首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
长白山天池火山天文峰黄色浮岩的岩相学与显微结构特征   总被引:1,自引:0,他引:1  
在长白山天池火口天文峰内壁发育数十m厚的爆炸式喷发堆积物,颜色各异.其中1套规模较大的黄色中弱熔结的粗粒浮岩空降堆积,堆积物碎屑粒径大,气孔大量发育,含有大粒径粗面岩岩块.文中对采于该套黄色堆积物的样品进行了全岩成分和显微结构特征分析,并与“千年大喷发”的空降浮岩进行了对比.研究结果表明:1)黄色浮岩与千年喷发的浮岩一样,属于碱性流纹岩,比千年喷发的灰白色浮岩略偏基性,可能由同一岩浆演化而来;2)黄色浮岩呈泡沫状,由不同大小的气孔、气孔壁和少量斑晶组成,部分较大的圆形气孔沿斑晶周围发育,呈串珠状排列,流动特征明显,黄色浮岩的斑晶类型和气孔结构与千年喷发的灰白色浮岩类似;3)已有扫描电镜和X射线衍射分析结果显示黄色浮岩中的长石参数与其他浮岩明显不同,可能是独立火山喷发事件的产物.上述岩石学证据表明,该套黄色堆积物是火山爆炸式喷发作用形成的浮岩空降堆积.  相似文献   

2.
长白山天池火山的喷发历史和喷出物层序一直以来是人们关注的焦点。目前,对于千年大喷发以来空降堆积物,尤其是灰白色空降浮岩层之上的粗面质杂色空降浮岩的地层划分仍具有较大争议。文中通过对野外地层的详细观察,对2层空降浮岩层进行对比研究,发现两者之间没有沉积间隔,认为2期空降浮岩均应划分为千年大喷发的喷发物。下部赤峰期灰白色空降浮岩成分较为均一,呈棱角状,正粒序,分选较好;上部圆池期喷发为脉动式喷发,岩性为富土黄色浮岩和富黑色浮岩颗粒互层,浮岩呈棱角状,粒序不明显,分选较好。2期浮岩粒度呈正态分布,在中值和分选系数图中均投点于空降堆积区内。浮岩内斑晶以长石和辉石为主,但圆池期黑色浮岩内斑晶含量略高。赤峰期空降浮岩为灰白色碱流质,气孔较大,连续贯通,气孔壁薄。圆池期土黄色空降浮岩为粗面质,气孔连通,气孔壁略厚;黑色浮岩颗粒成分虽然也投点为粗面质,但Si O2含量明显较低,气孔度低,气孔壁厚。圆池期喷发强度较赤峰期喷发强度弱。多种岩浆成分说明长白山天池火山下具有复杂的岩浆系统,多种岩浆可能以分层的形式存在,赤峰期仅喷出了上部的碱流岩,圆池期的脉动式喷发喷出了不同层位的岩浆。  相似文献   

3.
长白山天池火山一次近代喷发物的特征   总被引:2,自引:2,他引:2       下载免费PDF全文
长白山天池火山是中国最具有潜在灾害性喷发危险的活动火山。在开展长白山天池火山近代喷发历史的研究中,通过野外考察、粒度分析、岩石化学研究,识别出了一套新的火山喷发物。这套喷发物分布于天池水面东北侧,为一套灰色多层火山碎屑堆积,厚约9.2m。下伏公元1668年的火山空降堆积。粒度分析表明,天池火山最近一次喷发物以空降堆积为主,夹一层薄层涌浪堆积,火山喷发类型为射气岩浆型。涌浪堆积碎屑物的分数维值为2.71。空降堆积的分数维值小于涌浪堆积,综合投点求出的分数维值为2.36。显微镜下可观察到鸡骨架状玻屑,无黏土矿物,为原生火山爆发堆积。火山碎屑堆积物中的浮岩岩石化学分析结果表明岩浆成分为粗面质。根据历史记录、地层层序关系、堆积物特征的综合分析,推测堆积物的形成时间为公元1903年  相似文献   

