首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 516 毫秒
1.
Mount Etna volcano erupted almost simultaneously on its northeastern and southern flanks between October 27 and November 3, 2002. The eruption on the northeastern flank lasted for 8 days, while on the southern flank it continued for 3 months. The northeastern flank eruption was characterized by the opening of a long eruptive fracture system between 2,900 and 1,900 m.a.s.l. A detailed survey indicates that the fractures’ direction shifted during the opening from N10W (at the NE Crater, 2,900 m) to N45E (at its lowest portion, 1,900 m) and that distinct magma groups were erupted at distinct fracture segments. Based on their petrological features, three distinct groups of rocks have been identified. The first group, high-potassium porphyritic (HKP), is made up of porphyritic lavas with a Porphyritic Index (P.I.) of 20–32 and K2O content higher than 2 wt%. The second group is represented by lavas and tephra with low modal phenocryst abundance (P.I. < 20) named here oligo-phyric (low-phyric), and K2O content higher than 2 wt% (HKO, high-potassium oligophyric). The third group, low-potassium oligophyric (LKO), consists of tephra with oligophyric texture (P.I. < 20) but K2O content < 2 wt%. K-rich magmas (HKP and HKO) are similar to the magma erupted on the southern flank, and geochemical variations within these groups can be accounted for by a variable degree of fractionation from a single parent magma. The K-poor magma (LKO), erupted only in the upper segment of the fracture, cannot be placed on the same liquid line of descent of the HK groups, and it is similar to the magmas that fed the activity of Etna volcano prior to the eruption of 1971. This is the first time since then that a magma of this composition has been documented at Mt. Etna, thus providing a strong indication for the existence of distinct batches of magma whose rise and differentiation are independent from the main conduit system. The evolution of this eruption provides evidence that the NE Rift plays a very active role in the activity of Mt. Etna volcano, and that its extensional tectonics allows the intrusion and residence of magma bodies at various depths, which can therefore differentiate independently from the main open conduit system.  相似文献   

2.
This work addresses the study of fluid circulation of the Stromboli island using a dense coverage of self-potential (SP) and soil CO2 data. A marked difference exists between the northern flank and the other flanks of the island. The northern flank exhibits (1) a typical negative SP/altitude gradient not observed on the other flanks, and (2) higher levels of CO2. The general SP pattern suggests that the northern flank is composed of porous layers through which vadose water flows down to a basal water table, in contrast to the other flanks where impermeable layers impede the vertical flow of vadose water. In the Sciara del Fuoco and Rina Grande–Le Schicciole landslide complexes, breccias of shallow gliding planes may constitute such impermeable layers whereas elsewhere, poorly permeable, fine-grained pyroclastites or altered lava flows may be present. This general model of the flanks also explains the main CO2 patterns: concentration of CO2 at the surface is high on the porous north flank and lower on the other flanks where impermeable layers can block the upward CO2 flux. The active upper part of the island is underlain by a well-defined hydrothermal system bounded by short-wavelength negative SP anomalies and high peaks of CO2. These boundaries coincide with faults limiting ancient collapses of calderas, craters and flank landslides. The hydrothermal system is not homogeneous but composed of three main subsystems and of a fourth minor one and is not centered on the active craters. The latter are located near its border. This divergence between the location of the active craters and the extent of the hydrothermal system suggests that the internal heat sources may not be limited to sources below the active craters. If the heat source strictly corresponds to intrusions at depth around the active conduits, the geometry of the hydrothermal subsystems must be strongly controlled by heterogeneities within the edifice such as craters, caldera walls or gliding planes of flank collapse, as suggested by the correspondence between SP–CO2 anomalies and structural limits. The inner zone of the hydrothermal subsystems is characterized by positive SP anomalies, indicating upward movements of fluids, and by very low values of CO2 emanation. This pattern suggests that the hydrothermal zone becomes self-sealed at depth, thus creating a barrier to the CO2 flux. In this hypothesis, the observed hydrothermal system is a shallow one and it involves mostly convection of infiltrated meteoric water above the sealed zone. Finally, on the base of CO2 degassing measurements, we present evidence for the presence of two regional faults, oriented N41° and N64°, and decoupled from the volcanic structures.  相似文献   

