首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
地气角动量交换与ENSO循环   总被引:10,自引:0,他引:10  
用1976~1989年的地球自转速度、赤道东太平洋海温和气压及大气角动量资料,研究了地气之间角动量交换与ENSO循环的关系结果表明:固体地球自转速度、赤道东太平洋海温、不同纬带及全球大气角动量之间存在着协同的变化关系;低纬局地海气相互作用通过Hadley环流可形成类似ENSO事件的循环;固体地球和全球海气相互作用通过山脉力矩和地转变速摩擦力矩形成了固体地球-海洋-大气系统中各个方面出现的非周期行为和非同步振荡;实际出现的ENSO循环是固海气相互作用反映在太平洋洋盆上的一种现象.  相似文献   

2.
由地球自转的年际变化预测El Nino事件   总被引:13,自引:7,他引:6  
分析了地球自转、大气角动量和太阳黑子相对数的年际变化与El Nio的关系。结果表明:当地球自转速率的年际变化由快向慢转变,即表示年际变化的△LOD1的数值由极小逐渐增加并转变为正值约半年后,El Nio的初期开始出现。此期间大气角动量的年际变化也呈现从小到大的过程。通过分析新的地球自转变化测值,预测2001年将出现El Nio。结果还表明El Nio可能与太阳活动有一定的关系。  相似文献   

3.
利用地球日长(LOD)资料和美国环境预报中心/国家大气研究中心(NCEP/NCAR)的气象要素资料,统计分析发现1962-2010年LOD的变化和北半球中纬度地面温度均存在明显的十年以上的波动周期.相关分析、合成分析等统计方法均检测到LOD与中纬度地面温度的显著负相关关系,当地球自转速率加快时,北半球中纬度地面增温;反之,中纬度地面降温.小波功率谱和交叉谱分析则确定二者的相互关系属于准20年周期尺度上的年代际变化联系,并且LOD的变化超前于地面温度的变化大概3~4年.平均而言,LOD的变化可带来中纬度地面温度0.2℃的降温(或增温).通过对大气相对角动量、纬向风场、海平面气压场的年代际合成分析,揭示了LOD与地面温度的年代际联系形成的具体物理过程.当地球自转加速时,北半球高低纬度经向温差梯度减弱,热带地区向极地扩展,造成北半球中纬度地区地面增温;地球自转减速时段相反,经向温差梯度增强,热带地区向赤道收缩,中纬度地区地面降温.  相似文献   

4.
地球自转角速度的季节性和年变化的成因已达成基本共识,但更长时间尺度的周期性变化成因尚无定论,它们或归因于太阳活动、日月引潮力、地壳反弹、大气圈波动或行星摄动的影响等.直至目前,地球自转变化的规律和机制还没有完全弄清楚.研究发现:根据行星会合指数(K)标定太阳轨道运动特征的方法是可行的.通过对行星会合指数(K)的FFT检测发现太阳轨道运动周期与前人研究的地球自转日长(LOD)变化周期具有极强的相关性.太阳轨道运动在受到行星系统力矩作用的同时,致使近日行星轨道运动受到太阳引力作用的波动影响而产生扰动.受太阳巨大引力作用的牵制,导致地球轨道角动量和太阳轨道角动量的变化具有正相关关系.根据地球轨道角动量和自转角动量之和守恒,进而推断地球自转角速度的变化对太阳轨道运动特征的响应,这在思想方法上是一种突破.  相似文献   

5.
基于创建的行星会合指数运动学方程,获得了太阳绕太阳系质心的运动周期为准22年.太阳轨道运动周期和北半球高空大气温度场准22年变化周期二者具有极大的相关性.在整个太阳系角动量守恒的前提下,得到太阳轨道角动量和太阳自转角动量之和守恒.理论上,通过太阳绕转和自转角动量间的转换,建立了行星会合指数与全球高层大气温度场变化的对应关系,进而在大气温度场变化与太阳活动之间建立了联系,并对全球气候变化的成因机制进行了新的探索.  相似文献   