4.
火山空降碎屑灾害预测软件包的研制   总被引:2,自引:2,他引:2       下载免费PDF全文
赵谊  马宝君  施行觉 《地震地质》2003,25(3):480-490
简述了火山空降碎屑灾害的危害性 ,指出研制火山空降碎屑灾害预测软件包的实际意义。介绍了软件的主要结构框图、软件设计的基本思路和结构设计时的几点考虑。介绍了在VisualBasic6 .0平台下 ,碎屑粒径参数、岩浆黏度、结晶压力、喷出压力、给定时间段和特定区域的各高度层风参数、岩浆动力学参数、喷出物总量、抛射体分布、坍塌阶段碎屑分布和扩散阶段碎屑分布计算等各程序的主要结构及主要功能。介绍了在Mapinfor 6 .0平台下软件的主要功能。给出了实现该软件包各项功能的理论基础和科学依据 ,并展示了 1980年 5月 18日美国圣海伦斯火山喷发的空降碎屑分布计算的实例 ,同时把计算结果与实际观测数据进行了对比 ,从而使模型的改进工作和软件的正确性得到了验证。最后 ,对软件存在的缺陷和需要进一步改进之处进行了细致的分析  相似文献   

5.
火山碎屑空降沉积的二维数值模拟   总被引:2,自引:5,他引:2       下载免费PDF全文
赵谊  张程远  席道瑛 《地震地质》2002,24(3):377-386
从大气中火山灰扩散的二维微分方程出发 ,采用Suzuki(1983)对火山空降碎屑灾害数值模拟的数学模型 ,研制出用于单个火山一次性喷发事件的碎屑物空降沉积分布的实用程序。介绍了编程的基本思想 ,讨论了编程过程中所遇到的实际问题 ,同时结合长白山火山物理研究工作给出的长白山火山动力学参数 ,对长白山火山喷发空降碎屑厚度分布进行了具体模拟应用 ,针对实际模拟结果对程序提出了改进意见 ,并对Suzuki火山碎屑空降沉积模型进行了讨论  相似文献   

6.
本文应用美国国家气象局提供的1958—1997年全球大气精确的轨道参数和涠洲岛地区风速和风向等数据资料,模拟了火山喷发时空降碎屑的分布情况。结果表明,涠洲岛地区火山喷发形成的空降碎屑分布与喷发时的风速与风向有关,NNW方向的风可使空降碎屑影响到海南省北部地区,SSW方向风可使空降碎屑影响广西东南部和广东西南部的广大地区,1月和7月份喷发时主要影响涠洲岛及周边海域。  相似文献   

7.
龙岗金龙顶子火山空降碎屑物数值模拟及概率性灾害评估   总被引:1,自引:0,他引:1  
空降碎屑物为爆炸式火山喷发产生的一种重要的灾害类型,数值模拟已成为一个快速有效地确定火山灰扩散和沉积范围的方法。本文根据改进的Suzuki(1983)二维扩散模型,编写了基于Windows环境下的火山灰扩散程序。通过对前人资料的分析,模拟了龙岗火山群中最新火山喷发——金龙顶子火山喷发产生的空降碎屑物扩散范围,与实测结果具有很好的一致性,证实了模型的可靠性和参数的合理性。根据该区10年的风参数,模拟了7021次不同风参数时金龙顶子火山灰的扩散范围,以此制作了火山灰沉积厚度超过1cm和0.5cm时的概率性空降碎屑灾害区划图。本文的研究可为龙岗火山区火山危险性分析和灾害预警与对策提供重要的科学依据。  相似文献   

8.
长白山地区火山碎屑粒度特征研究   总被引:6,自引:2,他引:4       下载免费PDF全文
长白山地区全新世火山活动活跃,发育了良好的火山空降、火山碎屑流、火山涌流和火山泥石流堆积物。这些堆积物交错堆积,野外区分较为困难。在火山碎屑地层剖面调查基础上,系统采集了各种类型的火山碎屑堆积物样品。在实验室通过粒度参数和概率累积曲线分析,对堆积物成因类型进行了判别,讨论了火山空降堆积物和火山碎屑流堆积物随着与火口距离变化的规律。首次对研究区内粒度范围为62.5~0.02μm的细火山灰进行了粒度分析,对火山碎屑流和火山碎屑涌流中细火山灰端元分布特征和地质意义进行了分析和讨论  相似文献   