3.
Comparison of the chemical characteristics of spring and river water draining the flanks of Poa´s Volcano, Costa Rica indicates that acid chloride sulfate springs of the northwestern flank of the volcano are derived by leakage and mixing of acid brines formed in the summit hydrothermal system with dilute flank groundwater. Acid chloride sulfate waters of the Rio Agrio drainage basin on the northwestern flank are the only waters on Poa´s that are affected by leakage of acid brines from the summit hydrothermal system. Acid sulfate waters found on the northwestern flank are produced by the interaction of surface and shallow groundwater with dry and wet acid deposition of SO2 and H2SO4 aerosols, respectively. The acid deposition is caused by a plume of acid gases that is released by a shallow magma body located beneath the active crater of Poa´s.No evidence for a deep reservoir of neutral pH sodium chloride brine is found at Poa´s. The lack of discharge of sodium chloride waters at Poa´s is attributed to two factors: (1) the presence of a relatively volatile-rich magma body degassing at shallow depths (< 1 km) into a high level summit groundwater system; and (2) the hydrologic structure of the volcano in which high rates of recharge combine with rapid lateral flow of shallow groundwater to prevent deep-seated sodium chloride fluids from ascending to the surface. The shallow depth of the volatile-rich magma results in the degassing of large quantities of SO2 and HCl. These gases are readily hydrolyzed and quickly mix with meteoric water to form a reservoir of acid chloride-sulfate brine in the summit hydrothermal system. High recharge rates and steep hydraulic gradients associated with elevated topographic features of the summit region promote lateral flow of acid brines generated in the summit hydrothermal system. However, the same high recharge rates and steep hydraulic gradients prevent lateral flow of deep-seated fluids, thereby masking the presence of any sodium chloride brines that may exist in deeper parts of the volcanic edifice.Structural, stratigraphic, and topographic features of Poa´s Volcano are critical in restricting flow of acid brines to the northwestern flank of the volcano. A permeable lava-lahar sequence that outcrops in the Rio Agrio drainage basin forms a hydraulic conduit between the crater lake and acid chloride sulfate springs. Spring water residence times are estimated from tritium data and indicate that flow of acid brines from the active crater to the Rio Agrio source springs is relatively rapid (3 to 17 years). Hydraulic conductivity values of the lava-lahar sequence calculated from residence time estimates range from 10−5 to 10−7 m/s. These values are consistent with hydraulic conductivity values determined by aquifer tests of fractured and porous lava/pyroclastic sequences at the base of the northwestern flank of the volcano.Fluxes of dissolved rock-forming elements in Rio Agrio indicate that approximately 4300 and 1650 m3 of rock are removed annually from the northwest flank aquifer and the active crater hydrothermal system, respectively. Over the lifetime of the hydrothermal system (100's to 1000's of years), significant increases in aquifer porosity and permeability should occur, in marked contrast to the reduction in permeability that often accompanies hydrothermal alteration in less acidic systems. Average fluxes of fluoride, chloride and sulfur calculated from discharge and compositional data collected in the Rio Agrio drainage basin over the period 1988–1990 are approximately 2, 38 and 30 metric tons/day. These fluxes should be representative of minimum volatile release rates at Poa´s in the last 10 to 20 years.  相似文献   

4.
The murdjadjo (Oran) geological structure which consists of an asymmetricfold has been studied. The anticline has a length of about 32 km and isN050 trending. Its relationship with the relatively high historical seismicityof the region is analysed. New critical investigations of contemporary documents enabled us to re-evaluate the December, 12, 1959(Ms = 4.7) and the May 12, 1889 (Ms = 4.6) earthquakes. Fieldobservations reveal the existence of a fault which affect the south-easternflank of the Murdjadjo anticline. The fault dips 60° to the NW andcut the tilted Neogene deposits which juxtaposes the Quaternary tilteddeposits. A NE-SW-trending direction of stream pattern underlies thefaulted flank of the anticline. Furthermore, offset of stream patternindicate a strike lateral slip component of the fault. Marine terracesmapped along the Oran coast indicates a uniform uplift rate of0.18 mm/yr which may be compared to the coseismic rate obtained inthe chelif region. Also, development of secondary small plain on theuplifted flank, the high subsidence in the Mleta quaternary plain whichjuxtaposes the faulted flank constitute evidence of recent tectonicmovements. The Murdjadjo fault, composed by two segments, mayproduce in the future strong earthquakes of magnitude equal or greaterthan 6.5. This fact suggests that the Oran earthquake of October 9, 1790(M = 7.5) which produced sea waves along the Spanish coast is likelygenerated by the Murdjadjo fault- related fold. Recurrence of earthquakedetermined on the basis of historical seismicity suggests a return period ofabout 1000 years for an earthquake of M = 7.3 which seem underestimatedcompared to the paleoseismic data available in The Tell atlas of Algeria.  相似文献   