6.
基于之前创建的行星会合指数运动学方程,发现太阳质心具有平均准22年向太阳系质心靠近(有时近似重合)的轨道运动周期.在整个太阳系角动量守恒的前提下,推出太阳自转角动量和太阳绕转角动量之和守恒.二者角动量转换造成太阳自转角动量变化和太阳绕转角动量变化具有互为反向的准22年变化规律.太阳自转角速度变化(dω/dt)图像与太阳黑子磁性指数图像具有一致对应关系,这种对应关系可以从物理机制上对太阳活动周相位变化和太阳活动强弱变化进行解释,这为预测太阳活动提供了一种有效方法.本研究为太阳活动替代性指标指代的双世纪周期和2403年哈尔斯塔(Hallstatt)周期规律找到了理论根据.  相似文献   

7.
地球自转变化与全球地震活动关系的研究   总被引:20,自引:0,他引:20       下载免费PDF全文
应用天文观测的日长变化序列和全球地震资料,研究了全球地震活动与地球自转十年尺度起伏,以及季节性变化间的关系.结果表明,全球地震活动与地球自转变化在时间尺度上,存在着一定的全局性联系,而在空间尺度上存在着一定的地区性差异.尤其是位于北大陆中纬度地区的欧亚地震带(不含东南亚地区)和下加利福尼亚-阿拉斯加东部地震带的地震,与地球自转变化具有较好的相关性.根据上述联系,天文观测的地球自转资料可以为监测全球地震活动提供一种参考依据.   相似文献   

8.
本文通过资料分析和模型计算,得到地球自转速率长期减慢趋势和周期波动规律的形成原因.潮汐摩擦是地球自转减慢的主要因素,重力分异和圈层角动量交换是地球自转周期变化的主要因素,重力分异造成的地球各圈层差异旋转是地壳自转变化先慢后快的特殊因素.重力分异将一个均匀的自转地球变为分层的差异旋转地球,在质量向地心集中的同时,自转动能也向地核集中,使地壳和地幔自转变慢,使地核自转变快.圈层角动量交换将地球自转动能变为热能,积累在核幔边界,使地壳和地幔自转变快,地核自转变慢.核幔边界积累的热能周期性使外核热膨胀,为热幔柱和火山活动提供了能源和动力,火山活动高峰对应地球自转加快是证据.计算模型表明,地球自转速度变化的规律和历史记录证明重力分异和圈层差异旋转是地壳运动的主要动力,受地球自转速度变化的约束,地球体积不会有较大的胀缩,国内外测量结果证实了这一结论.  相似文献   

9.
地球自转速度季节性变化与地震关系的初步分析   总被引:1,自引:0,他引:1       下载免费PDF全文
在天文观测中,地球自转速度的变化表现为日长P的变化。观测值是日长,而不是自转速度,所以习惯上都用日长变化来代表自转速度的变化。 根据多年天文观测的平均,地球自转的季节性变化对日长的影响可用下式表示:  相似文献   

10.
基于创建的行星会合指数(K)运动学方程,得到太阳绕太阳系质心绕转的真正周期为准22.1826年.在整个太阳系角动量守恒前提下,根据K指数所指代的太阳绕太阳系质心运动轨迹推出:太阳绕转和太阳自转各自角动量虽不守恒,但二者角动量之和守恒.当行星系统处于最大相背离状态,太阳自转角动量增加,太阳自转受到逆时针方向旋转切向力的作用;当行星系统处于最大会合状态,太阳自转角动量减小,太阳自转受到顺时针方向旋转切向力的作用.行星系统远日4颗大质量行星和近日4颗小质量行星对太阳引力的合力沿太阳绕转轨道半径垂直方向的分力,具有准22年周期变化,而且该力的方向就是沿太阳旋转运动轨迹的切向方向.该分力11年与太阳自转方向同向,另11年与太阳自转方向反向,且分别对应太阳自转角动量11年增大和11年减小的变化.这为研究太阳22年磁周期动力学机制探寻到一种新的思想方法.  相似文献   

