首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
郭彦双  马瑾  云龙 《地震地质》2011,33(1):26-35
采用位移、应变和声发射等测量手段,研究了预置5°拐折断层的房山花岗岩样品的黏滑过程,分析了不同加载速率下5°拐折断层失稳的黏滑特征及相关物理场的演化过程。实验结果表明: 1)5°拐折断层的黏滑周期与加载速率在数值上呈负对数相关关系; 2)在不同的加载速率下,大多数的5°拐折断层失稳是双震事件, 2次子事件的间隔时间大多在100~200ms之间; 3)采用不同的观测手段,即使采样速率一致,其临震响应也存在差异性,如断层失稳前沿断层的应变测量结果呈现明显的应变弱化,断层位移则未见明显的变化; 4)断层黏滑过程中的声发射事件呈现明显的沿断层迁移的特征。认识强震的发生机理和余震特征需要进一步研究断层失稳过程的动力学信息。  相似文献   

2.
识别断层活动和失稳的热场标志——实验室的证据   总被引:5,自引:0,他引:5  
利用一套双向伺服系统对含压性和张性雁列断层的标本进行变形实验,实验中应用红外热像仪和接触式测温仪同步记录岩石变形过程中热红外辐射的亮度温度场和温度场的变化;使用数字CCD相机同步采集标本表面的数字图像,并利用数字散斑方法对采集到的图像进行分析得到位移场和应变场的演化过程。实验结果表明:1)在断层贯通前压性雁列岩桥区温度最高,而张性雁列岩桥区温度最低;数字散斑结果显示压性岩桥区平均应变最高,而张性岩桥区平均应变最低。温度场对两类雁列断层在岩桥区相反的受力状态有清晰的响应,可以为判断断层应力状态提供标志。2)雁列断层经历了从岩桥区应力积累、破坏到断层失稳错动两个变形阶段,升温机制也由应变升温变为摩擦升温;伴随升温机制的转变,在岩桥区观测到断层失稳错动前的破坏降温、温度快速起伏以及升温脉冲等现象,是观测失稳前兆的最佳部位。3)在雁列岩桥区裂纹端点附近观测到升温脉冲,表现为温度快升快降,随后即出现断层带的快速升温。升温脉冲现象可能与裂纹端部的应力奇异集中和破裂扩展引起的应力释放有关。裂纹端部的扩展是断层失稳错动的条件,随后断层带的升温正是断层失稳错动造成的。断层带开始升温发生在失稳前2~3s内,岩桥区的降温发生在失稳  相似文献   

3.
断层亚失稳模型指出,在临震亚失稳阶段中各种物理量存在规律性的时空演化特征,控制这些物理参数变化的根本原因是震源的力学过程。为深入观测和分析该过程,文中介绍了一套自主研发的64通道、16位分辨率、4MHz采样频率、可并行连续采集的超动态变形场观测系统(UltraHi DAM),首次实现了在4MHz频率下对应变信号和声发射信号的同步采集。依托该系统对断层失稳变形的全过程,特别是失稳前几s到若干μs的瞬态变形过程,即亚失稳准动态阶段进行了精细、深入的观测,解析了相关的震源力学问题,获得以下认识:1)伴随断层局部卸载而出现的应变局部化加速是进入亚失稳准静态阶段的近场判据;2)亚失稳准动态阶段的应变场特征(应变调整)表现为以应变逐点的逐次加速和往复传递;3)准动态过程中每个子阶段都存在短暂的准备期,其可能有助于临震预测;4)一次断层失稳事件(实验室地震)可以伴随发生多次震源应变高频震荡以及对应的多次声发射事件。  相似文献   