5.
In this work we present seismological and ground deformation evidence for the phase preparing the July 18 to August 9, 2001 flank eruption at Etna. The analysis performed, through data from the permanent seismic and ground deformation networks, highlighted a strong relationship between seismic strain release at depth and surface deformation. This joint analysis provided strong constraints on the magma rising mechanisms. We show that in the last ten years, after the 1991–1993 eruption, an overall accumulation of tension has affected the volcano. Then we investigate the months preceding the 2001 eruption. In particular, we analyse the strong seismic swarm on April 20–24, 2001, comprising more than 200 events (Mmax = 3.6) with prevalent dextral shear fault mechanisms in the western flank. The swarm showed a ca. NE-SW earthquake alignment which, in agreement with previous cases, can be interpreted as the response of the medium to an intrusive process along the approximately NNW-SSE volcano-genetic trend. These mechanisms, leading to the July 18 to August 9, 2001 flank eruption, are analogous to ones observed some months before the 1991–1993 flank eruption and, more recently, in January 1998 before the February-November 1999 summit eruption.  相似文献   

6.
Mixing dissolution, a process whereby mixtures of two waters with different chemical compositions drive undersaturation with respect to carbonate minerals, is commonly considered to form cavernous macroporosity (e.g. flank margin caves and banana holes) in eogenetic karst aquifers. On small islands, macroporosity commonly originates when focused dissolution forms globular chambers lacking entrances to the surface, suggesting that dissolution processes are decoupled from surface hydrology. Mixing dissolution has been thought to be the primary dissolution process because meteoric water would equilibrate rapidly with calcium carbonate as it infiltrates through matrix porosity and because pCO2 was assumed to be homogeneously distributed within the phreatic zone. Here, we report data from two abandoned well fields in an eogenetic karst aquifer on San Salvador Island, Bahamas, that demonstrate pCO2 in the phreatic zone is distributed heterogeneously. The pCO2 varied from less than log ?2.0 to more than log ?1.0 atm over distances of less than 30 m, generating dissolution in the subsurface where water flows from regions of low to high pCO2 and cementation where water flows from regions of high to low pCO2. Using simple geochemical models, we show dissolution caused by heterogeneously distributed pCO2 can dissolve 2.5 to 10 times more calcite than the maximum amount possible by mixing of freshwater and seawater. Dissolution resulting from spatial variability in pCO2 forms isolated, globular chambers lacking initial entrances to the surface, a morphology that is characteristic of flank margin caves and banana holes, both of which have entrances that form by erosion or collapse after cave formation. Our results indicate that heterogeneous pCO2, rather than mixing dissolution, may be the dominant mechanism for observed spatial distribution of dissolution, cementation and macroporosity generation in eogenetic karst aquifers and for landscape development in these settings. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
HF radar data during equinoctial, small IMF By conditions have enabled the ionospheric convection during the substorm growth phase and substorm pseudobreakup to be studied in both hemispheres. This has revealed both conjugate and non-conjugate convection behaviour during the substorm growth phase before and after the pseudobreakup onset. The nightside convection pattern is found to respond promptly to the southward turning of the interplanetary magnetic field (IMF) which impacts on the dusk flank of the magnetosphere due to an inclined phase front in the IMF in the case study presented. The subsequent interhemispheric observations of nightside convection are controlled by the IMF By polarity. The time scale for the response to changes in the IMF By component is found to be a little longer than for Bz, and the full impact of the IMF By is not apparent in the nightside convection until after substorm pseudobreakup has occurred. The pseudobreakup itself is found to result in a transitory suppression in the ionospheric electric field in both hemispheres. This flow suppression is very similar to that observed in HF radar observations of full substorm onset, with the exception of a lack of subsequent poleward expansion.  相似文献   