11.
地球自转与El Nino--波动理论   总被引:3,自引:2,他引:1       下载免费PDF全文
考虑地球自转速率随时间的变化,应用描写低纬的地球流体(大气和海洋)的浅水模式方程组,分析了地球自转速率变化对低纬大气和海洋波动的影响.研究指出:地球自转速率的变化不但会直接影响纬向风和洋流的变化,而且通过Kelvin波的传播导致海平面和海温的变化,从而导致El Nino现象的产生.所以,地球自转速率的变化是影响全球气候变化的重要因素之一.  相似文献   

12.
地球自转与气候动力学──振荡理论   总被引:5,自引:2,他引:3       下载免费PDF全文
考虑地球自转速率随时间的变化,并应用描写低纬地球流体(大气和海洋)的水平运动方程,分析了地球自转速率变化对低纬大气和海洋振荡的影响.研究指出:地球自转速率的变化不但会直接影响低纬大气和海洋的振荡周期和振幅,而且会影响纬向风和洋流的变化,从而导致海温和海平面的变化.所以,地球自转速率的变化是影响全球气候变化的重要因素之一.关键词##4地球自转速率;;气候变化;;大气和海洋的振荡  相似文献   

13.
1966~1976年华北地震的时间特性及相关触发因素   总被引:7,自引:1,他引:6  
黎凯武 《地震》2000,20(1):59-64
阐述了1966~1976年华北地震的时间特性及其相关触发因素--地球自转和引潮力。这是300年来华北地区发生的最强烈的一组地震,强震发生的时间有一个共同的特性;在年尺度上大多数地震发生在季节性地球自转速度极在值或极小值时间点附近,即极点附近(或称极点时段),在月惊工上多数地震发生在朔望附近(或称朔望时段),在日尺度上半数地震发生在极大水平引潮力时刻附近。表明这些地震与地球自转和日月引潮力关系密切。  相似文献   

14.
对比分析了25 a (1973~1998年)的日长(Length of day, 以下简称LOD)、大气环流及月球相位随时间的变化. 发现伴随着月球相位的交替变化, 地球大气的纬向风速场、地球位势高度场及LOD作27.3及13.6 d的周期振荡. 每5~9 d (平均6.8 d), 随着月球视赤纬角从0°变为最大值(绝对值)或从最大值变为0°, 全球纬向风速场、地球位势高度场及LOD经历一次突然变化. 这种周期性的大气振荡, 被视为一种大气潮. 对比月球视赤纬角变化及与其对应的LOD、大气纬向风速场及地球位势高度场变化, 分析了10个大气潮个例. 月球对地球大气引潮力作用的周期变化, 是引发27.3及13.6 d周期大气潮的主要原因. 月球对地球大气的作用是巨大的, 它引起大气纬向风速场及地球位势高度场的变化. 当月球围绕地球运转至天赤道上空时, 月球视赤纬角等于0°, 这时月球对大气的引潮力最大, 大气的纬向风速增加, 地球的自转角速度减小, 日长(LOD)增加. 反之, 当月球视赤纬角最大(绝对值), 月球对大气的引潮力减小, 大气纬向风速减小, 地球的自转角速度增加, LOD减小. 27.3及13.6 d周期的大气潮值得更深入地研究. 月球对地球大气的引潮力作用, 应该在大气环流及中短期天气预报模式中予以考虑.  相似文献   

15.
通过对2008年5月12日四川汶川8级地震与地球自转关系的分析,提出了一个新的地震成因观点,认为地震的根本原因在于地球自转速率的变化。地球岩石圈由大小不同、质量不同的块体组成。比如,大洋块体薄、质量轻,大陆块体厚、质量重。地球自转速率变化时,就会造成这些块体运动的差异性。这种差异运动可能使块体之间发生“追尾”撞击或摩擦,从而引起地震。地震能量来自于块体间撞击或摩擦时损失的动能。  相似文献   