4.
在实验室内利用超声尾波观测大尺度(1.5 m)岩石断层的黏滑过程.利用基于尾波干涉的观测方法,我们获得了高达10~(-6)的相对波速变化的观测精度,这相当于~10 kPa的应力变化.利用高精度的测量,我们获取两种不同加载速率下(1μm·s~(-1),10μm·s~(-1))黏滑过程三个阶段(恢复、加载和滑动)基于波速变化的特征量.我们更进一步获取了断层失稳阶段波速变化的时空演化过程.最后讨论了该观测方法需要改进的地方.以上研究结果表明作为一种对现有实验观测手段的有益补充,利用超声尾波观测实验室大尺度岩石断层的动力学过程是可行的.  相似文献   

5.
作为构造地震的基本物理模型,断层失稳是否可以被简单地划分为应变积累的粘滞阶段与应变快速释放的地震滑动阶段两个部分,并用弹簧滑块组合来解释是一个根本的问题。近几十年来,对失稳前断层状态的研究反映出很多研究者已经意识到这个阶段的复杂性,例如成核相、临界扩展尺度、局部化等研究的出现。亚失稳模型的提出把临震阶段的研究推向了深入,指出临震亚失稳阶段之中各种物理量存在规律性的时空演化特征,控制这些物理参数变化的根本原因是震源力学过程的时空演化规律。为此,需要研发高速多通道多参数并行连续记录的实验观测系统,依托这个系统对断层失稳变形的全过程,特别是失稳前几秒到微秒级别的瞬态变形过程,以及失稳滑动瞬态过程进行精细深入的观测,解析相关的震源力学问题。我们研发了一套64通道,16位分辨率,4 MHz采样频率并行连续采集的超动态变形场观测系统,首次实现了应变信号和声发射信号的同步采集。该系统在技术上处于国际同类实验室领先水平。基于该系统完成了多组实验,共获得209个失稳滑动事件,记录到约42 TB应变和声发射实验数据。实验证明,该系统具有很好的稳定性,为开展预滑、亚失稳、动态加速过程、失稳滑动瞬态过程等研究提供了一个全新的技术平台。以此系统为基础对断层失稳全过程进行观测,对断层亚失稳阶段,特别是亚失稳准动态阶段以及瞬态失稳阶段的变形场信息进行了精细深入的观测。获得以下结论:(1)伴随有断层局部卸载而出现的应变局部化加速是进入亚失稳准静态阶段的近场判据。在理论模型的描述中,亚失稳阶段的开始以样品宏观变形的应力曲线进入峰值后为标志。从沿断层的应变观测可以确认,峰后的整体应力下降在样品内部体现为个别段落的卸载,也就是说,从以全场稳态变形为主的应力积累阶段转变为局部卸载为主的亚失稳准静态阶段。在这个阶段中,断层各段通过相互加卸载作用使局部化进一步加强,该特点可作为进入亚失稳阶段的近场判据。(2)亚失稳准动态阶段存在应变波动的往复传递。亚失稳准动态阶段以逐点应变波浪式的往复传递为表现形式,在本文研究分析的实验中,准动态阶段可以分为3个子阶段(AA1、A1A2和A2A3阶段),每个子阶段对应一次应变波动的传递事件。第一阶段,应变波动的传递开始于断层中部并向上端的高应变区逐点释放;第二阶段,在上次应变传递的终点,一个新的应变波动出现并向断层下端反向传递,影响范围超过了第一阶段波动的起始位置并到达断层下端;第三阶段,在第二次应变波动到达的断层下端位置,再次出现新的向断层上端反向传递的应变波动。