首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Carbonatite-alkalic rocks occur in the form of dykes and small volcanic plugs in the area, with major central type volcanic activity restricted to Amba Dongar. The trappean flows of Blanford and Bose are identified as plagioclasecalcite rocks. An attempt is made to explain the origin of these rocks which are extensively cut by dykes of alkaline rocks, carbonatites and dolerites. By far the dominant lavas are «fissure phonolites» (Wright, 1963) and tinguaites. The chemical analyses of these rocks show that the magma is mainly of continental sodic alkaline suite, probably turning sodi-potassic, a suggestion drawn from the occurrence of lamprophyres and pseudoleucite tinguaites, and the higher potassium contents of some rocks. Bagh sediments are mainly represented by sandstones which show mild contact effects with carbonatite, especially in the south.  相似文献   

2.
Carbonatites are rarely igneous rocks distributed on the earth. The rocks usually form ring complexes with alkalic rocks, occurring in the environments of continental rift, collisional oro-genic zone and oceanic island[1, 2]. Numerous facts and experiment…  相似文献   

3.
The McClure Mountain — Iron Mountain alkalic complex, the largest of three Precambrian alkalic complexes in south-central Colorado, is an irregularly ovoid body about 8×6.5 kilometers in plan. It contains major petrologic units (in age sequence): 1) peridotite and ilmenite-magnetite lenses, 2) gabbro, 3) hornblende syenite, 4) ijolite and 5) nepheline syenite, whose internal arrangement is irregular. Dikes are numerous and varied both within the complex and in the surrounding Precambrian metasediments and meta-volcanics (Idaho Springs formation), granitoids and migmatites to a distance of 27 kilometers from the complex. Fenitization has only locally affected these wall rocks at their contacts with the complex. Dikes within the complex are chiefly light colored and of syenitic or nepheline syenitic composition. Texturally they range from aphanitic, through porphyritic with an aphanitic to fine-grained matrix, to uniformly medium-grained. Most of the intracomplex dikes (save the few carbonatites) are represented by compositionally equivalent major units within the complex. In contrast, the extracomplex dikes are chiefly lamprophyres and carbonatites, none of which has a compositionally similar unit within the complex. The carbonatite dikes are younger than the lamprophyres; where the two types co-occupy the same fracture, the lamprophyre has been carbonatized. The lamprophyres are represented by an extraordinary number of textural varieties, involving phenocrysts and phenocryst combinations of augite, barkevikite, olivine and plagioclase in varying matrix combinations of olivine, augite, barkevikite, biotite, magnetite, apatite, plagioclase and orthoclase. Many of the dikes can be classed as camptonites or olivine camptonites. The Goldie lamprophyres contain local marginal phases spectacularly marked by concentrically zoned ovoids. The Cabin dike is studded by megaphenocrysts of augite. The carbonatites are of three main types:
  1. Relatively homogeneous calcitic or dolomitic carbonatites with few accessories.
  2. Composite carbonate — hematitic potash feldspar bodies which, with diminution of carbonate, grade into feldspathic Th-RE veins.
  3. Carbonatites with abundant barite and/or fluorite, and rarer species. The Goldie carbonatite also contains a complex suite of aluminofluorides.
Many carbonatites and Th-RE veins emit, when broken, a fetid gas consisting of a mixture of fluorinated hydrocarbons of the C5 and C6 types along with F2, HF, and F2O. The fluorine has been derived from structurally degraded radioactive fluorite; the hydrocarbon gases appear to represent primary inclusions. Within the dike halo are two small breccia pipes consisting of fenitized, locally derived Precambrian gneiss blocks with minor fragments of transported biotitized lamprophyre in a subordinate calcitic matrix also containing aegirine, crocidolite, potash feldspar and hematite. The abundance of the lamprophyres, the great width of the dike halo, the lack of ring structure within the complex, the restriction of carbonatite to dikes, and the subordinate fenitization effects all combine to suggest that the McClure Mountain — Iron Mountain complex is now exposed at a relatively deep niveau, possibly near the mesozone — catazone boundary.  相似文献   