8.
Cusp geometry in MHD simulations   总被引:2,自引:0,他引:2  
The MHD simulations described here show that the latitude of the high-altitude cusp decreases as the IMF swings from North to South, that there is a pronounced dawn–dusk asymmetry at high-altitude associated with a dawn–dusk component of the IMF, and that at the same time there is also a pronounced dawn–dusk asymmetry at low-altitude. The simulations generate a feature that represents what has been called the cleft. It appears as a tail (when the IMF has a By component) attached to the cusp, extending either toward the dawn flank or the dusk flank depending on the dawn–dusk orientation of the IMF. This one-sided cleft connects the cusp to the magnetospheric sash. We compare cusp geometry predicted by MHD simulations against published observations based on Hawkeye and DMSP data. Regarding the high-altitude predictions, the comparisons are not definitive, mainly because the observations are incomplete or mutually inconsistent. Regarding the low-altitude prediction of a strong dawn–dusk asymmetry, the observations are unambiguous and are in good qualitative agreement with the prediction.  相似文献   

9.
Volcanic rocks, dredged from depths greater than 1000 m on the Galapagos spreading center, show extreme chemical diversity, including rhyodacites, andesite, ferro-basalts, and low-K oceanic tholeiite. All samples have fresh glassy margins. The ferro-basalts contain up to 18.5% total iron as FeO and up to 3.75% TiO2, while the oceanic tholeiites are as low as 0.02% K2O. The ferro-basalts correlate with the previously proposed zone of high magnetic anomaly amplitudes which flank the Galapagos hot spot, and are consistent with a genesis by shallow fractional crystallization.  相似文献   

10.
Many major volcanic flank collapses involve the failure of low-angle strata in or under the edifice. Such failures produce voluminous, destructive debris avalanches that are a major volcanic hazard. At Socompa, Las Isletas-Mombacho and Parinacota volcanoes, field studies have shown that during catastrophic flank collapse a significant segment of their substrata was detached and expelled from beneath the volcanic edifice and formed a mobile basal layer on which the sliding flanks were transported. Previous studies have proposed that gravitational flank spreading was likely involved in the onset of sudden substrata failure. The early stages of this particular type of flank collapse can be modelled under laboratory conditions using analogue models. This allows us to study the development of structures accommodating early deformation of the sliding flank during catastrophic collapse. In the experiments, the detached substratum segment (low-viscosity basal layer) was modelled with a silicone layer, and the overlying stratovolcano with a layered sand cone. The first structure developed in the models is a graben rooted in the low-viscosity basal layer. This graben forms the limits of the future avalanche-amphitheatre and divides the sliding flank into a ‘toreva’ domain (upper sliding flank) and a ‘hummock’ domain (lower sliding flank). These domains display distinctive structural patterns and kinetic behaviour. Normal faults develop in the toreva domain and inside the graben, while the hummock domain is characterised by transtensional structures. The hummock domain also over-thrusts the lower amphitheatre sides, which allows subsequent sideways avalanche spreading. Measurements show that horizontal speeds of the hummock domain are always higher than that of the toreva domain during model collapse. The main role played by the low-viscosity basal layer during this type of collapse is to control the size, shape and structural complexity of the sliding flank; it also transmits mass and momentum from the toreva to the hummock domain.  相似文献   

11.
The relationship between rift zones and flank instability in ocean island volcanoes is often inferred but rarely documented. Our field data, aerial image analysis, and 40Ar/39Ar chronology from Anaga basaltic shield volcano on Tenerife, Canary Islands, support a rift zone—flank instability relationship. A single rift zone dominated the early stage of the Anaga edifice (~6–4.5 Ma). Destabilization of the northern sector led to partial seaward collapse at about ~4.5 Ma, resulting in a giant landslide. The remnant highly fractured northern flank is part of the destabilized sector. A curved rift zone developed within and around this unstable sector between 4.5 and 3.5 Ma. Induced by the dilatation of the curved rift, a further rift-arm developed to the south, generating a three-armed rift system. This evolutionary sequence is supported by elastic dislocation models that illustrate how a curved rift zone accelerates flank instability on one side of a rift, and facilitates dike intrusions on the opposite side. Our study demonstrates a feedback relationship between flank instability and intrusive development, a scenario probably common in ocean island volcanoes. We therefore propose that ocean island rift zones represent geologically unsteady structures that migrate and reorganize in response to volcano flank instability.Editorial responsibility: T. DruittThis revised version was published online in February 2005 with typographical corrections and a changed wording.  相似文献   