最后一次应变波动的传递贯穿了整条断层并到达断层上端的高应变区,使得累加应变达到了局部的剪切强度。最终从高应变区开始,整条断层带周边的应变能快速释放,造成"地震"。3个阶段中,应变波动传递的周期越来越短,速度越来越快,平均速度依次成几十倍递增。第一阶段,应变传递时间约7 s,平均速度约为16 mm/s;第二阶段,应变传递时间约0.16 s,平均速度约为920 mm/s;第三阶段,应变传递时间约0.017 s,平均速度约为17 600 mm/s(17.6 m/s)的速度扩展至整条断层。(3)准动态过程每个子阶段都存在短暂的准备期。准动态过程中,每个子阶段的应变传递开始前,在上一次应变传递的停止区域,会出现一个短暂的应变准备期,随后才能进入下一阶段的应变波动传递过程。第二子阶段的应变波动传递开始之前,在第一子阶段波动传递终点区域出现一个时长约为100 ms的应变准备期,随后开始第二阶段的应变波动传递;同样地,第三子阶段的应变波动传递开始,在第二子阶段应变波动传递终点区域出现一个时长约为25 ms的应变准备期,随后开始第三子阶段的应变波动传递;最终,在断层整体快速应变释放前,在第三子阶段应变波动传递终点区域出现一个时长约为3 ms的应变准备期,随后断层整体应变快速释放,发生"地震"。断层出现过渡带的原因可能是传递到端点的应变波动释放的应变并不足以引发断层整体滑动,需要重新积累应变直至产生下一次波动事件。应变准备期的出现,特别是断层瞬态失稳前的短暂应变准备期,可能为临震预测提供依据。(4)断层瞬态失稳初期存在同震高频应变震荡。在断层瞬态失稳初期,存在数次高频应变震荡,频率约为2 k Hz,频谱上限约为15 k Hz,单次应变震荡周期约为0.5 ms。每次高频振荡都伴随有一次实验室地震(声发射)事件,称其为同震高频应变震荡。虽然每次高频震荡在时间上存在一定的先后关系,但是由于在测点等间距的情况下走时时差不同,且存在应变波反向传播的情况;另外,各点应变波振幅水平大致相同,没有从震荡初始位置向两侧振幅衰减的特征。所以各点之间并不表现为应变波的传播关系。(5)存在毫秒时间尺度的同震子事件。在断层失稳阶段,如果出现"双震",每次"子地震"都对应一个或数个高频同震应变振荡波。同时,各次高频震荡的发震位置可能不同。这与中频系统所看到的多点震源情况类似,也就说明在不同的时间尺度上都可以观测到多点震源的情形。(6)断层整体止滑前存在应变波动的反向传递。在数次高频震荡结束后,出现一个相对低频的反向应变波动从断层另一端传递至发震位置,本次反向脉冲并不伴随有声发射现象。此后,断层整体同震阶段结束,各点开始在自己的应变水平上进行阻尼式的高频震荡。这个反向传递的应变波动可能包含着地震停止和断层止滑的重要信息。(7)浅震源环境下的三轴试验验证。与此同时,为了验证亚失稳阶段和瞬态失稳阶段在浅震源压力环境下是否符合类似规律,在三轴围压容器内完成多组实验。浅震源环境下的断层失稳实验表明,亚失稳阶段和复杂的断层瞬态失稳阶段在浅震源压力环境下依然存在,其进程与在双轴加载系统环境下的观测结果相符。  相似文献   