4.
The Monticchio Lakes Formation MLF is a newly identified carbonatite-melilitite tuff sequence which is exposed in the southwestern sector of the Vulture volcano. It is the youngest example ca. 0.13 m.y. of this type of volcanism in Italy, although other carbonatites of smaller volume, but with similar characteristics, have been discovered recently. This volcanic event occurred in isolation after a 0.35 m.y. period of inactivity at Vulture. The eruption produced two maar-type vents and formed tuff aprons mainly composed of dune beds of lapilli. Depositional features suggest that a dry surge mechanism, possibly triggered by CO2 expansion, was dominant during tuff emplacement. The MLF event involved a mixture of carbonatite and melilitite liquids which were physically separated before the eruption. Abundant mantle xenoliths are direct evidence of the deep-seated origin of the parental magma and its high velocity of propagation towards the surface. Often, these nodules form the core of lapilli composed of concentric shells of melilitite andror porphyritic carbonatite. Coarse-ash beds alternate with lapilli beds and consist of abundant lumps and spherulae of very fine-grained calcite immersed in a welded, highly compacted carbonatite matrix. Porphyritic carbonatite shells of the lapilli and fine-grained spherulae of calcite in the tuff matrix suggest incipient crystallisation of a carbonatite liquid in subvolcanic conditions and eruption of carbonatite-spray droplets. Dark coloured juvenile fragments mainly consist of melilite, phlogopite, calcite, apatite, perovskite, and häuyne crystals in a carbonatite or melilitite matrix. The rocks have an extremely primitive, ultramafic composition with very high Mga) 85. and Cr and Ni content 1500 ppm-. The calcite contains high SrO, BaO and REE of up to 1.5 wt.%. Similar compositions are typical of primary, magmatic carbonates which are found in both intrusive and extrusive carbonatites. The high modal Sr-Ba-REE-rich calcite, the typical mineralogy, and the high amount of Sr-group elements identify the carbonate component as a carbonatite. The very high Mga, mantle debris and C, O, He isotope ratios in the range of mantle values indicate a near-primary character for the carbonatite which is distinctive of a restricted group of extrusive carbonatites only found in continental rift areas.  相似文献   

5.
Igneous intrusions, notably carbonatitic–alkalic intrusions, peralkaline intrusions, and pegmatites, represent significant sources of rare‐earth metals. Geophysical exploration for and of such intrusions has met with considerable success. Examples of the application of the gravity, magnetic, and radiometric methods in the search for rare metals are presented and described. Ground gravity surveys defining small positive gravity anomalies helped outline the shape and depth of the Nechalacho (formerly Lake) deposit within the Blatchford Lake alkaline complex, Northwest Territories, and of spodumene‐rich mineralization associated with the Tanco deposit, Manitoba, within the hosting Tanco pegmatite. Based on density considerations, the bastnaesite‐bearing main ore body within the Mountain Pass carbonatite, California, should produce a gravity high similar in amplitude to those associated with the Nechalacho and Tanco deposits. Gravity also has utility in modelling hosting carbonatite intrusions, such as the Mount Weld intrusion, Western Australia, and Elk Creek intrusion, Nebraska. The magnetic method is probably the most successful geophysical technique for locating carbonatitic–alkalic host intrusions, which are typically characterized by intense positive, circular to sub‐circular, crescentic, or annular anomalies. Intrusions found by this technique include the Mount Weld carbonatite and the Misery Lake alkali complex, Quebec. Two potential carbonatitic–alkalic intrusions are proposed in the Grenville Province of Eastern Quebec, where application of an automatic technique to locate circular magnetic anomalies identified several examples. Two in particular displayed strong similarities in magnetic pattern to anomalies accompanying known carbonatitic or alkalic intrusions hosting rare‐metal mineralization and are proposed to have a similar origin. Discovery of carbonatitic–alkalic hosts of rare metals has also been achieved by the radiometric method. The Thor Lake group of rare‐earth metal deposits, which includes the Nechalacho deposit, were found by follow‐up investigations of strong equivalent thorium and uranium peaks defined by an airborne survey. Prominent linear radiometric anomalies associated with glacial till in the Canadian Shield have provided vectors based on ice flow directions to source intrusions. The Allan Lake carbonatite in the Grenville Province of Ontario is one such intrusion found by this method. Although not discovered by its radiometric characteristics, the Strange Lake alkali intrusion on the Quebec–Labrador border is associated with prominent linear thorium and uranium anomalies extending at least 50 km down ice from the intrusion. Radiometric exploration of rare metals hosted by pegmatites is evaluated through examination of radiometric signatures of peraluminous pegmatitic granites in the area of the Tanco pegmatite.  相似文献   