9.
利用扫描电镜和能谱分析研究了长白山天池火山天文峰剖面全新世喷发物中长石表面风化溶蚀显微形貌和化学组成,结果显示: 天文峰剖面从顶部黑色浮岩向下到暗灰色浮岩中,长石表面发育风化溶蚀不同的显微形貌结构。其特征有,风化初期的溶蚀作用主要在双晶缝、解理缝等结构薄弱部位,形成规模较小的溶孔和溶缝等,随着风化溶蚀程度的增加,已经形成的溶蚀痕迹进一步扩大、合并、相互贯通而形成矩形溶孔或棱柱状溶孔。长石晶体上溶蚀痕迹的扩大受长石晶体各向异性的控制。天文峰剖面火山喷发物时代越早,长石颗粒表面风化溶蚀程度越强,结构越复杂; 火山喷发物时代越晚,长石颗粒表面风化溶蚀程度越弱,结构越简单。即长石表面风化溶蚀程度与火山喷发的时代具有一定的相关性。根据长石颗粒表面的显微形貌结构,认为漫江林场浮岩与天文峰剖面中灰色浮岩应是火山同一次喷发的产物。长石表面风化溶蚀度可以作为判定火山喷发精细序列的一个代用指标。能谱分析显示,较新鲜的长石表面与风化溶蚀的长石化学组成不同。长石风化溶蚀的显微形貌和化学组成反映了它是天然风化、溶解、淋滤,最后又有物质沉淀的自然成因。Fe元素则可能与微生物作用有关。详细研究长石表面的风化溶蚀特征,它将有可能成为从岩石微观方面探讨火山喷发后环境变化和火山喷发期次的一种新方法。  相似文献   

10.
吉林龙岗四海火山碎屑物粒度分析与地质意义   总被引:4,自引:2,他引:2       下载免费PDF全文
四海火山灰是龙岗火山群中的一次火山爆发形成的,这次火山爆发形成的玄武质空降堆积物分别组成金龙顶子火山渣锥和位于金龙顶子火山锥以东的、分布于辉南县红旗林场和靖宇县四海林场一带的低缓开阔的火山碎屑席。通过投点得知金龙顶子火山喷发类型为次布里尼式(Sub-Plinian)喷发,反映金龙顶子火山爆发强度很大。四海火山灰空降碎屑物7个样品的粒度累计频率曲线投点分布范围、集中区域均有较好的一致性,累计频率曲线表明碎屑物在空中搬运与沉降时都经过了类似的重力分选作用。近火口缘样品粗粒碎屑含量较高,随着与火口缘距离的增加,粗粒部分含量明显降低,细粒碎屑含量增加趋势明显。龙岗火山区内其它岩渣锥火山碎屑物粒度分布范围明显宽于四海火山灰粒度分布范围,累积频率曲线斜率较为一致。虽然样品距火山口距离均较近,但也出现了细粒富集程度变缓的现象,反映了龙岗火山区其它火山锥喷发强度明显小于四海火山。对比长白山天池火山碎屑物粒度分布特征发现,天池火山空降堆积物粒度分布斜率变化比较均匀,四海火山灰斜率有明显变化;四海火山灰最大粒度小于长白山天池火山空降堆积物,但是粗粒度碎屑物含量较高。细粒度碎屑物部分累计频率曲线上升趋势较缓,说明金龙顶子火山的喷发  相似文献   