6.
断层几何结构与物理场的演化及失稳特征   总被引:22,自引:2,他引:22       下载免费PDF全文
马瑾  马胜利 《地震学报》1996,18(2):200-207
在双轴加载条件下,研究了几种具不同几何结构的断层系变形破坏过程中应变、断层位移和声发射事件的时空分布,并对典型失稳事件的特征进行了分析.研究表明: 具不同几何结构的断层系有不同的变形物理场演化图象;根据物理场演化特征和变形机制的差异,可识别出两类粘滑型失稳、破裂型失稳及混合型失稳,不同类型的失稳在前兆上有明显差异;失稳类型与断层几何结构及变形阶段密切相关.因此,研究自然界断层的几何结构,对地震预报和地震前兆观察研究极为重要.   相似文献   

7.
郭玲莉  刘力强 《地震地质》2014,36(1):243-252
使用双剪粘滑模型模拟自发地震和诱发地震的区域加载过程,利用应变观测系统多点连续观测发震断层附近的局部应变变化。在应力与应变空间上描述了地震过程的区域应力路径和局部应变路径。结果表明,局部应变路径与应力宏观路径的形态差异较大,但两者的转换阶段对应,存在一定映射关系。断层局部变形路径的走向标明了断层所处在的变形阶段。自发地震的应变路径可以划分为3个部分:应变积累阶段、剪应变的线性偏离阶段和失稳滑动阶段。诱发地震的应变路径包括4个阶段:正斜率的应变积累阶段、负斜率的稳态滑动阶段、亚稳态应变僵持阶段、扰动失稳滑动阶段。自发地震与诱发地震有各自的路径模式,可以从应变路径上判别断层稳定性与可能的地震类型。  相似文献   

8.
以数字散斑相关方法(DSCM)为观测手段,对雁列断层结构的破坏过程进行了实验研究,观测和分析了变形破坏过程中模型表面的变形场演化过程.断层结构由一块含两条平行割缝的大理岩平板模拟,模型试件在双轴试验机上加载;DSCM观测系统在加载过程中记录试件表面的散斑图像,然后分析得到模型表面待测区域各记录时刻的位移场及应变场.全场连续的变形数据清晰地反映了雁列断层结构的变形破坏过程的各种细节.实验结果显示,变形最初集中在断层带周围,然后迁移到雁列区,最后雁列区贯通,结构发生滑动导致整个结构发生失稳破坏.对变形破坏过程中的变形场进行统计分析发现,一种描述变形局部化特征的统计指标—Cv值,可以作为一个雁列断层破坏的前兆指标.  相似文献   

9.
断层黏滑动态变形过程的实验研究   总被引:2,自引:0,他引:2       下载免费PDF全文
实验研究断层黏滑过程的变形演化,尤其是失稳黏滑瞬间的断层位移演化特征,对于了解地震从孕育到发生的全过程具有重要意义.本文基于数字散斑相关方法(digital speckle correlation method, DSCM),用三套图像采集系统(两套低速和一套高速图像采集系统)搭建了断层黏滑过程的多观测区域、多时间尺度的变形场测量系统,并用此系统对一种花岗岩双剪滑动模型的黏滑过程进行了实验研究.对间黏滑期和黏滑期断层位移演化特征进行深入分析的结果表明:间黏滑期断层位移演化体现出空间上的非均匀性和时间上的"趋同化"特征,断层滑动趋同化也许是断层错动匀阻化的一种宏观表现形式;断层黏滑动态过程持续时间非常短(本文300 mm断层黏滑过程持续时间约在1 ms量级),黏滑失稳前会出现预滑,预滑出现到黏滑失稳发生所经历的时间与黏滑失稳过程所用时间相差一个量级;断层的一次黏滑由若干个滑动速度不同的、小的失稳滑动组成,黏滑失稳过程中断层的滑动速度呈现出波动性,整个滑动过程中断层经历了多个高速滑动和低速滑动的交错.  相似文献   

10.
李平恩  廖力  奉建州 《地球物理学报》2021,64(10):3466-3477
考虑断层的软化特性,建立垂直于龙门山断裂带并包含四川盆地和川西高原在内的汶川地震不稳定性地震力学模型.采用有限元方法计算得到了描述整个岩石力学系统稳定性状态和过程的平衡路径曲线.在此基础上,采用稳定性理论研究了汶川地震从孕育到发生的过程,讨论了断层倾角和断层材料参数对地震失稳的影响.数值模拟结果显示,系统只存在稳定的断层无震滑动和不稳定的地震失稳2种状态.断层倾角、初始内摩擦系数、初始黏聚力和强度曲线形状参数的增加会导致系统趋向不稳定的地震失稳状态.而强度曲线胖度参数的增加有助于系统进入稳定的断层缓慢无震滑动状态.地震失稳前,在平衡路径曲线的应力峰值点和失稳点之间,断层错动加速,应变能开始释放并且应力开始减小,是失稳的前兆.最后在失稳点发生应力突跳,地震发生,其间伴随应变能的急剧释放、应力降和断层突然错动.无论是稳定的断层无震滑动还是不稳定的地震失稳,系统重新进入应力和应变能增加状态后应力和应变能的增速由远场加载速度、岩石力学系统的结构和围岩材料属性决定,与断层软化特性参数无关.  相似文献   