6.
Abstract The petrogenesis of the Ulsan carbonate rocks in the Mesozoic Kyongsang Basin of South Korea, which have previously been interpreted as limestone of Paleozoic age, is reconsidered in the present study. Within the Kyongsang Basin, a small volume of carbonate rocks, containing a magnetite deposit and spatially associated ultramafic rocks, is surrounded by sedimentary, volcanic and granitic rocks of the Mesozoic age. The simple cross‐cutting relationships and other outcrop features of the area indicate that the carbonate rocks are an intrusive phase and younger than the other surrounding Mesozoic rocks. The Ulsan carbonates have low concentrations of rare earth elements (REE) and trace elements with the carbon and oxygen isotope values in the range of δ13CPDB = 2.4 to 4.0‰ and δ18OSMOW = 17.0 to 19.5‰. Outcrop evidence and geochemical signatures indicate that the Ulsan carbonates were formed from crustal carbonate melts, which were generated by the melting/fluxing of crustal carbonate materials, caused by the emplacement‐related processes of alkaline A‐type granitic rocks. Compared to typical mantle‐derived carbonatites associated with silica‐undersaturated, strongly peralkaline systems, the relatively small size and geochemical characteristics of the Ulsan carbonates reflect carbonatite genesis in a silica‐saturated, weakly alkali intrusive system. Major deep‐seated tectonic fractures formed by the collapse of the cauldron or the rift system associated with the opening of the East Sea (Japan Sea) might have facilitated the ascent of the crustal carbonate melts.  相似文献   

7.
The petrological and geochemical aspects of the ultramafic and basic plutonic rocks of Betancuria Massif are examined. The rocks consist of gradational varieties of wehrlite, pyroxenite, olivine-gabbro and gabbro formed mainly by magnesium-rich olivine, clinopyroxene and plagioclase. The Complex exhibits structures and textures characteristic of layered igneous rocks;i.e., banding, layering, lamination, etc...; rocks are therefore considered as cumulates or magmatic sediments. The Complex has undergone a deep process of alkalinisation produced by the syenite and trachyte ring-dykes intrusion and by the existence of carbonatite veins. Rocks close to the syenite-trachyte intrusions show an increase in alkali feldspars. The presence of amphibole (kaersutite) is the first steep in the alkalinisation process and it is related to the disappearence of pyroxene. Extreme transformations of the gabbroidic rocks are found when they come in contact with the carbonatites. The age of the Complex is unknown but field evidence lead us to conclude that it is older than any other visible formation of the Island.  相似文献   

8.
根据白云鄂博赋矿白云石大理岩的岩石学特征及地质产状将其分为两类:粗粒和细粒白云石大理岩.它们的氧、碳和锶同位素及微量元素地球化学特征显然有别于分布在宽沟背斜以北典型的沉积石灰岩和白云岩,而和幢源火成碳酸岩十分相似.与矿床进行对比研究说明,成矿流体和矿质主要起源于碳酸岩浆的分异作用,其放射性成因同位素和微量元素保持了地但指纹,而氧和碳同位素组成却向壳源方向漂移,证实碳酸岩浆侵位过程中受大陆地壳的混染作用非常微弱,但是由碳酸岩浆活动所引起的成矿热液体系中却有一定的地表水混人认为白云鄂博REE-Nb-Fe超大型矿床的成因应归属于火成碳酸岩型矿床.  相似文献   