11.
The morphology, grain size characteristics and composition of ash particles in 30 ka to 150 ka tephra layers from the Byrd ice core were examined to characterize the eruptions which produced them and to test the suggestion that they were erupted from Mt. Takahe, a shield volcano in Marie Byrd Land, West Antarctica. Volcanic deposits at Mt. Takahe were examined for evidence of recent activity which could correlate with the tephra layers in the ice core.Coarse- and fine-ash layers have been recognized in the Byrd ice core. The coarse-ash layers have a higher mass concentration than the fine-ash layers and are characterized by fresh glass shards > 50 μm diameter, many containing elongate pipe vesicles. The fine-ash layers have a lower mass concentration and contain a greater variety of particles, typically < 20 μm diameter. Many of these particles are aggregate grains composed of glass and crystal fragments showing S and Cl surface alteration. The grain-size distributions of the coarse and fine-ash layers overlap, in part because of the aggregate nature of grains in the fine-ash layers. The coarse-ash layers are interpreted as having formed by magmatic eruption whereas the fine-ash layers are believed to be hydrovolcanic in origin.Mt. Takahe is the favored source for the tephra because: (a) chemical analyses of samples from the volcano are distinctive, being peralkaline trachyte, and similar in composition to the analyzed tephra; (b) Mt. Takahe is a young volcano (< 0.3 Ma); (c) pyroclastic deposits on Mt. Takahe indicate styles of eruption similar to that inferred for the ice core tephra; and (d) Mt. Takahe is only about 350 km from the calculated site of tephra deposition.A speculative eruptive history for Mt. Takahe is established by combining observations from Mt. Takahe and the Byrd ice core tephra. Initial eruptions at Mt. Takahe were subglacial and then graded into alternating subaerial and subglacial activity. The tephra suggest alternating subaerial magmatic and hydrovolcanic eruptions from 30 to 20 ka B.P., followed by a sustained period of hydrovolcanic eruptions from 20 to 14 ka B.P., which peaked at 18 ka B.P.  相似文献   

12.
Tephra, usually produced by explosive eruptions, is deposited rapidly, hence, it can serve as a distinctive and widespread synchronous marker horizon correlating terrestrial, marine and ice core records. The tephra from Changbaishan Millennium eruption, a widely distributed tephra, is an important marker bed across the Japan Sea, Japan Islands and even in the Greenland ice cores 9000km away from volcanic vent. In this study, a discrete tephra was identified in the Quanyang peat~45km northeast to the Changbaishan volcano. Radiocarbon 14 C dating on the plant remains constrains an age of 886-1013calAD(95.4%)to the tephra layer, which can correspond to the Millennium eruption of Changbaishan in time. In addition, there was no similar volcanic eruption in the surrounding areas except Changbaishan at the same time. This tephra shows rhyolitic glass shards major element compositions similar to those rhyolitic tephra from Millennium eruption. This study illustrates that tephra from Millennium eruption has been transported to Quanyang peat~45km northwest to the Changbaishan volcano. Additionally, the diameter of the pumice lapilli is up to 0.3cm, implying that the tephra must be transported more distal away from Quanyang peat and formed a widely distributed isochronic layer. Glass geochemistry of the Quanyang tephra, different from the distal tephra recorded at Sihailongwan, Japan, and Greenland ice, shows a close affinity to the pyroclastic flow deposits of the Millennium eruption while not from fall deposits. This may indicate that distribution of the Millennium eruption of Changbaishanin in different directions may be controlled by different stages of eruption. This layer with well-defined annual results can be used to optimize the chronological framework of the corresponding sedimentary environment, thus facilitating more accurate discussion of corresponding environmental changes, which can achieve the contrast of the ancient climate records in the whole Northeast China-Japan and arctic regions.  相似文献   

13.
The mass distribution and sorting of tephra produced in the plinian phase of the 1970 Hekla eruption was controlled by the particle size distribution, the height of the eruption column, and velocity of transport. Near the volcano the mass distribution of soluble fluorine was controlled by particle size of the deposits, but approaches the mass distribution of the tephra at longer distances. Adsorbed soluble fluorine reaches a maximum at a distance from the volcano determined by the velocity of the transporting medium.SEM studies show the soluble fluorine to be chemically adsorbed on the surface of tephra particles. The adsorption is shown by experiment to occur at temperatures below 600°C in the cooling eruption column. Evaluation of reactions in the eruption column leads to the conclusion that formation of water soluble compounds adhering to tephra is principally controlled by environmental factors and to a lesser degree by the composition of the volcanic gas phase.  相似文献   