11.
介绍了SS-YD型断层观测伸缩仪的系统组成及其基本原理,。该系统实行现场自动采集和自动储存并由“数据交换器”进行数据调用和回放,具备交直流电源自动转换及有效的避雷装置,实现了无人值守。仪器所得观测数据稳定,并记录到清晰的应变固体潮汐与台湾“9.21”大地震0.5μm的同震阶跃。  相似文献   

12.
基于岩石变形声发射实验结果讨论了大震前地震活动平静现象的机制。在双轴压缩、等位移速率加载条件下 ,挤压型雁列断层、含宏观凹凸体断层、Ⅲ型剪切断层等非连续断层在临近滑动失稳前 ,声发射活动均出现了明显的相对平静现象 ,表现为声发射事件的发生率和应变能释放水平显著降低。与此阶段相对应 ,断层带 (特别是非连续部位上新形成的一小段断层 )发生了蠕滑和匀阻化作用 ,并使得标本的差应力开始下降。根据实验结果提出 ,大地震前断层的“蠕滑 -匀阻化”过程是造成地震活动平静现象的可能机制  相似文献   

13.
为了探讨在俯冲带构造加载环境中叶蛇纹石矿物的摩擦力学性质,我们使用叶蛇纹石作为实验样品,开展了高压流体条件下的摩擦滑动实验研究.实验在气体介质的高温高压三轴实验系统中进行,实验中的有效正应力为30 MPa,孔隙流体压力为100 MPa,温度范围为100~500℃.实验过程中为了得到叶蛇纹石摩擦强度系数的速度依赖性,我们将轴向加载速率在1.0μm·s-1、0.2μm·s-1和0.04μm·s-1之间进行切换.实验结果发现在实验温度范围内叶蛇纹石的摩擦强度系数随着温度的升高表现出系统的降低趋势,摩擦系数从100℃的0.81降低到500℃的0.41.在高于300℃的温度条件下,叶蛇纹石的剪切力学曲线表现出显著的位移弱化现象.在300℃的温度条件下,叶蛇纹石在0.2~1.0μm·s-1的加载速率范围内表现出速度强化的摩擦行为,而在0.04μm·s-1的加载速率下表现为速度弱化.在100~200℃以及400~500℃的温度条件下皆表现为速度强化.我们的实验研究表明在俯冲带地幔楔附近的高压...  相似文献   

14.
亚失稳阶段是断层临近失稳的最后阶段,识别断层亚失稳状态,对评估断裂区内的断层失稳危险性具有重要意义.含平直走滑断层的岩石样品在卧式双轴伺服控制压机上加载产生黏滑,同时用高速相机以1000帧S_的速度记录样品变形,失稳过程中的数字图像,然后采用数字图像相关分析方法计算样品表面变形场,并通过定义表征断层位移累计值相对离散程度的协同化系数来描述断层失稳过程的协同化特征,结果表明:(1)局部预滑区进入亚失稳阶段之前,扩展速率非常缓慢;进入亚失稳I阶段后,扩展速率有所增加,但仍很缓慢,属于准静态扩展;在亚失稳II阶段,在占整个亚失稳阶段~1.5%的时间段内,断层先是以~0.9mS。的速率扩展,继而快速贯通整个观测区域,此时断层已转为准动态扩展.(2)在亚失稳I阶段断层位移协同化系数降为进入亚失稳前的一半,在亚失稳II阶段这一系数再降为进入亚失稳前的四分之一.这一系数持续下降意味着断层位移协同化作用的加强,亦可作为断层进入亚失稳阶段的特征之一.(3)此外,在断层失稳滑动阶段,观测区内断层出现三次整体滑动:初始滑动,快速滑动和调整滑动.断层在三次滑动之间存在两次短暂的停顿过程.  相似文献   