9.
The Pliocene-Pleistocene subaerial volcanic activity of the island of Sardinia developed from about five million years ago to the Pleistocene. Volcanism was mainly fissural, related to rifting of the Sardinian crustal block and connected to intraplate tensional tectonics involving at the same time the area of the Tyrrhenian Sea. Areally the most abundant rocks are basic, ranging in serial character from alkaline to subalkaline types. In some areas intermediate and salic lavas also occur; trachytic and phonolitic rocks are mainly associated with basalts of alkaline affinity, whereas rhyolites and dacites are mainly related to subalkalic basalts. K/Ar data show that lavas of different serial character (from alkalic to subalkalic) are produced on the island within the same time range, from about four to two million years; it is to be noted, however, that the early products (about 5 million years) are mildly alkalic in character whereas most of the youngest products (0.6–0.14 million years) are strongly alkalic.  相似文献   

10.
根据已知碳酸岩的地质产状、岩石学特征、Nd-Sr-Pb同位素及痕量元素地球化学特征,结合高温高压实验岩石学资料,论述了其地幔源区的物质成分、交代过程、软流圈地幔部分熔融机制和碳酸岩岩浆的演化模型碳酸岩既可以产生于裂谷环境,由起源于软流圈地幔的霞石质超基性-基性岩浆经液态不混溶作用而形成,与硅酸不饱和过碱性杂岩构成环状碳酸岩-碱性杂岩;也能够产生于碰撞造山过程中派生的引张岩石圈断裂带,直接导源于岩石圈地幔的低程度部分熔融作用,形成单一的透镜状、条带状和似层状碳酸岩体  相似文献   

11.
Subsurface carbonatite at Elk Creek, Nebraska has been recognized in drill core taken from a depth interval of 630 to at least 950 ft. The core in this interval consists of carbonated breccia and phlogopite-bearing carbonate rock. Total REE, P2O5 and Nb2O5 data are consistent with “average” values for carbonatite.87Sr/86Sr ratios from the carbonate fraction range from 0.7030 to 0.7055 for fifteen of eighteen samples (total Sr varies from 300 to 3500 ppm;X= 1800ppm); the remaining three samples have87Sr/86Sr and total Sr values of 0.7085 : 40 ppm; 0.7064 : 92 ppm; 0.7067 : 252 ppm; these samples may be mixed with sedimentary carbonate and/or contaminated by other non-carbonatite material.The Elk Creek carbonatite is of special interest because of its position with respect to tectonic elements in basement rocks. It occurs in the center of gravity and magnetic anomalies over the approximate axis of the Nemaha anticline and is apparently aligned with the Riley County, Kansas, carbonatite-bearing kimberlites. It is far removed from the E-W-trending “38th parallel” lineament along which occur numerous kimberlites and carbonatites.  相似文献   