12.
13.
Flank spreading and collapse of weak-cored volcanoes   总被引:1,自引:1,他引:0  
Volcanoes subjected to hydrothermal activity develop weak cores as a result of alteration and due to elevated pore pressures. Edifices constructed at the angle of repose of volcanoclastics, or at even more gentle slopes, respond to internal weakening by initially deforming slowly, but may then collapse catastrophically. Such a process has so far been described for only a few volcanoes, such as Casita, Nicaragua; however, the conditions for flank spreading are widespread and many, if not most volcanoes should suffer some alteration-related flank spreading. We provide analogue models that characterise the structure — surface deformation fields and internal structures — of a spreading flank. Deformation creates a characteristic concave-convex-concave flank profile producing structures such as basal thrusts, summit normal faults, grabens and strike-slip relay faults. Three deformation regimes are found: a pit collapse regime is associated with very small volumes of ductile material located far from the edifice surface. This would not appear in nature, as time for deformation is greater than the lifetime of a volcano, unless very low rock viscosities are present. The other two regimes are flank spreading regimes, one symmetric and one asymmetric. The latter is the most common, as most volcanic structures are asymmetrical in form and in distribution of physical properties. The deformation is controlled by altered region dimensions, volume and position relative to the edifice, and to a lesser extent by its shape. As the flanks spread, landslides are created, initially on the steepened portion, but also from fault scarps. Major flank collapse may occur leading to explosive hydrothermal decompression and to a debris avalanche rich in hydrothermally altered material. We provide several new examples of volcanoes that have structures and morphologies compatible with flank spreading. We suggest that it is a common feature, important in the tectonics and hazards of many volcanoes.Editorial Responsibility: J. Gilbert  相似文献   

14.
The 2002–03 flank eruption of Etna was characterized by two months of explosive activity that produced copious ash fallout, constituting a major source of hazard and damage over all eastern Sicily. Most of the tephra were erupted from vents at 2750 and 2800 m elevation on the S flank of the volcano, where different eruptive styles alternated. The dominant style of explosive activity consisted of discrete to pulsing magma jets mounted by wide ash plumes, which we refer to as ash-rich jets and plumes. Similarly, ash-rich explosive activity was also briefly observed during the 2001 flank eruption of Etna, but is otherwise fairly uncommon in the recent history of Etna. Here, we describe the features of the 2002–03 explosive activity and compare it with the 2001 eruption in order to characterize ash-rich jets and plumes and their transition with other eruptive styles, including Strombolian and ash explosions, mainly through chemical, componentry and morphology investigations of erupted ash. Past models explain the transition between different styles of basaltic explosive activity only in terms of flow conditions of gas and liquid. Our findings suggest that the abundant presence of a solid phase (microlites) may also control vent degassing and consequent magma fragmentation and eruptive style. In fact, in contrast with the Strombolian or Hawaiian microlite-poor, fluidal, sideromelane clasts, ash-rich jets and plumes produce crystal-rich tachylite clasts with evidence of brittle fragmentation, suggesting that high groundmass crystallinity of the very top part of the magma column may reduce bubble movement while increasing fragmentation efficiency.  相似文献   

15.
 Many basaltic and andesitic polygenetic volcanoes have cyclic eruptive activity that alternates between a phase dominated by flank eruptions and a phase dominated by eruptions from a central vent. This paper proposes the use of time-series diagrams of eruption sites on each polygenetic volcano and intrusion distances of dikes to evaluate volcano growth, to qualitatively reconstruct the stress history within the volcano, and to predict the next eruption site. In these diagrams the position of an eruption site is represented by the distance from the center of the volcano and the clockwise azimuth from north. Time-series diagrams of Mauna Loa, Kilauea, Kliuchevskoi, Etna, Sakurajima, Fuji, Izu-Oshima, and Hekla volcanoes indicate that fissure eruption sites of these volcanoes migrated toward the center of the volcano linearly, radially, or spirally with damped oscillation, occasionally forming a hierarchy in convergence-related features. At Krafla, terminations of dikes also migrated toward the center of the volcano with time. Eruption sites of Piton de la Fournaise did not converge but oscillated around the center. After the convergence of eruption sites with time, the central eruption phase is started. The intrusion sequence of dikes is modeled, applying crack interaction theory. Variation in convergence patterns is governed by the regional stress and the magma supply. Under the condition that a balance between regional extension and magma supply is maintained, the central vent convergence time during the flank eruption phase is 1–10 years, whereas the flank vent recurrence time during the central eruption phase is greater than 100 years owing to an inferred decrease in magma supply. Under the condition that magma supply prevails over regional extension, the central vent convergence time increases, whereas the flank vent recurrence time decreases owing to inferred stress relaxation. Earthquakes of M≥6 near a volcano during the flank eruption phase extend the central vent convergence time. Earthquakes during the central eruption phase promote recurrence of flank eruptions. Asymmetric distribution of eruption sites around the flanks of a volcano can be caused by local stress sources such as an adjacent volcano. Received: 18 March 1996 / Accepted: 14 January 1997  相似文献   