14.
长白山天池火山千年大喷发空降碎屑物的数值模拟   总被引:4,自引:1,他引:4  
于红梅  许建东  赵谊 《地震地质》2007,29(3):522-534
文中以Suzuki火山灰扩散数学模型为基础,考虑了空气参数随海拔高度的变化和不同大小的颗粒由于内含气泡数量的不同而造成的密度不同,计算了不同尺寸颗粒的最终沉降速度和沉降时间。并对喷发柱扩散概率浓度的计算公式进行了修正,对长白山天池火山千年大喷发空降碎屑物的空间分布进行了数值模拟。模拟时根据风速随高度的变化应用3个模型:1)固定风速30m/s;2)风速从地球表面线性增加到对流层顶部,在平流层的速度为对流层顶部风速的0.75倍(又称MW1模型);3)风速在对流层与MW1相同,但是从对流层顶部到20km高处风速线性减小,20km高度以上的风速为对流层顶部的10%(又称MW2模型)。通过与前人的结果进行比较,说明了模型的合理性,最后分析了模拟结果与前人结果之间存在差异的原因  相似文献   

15.
Geochemical analysis of fine grained (<20 μm) tephra found in ice cores is inherently difficult, due to the typically low number and small size of available particles. Ice core tephra samples require specialized sample preparation techniques to maximize the amount of information that can be gained from these logistically limited samples that may provide important chronology to an ice record, as well as linking glacial, marine and terrestrial sediments. We have developed a flexible workflow for preparation of tephra and cryptotephra samples to allow accurate and robust geochemical fingerprinting, which is fundamental to tephrochronology. The samples can be prepared so that secondary electron imagery can be obtained for morphological characterization of the samples to ensure that the sample is tephra-bearing and then the sample can be further prepared for quantitative electron microprobe analysis using wavelength dispersive techniques (EMP-WDS), scanning electron microscopy with energy dispersive spectrometry (SEM-EDS), laser ablation inductively coupled mass spectrometry (LA-ICP-MS) or secondary ion mass spectrometry (SIMS). Some samples may be too small for typical instrumentation conditions to be used (i.e. 20 μm beam on the EMP) to analyze for geochemistry and we present other techniques that can be employed to obtain accurate, although less precise, geochemistry. Methods include analyzing unpolished tephra shards less than 5 μm in diameter with a 1 μm beam on an SEM; using the “broad beam overlap” EMP method on irregular particles less than 20 μm in diameter, and analyzing microlitic shards as well as aphyric shards using EMP to increase the number of analyzed shards in low abundance tephra layers. The methods presented are flexible enough to be employed in other geological environments (terrestrial, marine and glacial) which will help maximize and integrate multiple environments into the overall tephra framework.  相似文献   

16.
Most tephra fallout models rely on the advection–diffusion equation to forecast sedimentation and hence volcanic hazards. Here, we test the application of the advection–diffusion equation to tephra sedimentation using data collected on the proximal (350 to ~1,200?m from the vent) to medial (greater than ~1,200?m from the vent) tephra blanket of a basaltic cinder cone, Cerro Negro volcano, located in Nicaragua. Our understanding of tephra depositional processes at this volcano is significantly improved by combination of sample pit data in the medial zone and high-resolution ground-penetrating radar (GPR) data collected in the near vent and proximal zones. If the advection–diffusion equation applies, then the thickness of individual tephra deposits should have Gaussian crosswind profiles and exponential decay with distance away from the vent. At Cerro Negro, steady trade winds coupled with brief eruptions of relatively low energy (VEI 2–3) create relatively simple deposits. GPR data were collected along three crosswind profiles at distances of 700–1,600?m from the vent; sample pits were used to estimate thickness of the 1992 tephra deposit up to 13?km from the vent. Horizons identified in proximal GPR profiles exhibit Gaussian distributions with a high degree of statistical confidence, with diffusion coefficients of ~500?m2?s?1 estimated for the deposits, confirming that the advection–diffusion equation is capable of modeling sedimentation in the proximal zone. The thinning trend downwind of the vent decreases exponentially from the cone base (350?m) to ~1,200?m from the vent. Beyond this distance, deposit overthickening occurs, identified in both GPR and sample pit datasets. The combined data reveal three depositional regimes: (1) a near-vent region on the cone itself, where fallout remobilizes in granular flows upon deposition; (2) a proximal zone in which particles fall from a height of less than ~2?km; and (3) a medial zone, in which particles fall from ~4 to 7?km and the deposit is thicker than expected based on thinning trends observed in the proximal zone of the deposit. This overthickening of the tephra blanket, defining the transition from proximal to medial depositional facies, is indicative of transition from sedimentation dominated by fallout from plume margins to that dominated by fallout from the buoyant eruption cloud—a feature of deposits previously identified in larger-volume eruptions. We interpret this change to represent a change in diffusion law, occurring at total particle fall times (the fall time threshold of numerical models) of ~400?s. Thus, the detailed GPR profiles and pit data collected at Cerro Negro help to validate current numerical models of tephra sedimentation.  相似文献   

