher flood pool levels) and when average residence times were relatively short. An idealized, alternative outflow management scenario was constructed, which minimized reservoir elevations and the length of time water was in the reservoir, while continuing to meet downstream flood control end points identified in the reservoir water control manual. The alternative scenario is projected to reduce sediment trapping in the reservoir by approximately 3%, preventing approximately 45 000 metric tons of sediment from being deposited within the reservoir annually. This article presents an approach to quantify the potential of reservoir management using existing in‐stream data; actual management decisions need to consider the effects on other reservoir benefits, such as downstream flood control and aquatic life. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
三峡大坝上下游水质时空变化特征   总被引:6,自引:2,他引:4  
为探索三峡大坝上下游(坝上99.9 km、坝下63.0 km、全长162.9 km)水质时空变化特征,运用主成分分析和方差分析对2016年近坝段水质时空变化特征进行了分析.主成分分析表明,水文因子流量(Q)、气温(T)、水位(Z)和水质因子(水温(WT)、pH、电导率(EC)、溶解氧(DO)、悬浮物(SS)、高锰酸盐指数(CODMn)、硫酸盐(SO42-)、氟化物(F-)、总硬度(T-Hard)、硝态氮(NO3--N)、总氮(TN)和硒(Se))的变化主导着研究区域水质变化;各采样点主成分得分和双因素方差分析结果显示研究区域水质因子时间变化主要呈现出季节和不同水库运行时期的差异.消落期(2-5月),T-Hard、F-、SO42-和EC是影响河流水质变化的主导因子;汛期(7-8月),Q、SS、CODMn、NO3--N、TN和Se是影响河流水质变化的主导因子;T和WT主导着汛末(9月)河流水质变化,并引起了DO等理化特性的变化;高水位运行期(12月),Cl-是影响河流水质变化的主导因子.现阶段,DO、有机污染物(CODMn)、无机盐(SO42-和F-)、营养盐类(NO3--N和TN)、类金属元素(Se)和水体的矿化程度(T-Hard)的变化主导着区域水质的变化,是三峡大坝近坝段水域水质的控制因子.方差分析表明,河流的理化特性(DO、pH和SS)、营养盐组分构成(NH3-N和NO3--N)、无机盐类(EC和Cl-)、石油类有机污染物及粪大肠菌群(FC)等指标在坝上与坝下断面存在显著性差异.气温、水温、降雨、含沙量的季节性影响因素和水库调度运行模式是影响近坝段水质时间差异的主要因子;空间差异主要受城区污染排放和三峡水库调度引起的坝上和坝下水文和水动力学条件差异影响.因此控制研究区域因人类活动等造成的外源性污染,并针对不同类污染物质的季节变化特征实施合理的水库运行方式是近坝段水质提升的关键.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号