16.
Self-potential (SP) surveys were made on Mount Pelée volcano (Martinique Island, French West Indies) in 1991 and 1992 in order to recognize its hydrothermal system, the associated groundwater channeling and the main superficial structures of the massif. Almost 70 km of profiles were carried out with an average sample spacing of 50 m. Measurements essentially reveal negative SP anomalies, down to −1700 mV, with high gradients (−1.83 mV/m) due to the infiltration of meteoric water into the massif. Rims of summit calderas Morne Macouba and Etang-Sec present sharp negative SP anomalies on the western, northern, and eastern flanks. Negative SP anomalies indicate no upward water flow beneath Mount Pelée summit. On the southwestern volcano flank, a 3.5×6 km horseshoe-shaped structure corresponding to a southwest flank collapse event, older than 25,000 years BP, is clearly identified by the SP mapping. High gradients border the inner southern rim from Morne Calebasse to St Pierre town and the Caribbean Sea. Along the northern rim of the horseshoe-shaped structure the negative SP anomalies give place to a positive SP anomaly, up to 200 mV, of SW–NE trend. This zone covers the area of two active hot springs (Sources Chaudes and Puits Chaud: 40–65°C). Marine magnetic surveys and bathymetry show that the horseshoe-shaped structure spreads into the Caribbean Sea up to about 10 km from the coast. Buried structural discontinuities are evidenced inside the flank collapse structure. The upper one deviates the groundwater flow coming from the summit toward the south flank where the flow finds an indentation to expand again downwards. This discontinuity is either an old hypothetical caldera rim partly destroyed by the collapse of the south–southwestern flank and covered by recent pyroclastic deposits, or more probably the trace of a bulge landslide. A circulation model of the hydrothermal waters is proposed. Rainfall (5–6 m/year) is partly drained inside the summital calderas and the flank collapse zone through pyroclastic flows down to an impermeable basement. There the groundwater constitutes perched aquifers at the contact of the bulge landslide, or of the hypothetical old caldera rim. Along the inner northern border of the flank collapse structure the phreatic water is reheated. Warm groundwater flows along the northern avalanche structure rim and discharges near the coast in ground and marine outcrops, of medium temperature. Finally, the main part of the meteoric water is channeled along the old caldera rim, or along the bulge landslide towards the south flank of Mount Pelée, where some gaps in the rim exist. There the groundwater finds again a subhorizontal gravitational circulation along Mount Pelée slopes into the Caribbean Sea.  相似文献   

17.
A method is proposed for determining the orientation of average tectonic stress, using surface features indicating radial dike patterns of volcanoes. The approximate pattern of radial dikes is revealed by the distribution of sites of flank eruptions on the slope of polygenetic volcanoes. This conclusion is deduced from the understanding that flank eruptions are caused by the magma that laterally offshoots from the main polygenetic pipe conduit and that conduits of flank volcanoes are most probably fissure-shaped because most of them are monogenetic volcanoes. Radial dikes are more likely to develop in a direction normal to the minimum horizontal compression of the regional stress. Thus, the distribution of flank craters will be elongate in the direction of the maximum horizontal compression of the regional stress.The regional stress can sometimes be ascribed solely to the effect of the gravity rather than tectonic stress. When a number of independent polygenetic volcanoes dotted with more than several flank volcanoes, are distributed in a belt or over a broad area, it is possible to distinguish the tectonic stress from the direct gravitational effect by the regional uniformity in orientation of the zones of flank volcanoes. When the maximum compression of tectonic stress is horizontal, the trends of the zones of flank eruptions on polygenetic volcanoes are more or less linear and parallel, and at a high angle to the trend of the main volcanic belt.  相似文献   