17.
Starting from the 1980's of last century, China has launched the national plan of constructing nuclear power plants along the coastline region in eastern China. Currently, in some of these candidate sites, nuclear facilities have been installed and are in operation, but some other nuclear power plants are still under construction or in site evaluation. In 2012 the Atomic Energy Commission issued the specific guide for volcanic hazards in site evaluation for nuclear installations(IAEA Safety Standards Series No. SSG-21), which was prepared under the IAEA's program for safety standards. It supplements and provides recommendations for meeting the requirements for nuclear installations established in the safety requirements publication on site evaluation for nuclear installations in relation to volcanic hazards. To satisfy the safety standards for volcanic hazard, we follow the IAEA SSG-21 guidelines and develop a simple and practical diffusion program in order to evaluate the potential volcanic hazard caused by tephra fallout from the explosive eruptions. In this practice, we carried out a case study of the active volcanoes in north Hainan Province so as to conduct the probabilistic analysis of the potential volcanic hazard in the surrounding region. The Quaternary volcanism in north Hainan Island, so-called Qiongbei volcanic field is characterized by multi periodic activity, in which the most recent eruption is dated at about 4 000a BP. According to IAEA SSG-21, a capable volcano is one for which both 1)a future eruption or related volcanic event is credible; and 2)such an event has the potential to produce phenomena that may affect a site. Therefore, the Qiongbei volcanic field is capable of producing hazardous phenomena that may reach the potential nuclear power plants around. The input parameters for the simulation of tephra fallout from the future eruption of the Qiongbei volcanic field, such as the size, density and shape of the tephra, the bulk volume and column height, the diffusion parameter P(z), wind direction and intensity, were obtained by field investigation and laboratory analysis. We carried out more than 10000 tephra fallout simulations using a statistical dataset of wind profiles which are obtained from China Meteorological Data Sharing Service System(CMDSSS). Tephra fallout hazard probability maps were constructed for tephra thickness threshold of 1cm. Our results show that the tephra produced by the future large-scale explosive eruption from the Qiongbei volcanic field can affect the area in a range about 250km away from the eruption center. In summary, the current key technical parameters related to volcanic activity and potential hazards in IAEA/SSG-21 guidelines, such as 10Ma volcanic life cycle and 1×10-7 volcanic disaster screening probability threshold, etc. are based on the volcanic activity characteristics in the volcanic island arc system. In consideration of the relatively low level of volcanic activity compared with volcanic island arc system due to the different tectonic background of volcanism in mainland China, the time scale of volcanic disaster assessment in IAEA SSG-21 guideline is relatively high for volcanoes in mainland China. We suggest that the study of "conceptual model" of volcanic activity should be strengthened in future work to prove that there is no credible potential for future eruptions, so that these volcanoes should be screened out at early stage instead of further evaluation by probabilistic model.  相似文献   