12.
Kutch (northwest India) experienced lithospheric thinning due to rifting and tholeiitic and alkalic volcanism related to the Deccan Traps K/T boundary event. Alkalic lavas, containing mantle xenoliths, form plug-like bodies that are aligned along broadly east–west rift faults. The mantle xenoliths are dominantly spinel wehrlite with fewer spinel lherzolite. Wehrlites are inferred to have formed by reaction between transient carbonatite melts and lherzolite forming the lithosphere. The alkalic lavas are primitive (Mg# = 64–72) relative to the tholeiites (Mg# = 38–54), and are enriched in incompatible trace elements. Isotope and trace element compositions of the tholeiites are similar to what are believed to be the crustally contaminated Deccan tholeiites from elsewhere in India. In terms of Hf, Nd, Sr, and Pb isotope ratios, all except two alkalic basalts plot in a tight cluster that largely overlap the Indian Ridge basalts and only slightly overlap the field of Reunion lavas. This suggests that the alkalic magmas came largely from the asthenosphere mixed with Reunion-like source that welled up beneath the rifted lithosphere. The two alkalic outliers have an affinity toward Group I kimberlites and may have come from an old enriched (metasomatized) asthenosphere. We present a new model for the metasomatism and rifting of the Kutch lithosphere, and magma generation from a CO2-rich lherzolite mantle. In this model the earliest melts are carbonatite, which locally metasomatized the lithosphere. Further partial melting of CO2-rich lherzolite at about 2–2.5 GPa from a mixed source of asthenosphere and Reunion-like plume material produced the alkalic melts. Such melts ascended along deep lithospheric rift faults, while devolatilizing and exploding their way up through the lithosphere. Tholeiites may have been generated from the main plume head further south of Kutch.  相似文献   

13.
14.
San Miguel de La Palma is the northwestern island in the Canary group. An extensive vertical section through the island can be seen in the deep Caldera de Taburiente in the north of the island. The island in divided into four units: (1) the floor of the Caldera de Taburiente, (2) the remainder of the old volcano Tuburiente (El Time formation), (3) the El Paso tectonic basin, and (4) the Cumbre Vieja mountain land that forms the southern part of the island. The Caldera Floor formation consists of (1) a variety of deformed metamorphosed and metasomatised basaltic and trachytic rocks, (2) metamorphosed pyroclasts, and (3) bodies of gabbro, troctolite, wehrlite, dunite, alkalic gabbro and essexite. These rocks are cut by mafic and bostonitic dykes. The lavas and pyroclasts of the El Time formation overlie the Caldera Floor formation and generally dip outwards and away from the caldera. Alkalic basalts are the main lava type, followed by trachybasalts with lesser amounts of trachyandesite, trachyte and phonolite. The El Paso tectonic basin is a subsided segment of the volcano Tuburiente, and consists mainly of El Time formation rocks. All the major recorded eruptions have issued from the Cumbre Vieja mountain land. The eruptive products found in the mountain land range from alkalic basalt to phonolite. Pyroclasts and phonolitic lavas are more common than in the earlier formations. Tall spires of hauyne phonolite are found in a number of localities. The eruptive products now found on La Palma are believed to have developed from an alkaline basalt magma. Under normal circumstances this magma rose rapidly from the upper mantle, and erupted; however, when the La Palma volcanic edifice was large enough to accommodate a magma chamber differentiation took place; silica was removed, and both ultramafic cumulates, and trachytic and phonolitic differentiates were produced.  相似文献   

15.
Many sheets of alkalic dolerites found in the Cretaceous formations in the Nemuro peninsula can be divided into the following two types. Differentiated sheets, more than 100 m in thickness. Gravitational differentiationin situ is distinguished, producing rock types such as picritic dolerite, dolerite, monzonite and syenite. Undifferentiated sheets, less than 30 m in thickness. Differentiationin situ is not observed, and dolerite is the only rock type. Distinguished pillow structures are commonly observed. Petrochemistry of these rocks indicates that K.O contents are high, especially in the middle and later stages, predominating over Na2O and that MgO content is rather high as compared with iron oxides. These features place the suite in a characteristic position clearly distinguished from the other alkalic rock suites in Japan. Fourteen trace elements were determined spectroscopically and their distribution during the differentiation is discussed. The parent magma of the Nemuro rocks is estimated to be shonkinitic in composition, rather rich in potash. Its possible genesis by the partial melting of the phlogopite-peridotite in the upper mantle under the continent is discussed.  相似文献   