18.
We report the first detailed study of spatial variations on the diffuse emission of carbon dioxide (CO2) and hydrogen sulfide (H2S) from Hengill volcanic system, Iceland. Soil CO2 and H2S efflux measurements were performed at 752 sampling sites and ranged from nondetectable to 17,666 and 722?g?m?2?day?1, respectively. The soil temperature was measured at each sampling site and used to evaluate the heat flow. The chemical composition of soil gases sampled at selected sampling sites during this study shows they result from a mixing process between deep volcanic/hydrothermal component and air. Most of the diffuse CO2 degassing is observed close to areas where active thermal manifestations occur, northeast flank of the Hengill central volcano close to the Nesjavellir power plant, suggesting a diffuse degassing structure with a SSW?CNNE trend, overlapping main fissure zone and indicating a structural control of the degassing process. On the other hand, H2S efflux values are in general very low or negligible along the study area, except those observed at the northeast flank of the Hengill central volcano, where anomalously high CO2 efflux and soil temperatures were also measured. The total diffuse CO2 emission estimated for this volcanic system was about 1,526?±?160?t?day?1 of which 453?t?day?1 (29.7?%) are of volcanic/hydrothermal origin. To calculate the steam discharge associated with the volcanic/hydrothermal CO2 output, we used the average H2O/CO2 mass ratio from 12 fumarole samples equal to 88.6 (range, 9.4?C240.2) as a representative value of the H2O/CO2 mass ratios for Hengill fumarole steam. The resulting estimate of the steam flow associated with the gas flux is equal to 40,154?t?day?1. The condensation of this steam results in thermal energy release for Helgill volcanic system of 1.07?×?1014?J?day?1 or to a total heat flow of 1,237?MWt.  相似文献   

19.
The south flank of Kilauea Volcano is unstable and has the structure of a huge landslide; it is one of at least 17 enormous catastrophic landslides shed from the Hawaiian Islands. Mechanisms previously proposed for movement of the south flank invoke slip of the volcanic pile over seafloor sediments. Slip on a low friction décollement alone cannot explain why the thickest and widest sector of the flank moves more rapidly than the rest, or why this section contains a 300 km3 aseismic volume above the seismically defined décollement. It is proposed that this aseismic volume, adjacent to the caldera in the direction of flank slip, consists of olivine cumulates that creep outward, pushing the south flank seawards. Average primary Kilauea tholeiitic magma contains about 16.5 wt.% MgO compared with an average 10 wt.% MgO for erupted subaerial and submarine basalts. This difference requires fractionation of 17 wt.% (14 vol.%) olivine phenocrysts that accumulate near the base of the magma reservoir where they form cumulates. Submarine-erupted Kilauea lavas contain abundant deformed olivine xenocrysts derived from these cumulates. Deformed dunite formed during the tholeiitic shield stage is also erupted as xenoliths in subsequent alkalic lavas. The deformation structures in olivine xenocrysts suggest that the cumulus olivine was densely packed, probably with as little as 5–10 vol.% intercumulus liquid, before entrainment of the xenocrysts. The olivine cumulates were at magmatic temperatures (>1100°C) when the xenocrysts were entrained. Olivine at 1100°C has a rheology similar to ice, and the olivine cumulates should flow down and away from the summit of the volcano. Flow of the olivine cumulates places constant pressure on the unbuttressed seaward flank, leading to an extensional region that localizes deep intrusions behind the flank; these intrusions add to the seaward push. This mechanism ties the source of gravitational instability to the caldera complex and deep rift systems and, therefore, limits catastrophic sector failure of Hawaiian volcanoes to their active growth phase, when the core of olivine cumulates is still hot enough to flow.  相似文献   

20.
We present an interpretation of gravity data acquired in 1984 by the French R/V Jean Charcot on the submarine part of the eastern flank of Piton de la Fournaise volcano. We comment on the Bouguer anomaly map and give a quantitative interpretation of three gravity profiles. The main results are that a gravity high over Grand Brûlé, the lower subaerial part of the eastern flank, does not extend far offshore and that an anomalous topographic feature, discovered in 1982 on the submarine eastern flank, is characterized by a large negative anomaly. We propose three hypotheses to explain the origin of this anomaly, i. e., it marks the site of a new volcano, or it is a consequence of lateral volcanism from a volcano older than Piton de la Fournaise, or more probably, it represents a great landslide deposit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号