18.
The immediate environmental effects of tephra emission   总被引:1,自引:0,他引:1  
The Earth’s history is punctuated by large explosive eruptions that eject large quantities of magma and silicate rock fragments into the atmosphere. These tephra particles can sometimes be dispersed across millions of square kilometres or even entire continents. The interaction of tephra with or in receiving environments may induce an array of physical, chemical and biological effects. The consequences for affected systems and any dependent communities may be chronic and localised in the event of frequent, small eruptions, while larger and rarer events may have acute, regional-scale impacts. It is, therefore, necessary to document the range of possible impacts that tephra may induce in receiving environments and any resulting effects in interconnected systems. We collate results from many studies to offer a detailed multidisciplinary and interdisciplinary review of the immediate post-eruptive effects of tephra emission into the atmosphere, onto vegetation, soil or ice/snow surfaces and in aquatic systems. We further consider the repercussions that may be induced in the weeks to years afterwards. In the atmosphere, tephra can influence cloud properties and air chemistry by acting as ice nuclei (IN) or by offering sites for heterogeneous reactions, respectively. Tephra on vegetation causes physical damage, and sustained coverage may elicit longer-term physiological responses. Tephra deposits on soils may alter their capacity to exchange gas, water and heat with the atmosphere or may have a specific chemical effect, such as nutrient input or acidification, on sensitive soils. Tephra deposition onto snow or ice may affect ablation rates. Rivers and lakes may experience turbidity increases and changes in their morphology as a result of fallout and prolonged (months or years) erosion from the tephra-covered catchment. In the first weeks after deposition, tephra leaching may affect river chemistry. The abundance and speciation of phytoplankton populations in lakes may be altered by tephra-induced changes in water chemistry or sediment–water nutrient cycling. In the oceans, tephra deposition may fertilise Fe-limited waters, with potential impacts on the global carbon cycle. Embracing the full complexity of environmental effects caused by tephra fall demands a renewed investigative effort drawing on interdisciplinary field and laboratory studies, combined with consideration of the interconnectivity of induced impacts within and between different receiving environments.  相似文献   

19.
We present a Bayesian statistical approach to estimate volumes for a series of eruptions from an assemblage of sparse proximal and distal tephra (volcanic ash) deposits. Most volume estimates are of widespread tephra deposits from large events using isopach maps constructed from observations at exposed locations. Instead, we incorporate raw thickness measurements, focussing on tephra thickness data from cores extracted from lake sediments and through swamp deposits. This facilitates investigation into the dispersal pattern and volume of tephra from much smaller eruption events. Given the general scarcity of data and the physical phenomena governing tephra thickness attenuation, a hybrid Bayesian-empirical tephra attenuation model is required. Point thickness observations are modeled as a function of the distance and angular direction of each location. The dispersal of tephra from larger well-estimated eruptions are used as leverage for understanding the smaller unknown events, and uncertainty in thickness measurements can be properly accounted for. The model estimates the wind and site-specific effects on the tephra deposits in addition to volumes. Our technique is exemplified on a series of tephra deposits from Mt Taranaki (New Zealand). The resulting estimates provide a comprehensive record suitable for supporting hazard models. Posterior mean volume estimates range from 0.02 to 0.26 km 3. Preliminary examination of the results suggests a size-predictable relationship.  相似文献   

20.
The violent August 16–17, 2006 Tungurahua eruption in Ecuador witnessed the emplacement of numerous scoria flows and the deposition of a widespread tephra layer west of the volcano. We assess the size of the eruption by determining a bulk tephra volume in the range 42–57 × 106 m3, which supports a Volcanic Explosivity Index 3 event, consistent with calculated column height of 16–18 km above the vent and making it the strongest eruptive phase since the volcano’s magmatic reactivation in 1999. Isopachs west of the volcano are sub-bilobate in shape, while sieve and laser diffraction grain-size analyses of tephra samples reveal strongly bimodal distributions. Based on a new grain-size deconvolution algorithm and extended sampling area, we propose here a mechanism to account for the bimodal grain-size distribution. The deconvolution procedure allows us to identify two particle subpopulations in the deposit with distinct characteristics that indicate dissimilar transport-depositional processes. The log-normal coarse-grained subpopulation is typical of particles transported downwind by the main volcanic plume. The positively skewed, fine-grained subpopulation in the tephra fall layer shares close similarities with the elutriated co-pyroclastic flow ash cloud layers preserved on top of the scoria flow deposits. The area with the higher fine particle content in the tephra layer coincides with the downwind prolongation of the pyroclastic flow deposits. These results indicate that the bimodal distribution of grain size in the Tungurahua fall deposit results from synchronous deposition of lapilli from the main plume and fine ash elutriated from scoria flows emplaced on the western flank of the volcano. Our study also reveals that inappropriate grain-size data processing may produce misleading determination of eruptive type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号