16.
《Journal of Geodynamics》2007,43(1):101-117
Silicic volcanic rocks within the active volcanic zones of Iceland are mainly confined to central volcanoes. The volcanic zones of Iceland can be divided into rift zones and flank zones. Each of these zones contains several central volcanoes, most of which have produced minor amounts of silicic rocks. The silicic rocks occur as lavas and domes or as tephra layers, welded tuffs and ignimbrites, formed both in effusive and explosive eruptions. They tend to be glassy or very fine-grained, containing small amounts of phenocrysts. Plagioclase (andesine–oligoclase), anorthoclase or occasionally sanidine coexist with minerals such as augite, fayalite, pigeonite, orthopyroxene and magnetite. Quartz phenocrysts are exceedingly rare. Zoning of phenocrysts is limited and the pattern is variable. A set of 90 samples representing all active central volcanoes that have erupted silicic rocks was analysed for major- and trace-elements. The silicic rocks can be classified as dacites, trachytes, low-alkali rhyolites and alkalic rhyolites. Some of the trachytes and alkalic rhyolites are peralkaline (mostly comenditic). Trachytes and alkalic rhyolites are only found within the flank zones, while dacites and low-alkali rhyolites are mostly confined to the rift zones. The Icelandic rhyolites plot close to the thermal minimum in the “granite” system, while dacites and trachytes plot within the plagioclase field and towards the alkali feldspar temperature minimum. The silicic rocks are relatively Fe-rich and Ca-poor indicating low water pressure in the source. Trace element concentrations follow similar patterns in most central volcanoes. Exceptions are Torfajökull where silicic rocks display a negative correlation of Ba to Th and unusually high Th-contents, and the western flank zone where Ba-concentrations are highly variable. The ratios of different high field-strength elements are generally similar within each central volcano or region, which probably reflects different ratios in the source materials. Isotope systematics indicate that the silicic rocks are derived from older basaltic rocks similar to those from the same volcano, and that meteoric water has played a role in the genesis of the silicic rocks. Traditionally, the petrogenesis of silicic rocks in Iceland has been explained by various models of fractional crystallization or partial melting. The available data seems to be better explained by near-solidus differentiation than by near-liquidus differentiation. The silicic minimum melts can be extracted from the rigid framework of the near-solidus source by the process of solidification front instability or by deformation-assisted melt segregation. The source of the silicic rocks is within the intrusive complex beneath a central volcano rather than in a large, long-lived magma chamber.  相似文献   

17.
A province of alkaline volcanism has developed over the last 10 m.y. in the northwestern part of the Caribbean plate. Most of the volcanism is Quaternary in age and follows an apparent halving of the spreading rate at the Cayman Rise spreading center 2.4 m.y. ago. Intraplate deformation in Central America and the Nicaraguan Rise has produced a series of north-south orientated grabens. This extensional tectonism is associated temporally and spatially with some of the alkaline magmatism. Strontium isotopic ratios of rocks from sixteen of these centers of volcanism enable three separate areas with different isotopic characteristics to be identified. The largest area corresponds to the Nicaraguan Rise and is characterized by low87Sr/86Sr ratios (0.7026–0.7031). A more concentrated area of alkaline magmatism in northeastern Costa Rica has intermediate87Sr/86Sr ratios (0.7036–0.7038) which are within the range shown by the adjacent calc-alkaline volcanoes. In central Hispaniola high87Sr/86Sr ratios (0.7047–0.7063) are found in strongly alkalic rocks and in rocks that are transitional to calc-alkaline in nature. In both Costa Rica and Hispaniola the increased radiogenic strontium may have come from volatile-rich fluids escaping from adjacent subducting slabs of oceanic crust. The isotopic differences between the two areas may be related to the relative longevity and high rate of subduction in Costa Rica compared to Hispaniola. The Costa Rican alkaline rocks overlie a segment of the Cocos plate which is being subducted at a smaller angle (~ 35°) than at the rest of the Central American arc.  相似文献   