16.
在热带太平洋,观测数据表明海表叶绿素(Chl)表现出年际尺度变率和由热带不稳定波(TIW)引发的中小尺度扰动这两者的共存现象;两者通过海洋生物引发的加热(OBH)反馈对ENSO造成的联合影响尚未得到充分的表征和理解.本文利用一个混合型大气-海洋物理-生物地球化学耦合模式(HCM AOPB)来量化年际和TIW尺度上Chl扰动对ENSO的单独以及联合调制影响. HCM敏感性试验结果证实了两者对ENSO振幅存在相反的作用,其中大尺度Chl年际变率造成的海洋生物-气候反馈效应通过其对上层海洋层结和垂向混合的影响来减弱ENSO,而TIW尺度的Chl扰动则倾向于增强ENSO.气候模式中ENSO的模拟敏感地依赖于对不同尺度上Chl效应的表征方式,因此有必要在气候模式模拟中充分地考虑不同尺度上Chl引发的气候效应.本文揭示了热带太平洋Chl效应是气候模式中ENSO模拟的一个偏差源,可为不同尺度上热带太平洋气候系统与海洋生态系统间相互作用提供新的见解.这些结果也揭示了ENSO调制的复杂性:即热带太平洋海洋生物地球化学过程相关的年际和TIW尺度上的Chl扰动与物理过程间的相互作用可对ENSO产生协同效应.  相似文献   

17.
地球自转参数变化引发大气、洋流变化,因此本文试图探索西太平洋气旋频数、强度与地球自转参数的相关性,结果表明:日长月平均值与下一月气旋频数呈正比,章动月标准差与下一月气旋强度相关性较好;频数与强度极端年份的日长、章动逐日变化有显著差异,频数最大值年与最小值年对应的日长位相呈明显的反相,相位若接近同步,则大值年对应的日长明显大于小值年;频数极端年份4-6月章动的位相差异明显,7-9月章动幅度差异明显;强度极端年对应的前30天逐日日长呈非常显著的反相关系,x方向章动具有明显差异,大值年的x方向章动值均偏小.  相似文献   

18.
地震会改变地球的形状,引起内部物质的重新分布,从而导致地球的惯性张量产生变化.依据角动量守恒定律,地球的自转将会发生变化.为了探究大地震对地球自转的影响,本文基于简正模和点源位错两种不同的理论,应用PREM地球模型,以2000年至今的10个8.3级以上的大地震为例,分别计算了地震发生后地球重力场的斯托克斯系数、地球的总惯性张量、地球扁率等的变化.讨论了简正模方法叠加的收敛性问题,并对震级的影响进行了简单的分析,着重探究了深度变化对地球极移和日长变化的影响.结果表明:在相同的地球模型下,利用简正模和位错两种理论计算的日长和极移的结果是一致的;简正模方法的收敛速度比较快,只需叠加3个左右的低频简正模就已经收敛;对于震级大于4.5级的地震,极移激发的方向出现在120°E~160°E的概率大一些;通常情况下,越深源的和震级较大的地震,极移激发的幅度和日长变化量越大.此外,在0~700 km深度区间内,随着深度的增加,极移激发的幅度和日长变化总体表现为增加的趋势.  相似文献   

19.
考虑地球自转速率随时间的变化,应用描写低纬的地球流体(大气和海洋)的浅水模式方程组,分析了地球自转速率变化对低纬大气和海洋波动的影响.研究指出:地球自转速率的变化不但会直接影响纬向风和洋流的变化,而且通过Kelvin波的传播导致海平面和海温的变化,从而导致EI Nino现象的产生.所以,地球自转速率的变化是影响全球气候变化的重要因素之一.  相似文献   

20.
基于太阳系质心坐标系论证了太阳和行星系质心同步绕太阳系质心运动的命题.对K指数的研究发现,太阳系结构演变可导致选定的太阳质心坐标系的性质具有周期性变化的特征.太阳系结构变化可以从K指数的量值上予以区分.当行星系统处在K=Kmax和K=Kmin分布状态时,所揭示的正是整个太阳系结构演变的两种性质相反的极端状态.太阳轨道运动的复杂性主要是指太阳轨道运动具有向太阳自转运动转变的周期性变化特征.K指数除了具有指代太阳轨道运动极半径的变化特征之外,还近似具有与木星同步绕转的方向周期.理论分析获得:太阳轨道运动角动量的变化可导致太阳自转角动量和行星系统轨道角动量的变化,这对进一步探讨地球轨道运动扣自转运动的变化机制具有重要的参考价值.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号