18.
The Katla subglacial caldera is one of the most active and hazardous volcanic centres in Iceland as revealed by its historical volcanic activity and recent seismic unrest and magma accumulation. A petrologic and geochemical study was carried out on a suite of mid-Pleistocene to Recent lavas and pyroclastic rocks originated from the caldera. The whole series is characterised by a bimodal composition, including Fe-Ti transitional alkali basalts and mildly alkalic rhyolites. Variations in trace-element composition amongst the basalts and rhyolites show that their chemical differentiation was mainly controlled by fractional crystallisation and possible assimilation. The petrology and chemistry of the few intermediate extrusive rocks show that they were derived from magma mingling or hybridisation. The absence of extrusive rocks of true intermediate magmatic composition and the occurrence of amphibole-bearing felsic xenoliths support the hypothesis of partial melting of the hydrated basalt crust as the main process leading to the generation of rhyolites. The 143Nd/144Nd and 87Sr/86Sr values of Katla volcanic rocks fit the general isotopic array defined by late Quaternary to Recent lavas from Iceland. A few rock specimens are distinguished by low 143Nd/144Nd values suggesting assimilation and mixing of much older crustal material. Despite their similar whole-rock chemical compositions, the postglacial rhyolitic extrusives differ from the felsic xenoliths by their glass composition and the absence of amphibole. This, together with the general chemical trend of volcanic glasses, indicates that the postglacial rhyolitic extrusives were probably derived by a process involving late reheating and partial melting of crustal material by intrusion of basaltic magmas.  相似文献   

19.
1) Petrochemical studies of volcanic rocks shows that alkaline rocks of continents and oceans are different genetically in spite of their mineralogical and chemical similarity. 2) Oceanic rocks develop according to the following type: tholeiitic basalt — olivine basalt — alkaline rocks. 3) Continental alkaline rocks are derivatives of initially alkaline basalts and are connected by gradual transitions with calc-alkaline rocks of island arcs. 4) The source of all volcanic rocks is the upper mantle. Therefore the existence of two main types of rocks — oceanic and continental — reflects basic heterogeneities in composition and structure of the upper mantle.  相似文献   

20.
The nature and restricted range of Dupal-type Sr, Nd and Pb isotopic compositions of Cretaceous kimberlites, tuffaceous diatremes of kamafugitic affinity and carbonatite complexes which intrude the southwestern São Francisco craton margin in Brazil, indicate that these magmas either interacted extensively with, or were derived from, a light rare earth element (LREE) enriched homogeneous lithospheric mantle source isotopically similar to the “enriched mantle I” (EMI) component. The shallow-derived alkalic rocks contain a greater proportion of this EMI-like component, whereas the lower time-averaged Rb/Sr, Nd/Sm and Pb/U ratios of the kimberlites compared to the other rock types suggest mixing of the EMI-like mantle material with variable amounts of mantle with a high 238U/204Pb (HIMU-like) component. Systematic variations in rock types and geochemistry on a regional scale are believed to be indicative of vertical geochemical heterogeneities which are translated into lateral heterogeneities by different depths of melting. It is proposed that HIMU- and EMI-like signatures in particular, are concentrated in laterally extensive but vertically distinctive portions of the mantle beneath the São Francisco craton. The EMI-type signatures appear to be restricted to shallow-derived volcanism, whereas the HIMU-type signatures may originate from a source that started melting deeper in the mantle. The Nd signatures of the EMI-type volcanics follow the evolution path defined by the NeoProterozoic crustal sequences which overlie and flank the craton margin. This suggests that the source of the EMI-type mantle signatures might be related to the tectono-thermal processes which led to the formation and evolution of such crustal sequences. The isotopic similarity of the sources of the studied rocks and of the high-Ti basalts of the northern Paraná basin to those of some Ocean Island Basalts with Dupal signatures in the South Atlantic (viz. in Walvis Ridge) is ascribed to processes by which continental lithosphere became firstly delaminated, and then contaminated a zone of South Atlantic asthenosphere from which hotspot islands have been erupting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号