15.
地电观测专用高精度数据采集器研制   总被引:1,自引:0,他引:1  
针对地震地电前兆观测,研制基于ARM9平台和32位模数转换器ADS1281的地电观测高精度数据采集系统,实现了高精度和低噪声采样.本文给出地电观测高精度数据采集系统的硬件设计、软件实现和系统指标测试结果.该系统采样率可设置为1次/s至100次/s,1至6通道任意配置,通信协议符合中国地震局地震前兆台网专用设备网络通信规程,可以满足地震地电传感器信号采集和网络接入需求.  相似文献   

16.
首次观测到的由地震引起的绝对重力变化   总被引:2,自引:0,他引:2  
首次用绝对重力测量观测到明确的同震重力变化。恰好在1次M6.1地震的前1天和震后7天进行了绝对重力测量。观测到的绝对重力变化为-6μGal,显著地大于约1μGal的观测误差。特别有意义的是,所观测到的空间重力变化与仅用位移数据建立起来的弹性位错模型预测的结果非常一致。该结果强烈地激励我们对重力和位移同时进行反演,以更好地了解地震。  相似文献   

17.
多通道动态应变观测系统在地震模拟实验中的应用   总被引:1,自引:1,他引:0       下载免费PDF全文
为了研究实验变形失稳过程中的应变场快速调整阶段和岩石结构破坏过程中的复杂变形场,将高速、高分辨率、多通道的应变观测技术引入构造物理实验,搭建了用以观测瞬态变形场的多通道动态应变观测系统,形成了16Bit分辨率、96通道、3.4kHz采样速度、1με分辨率且连续记录的应变观测系统。通过观测断层失稳过程高速滑动阶段和裂纹扩展过程的力学场时空变化,发现断层粘滑失稳过程的演化具有3个特征阶段:预滑动阶段、高频震荡阶段和低频调整止滑阶段。每个阶段的持续时间、应变速率、频率特性、振幅等都具有自身特点;三维断层扩展模型的实验结果显示,岩桥区断层贯通是一个快速过程,先多点局部扩展,后跳跃式连接。在断层贯通之后,样品整体崩垮之前,存在一个相对稳定的阶段,持续时间为几十ms。多通道动态应变观测系统填补了在地震模拟与岩石力学实验中应变观测频带的空缺,可以获得高密度、高精度的动态应变场,进一步研究瞬态应变场演化与应变波时空过程,为理解从缓慢递进变形到突发失稳释放过程提供了技术支持。  相似文献   

18.
雁列式断层组合变形过程中的声发射活动特征   总被引:10,自引:4,他引:10       下载免费PDF全文
着重研究拉张或挤压型雁列式断层标本变形过程中声发射(简称AE,下同)的时空演化特征. 结果表明,预置构造对AE空间分布格局具有较强的控制作用,随着差应力的增加,AE首先在两个端点附近丛集,之后向两端点连线附近集中,出现明显的破裂局部化现象,较大事件还通常集中于某一端点附近反复发生. 前期微破裂丛集图象指示后期宏观破裂的扩展方向及扩展范围. 拉张和挤压型雁列区宏观破裂方向分别与轴向应力方向垂直和平行. 雁列式断层标本变形过程中,破裂前的弱化阶段相对较长、弱化过程明显. 微破裂事件累积频次指数增长可能是系统失稳前的典型征兆之一,而雁列区宏观破裂之后,AE数量逐渐减少、应变释放相对减弱. 摩擦滑动过程中,大的粘滑失稳前未见有AE活动前兆性的增强过程.雁列区的b值变化在失稳前显示趋势性降低——快速回升这一典型的变化过程,b值降低一般发生在差应力增强过程之中,并有可能延续至弱化阶段,而快速回升则一般发生在破裂失稳前的短时期内. 对比研究表明,构造差异所导致的b值差异远大于b值随差应力的增加而产生的变化量,而对同一构造标本,力学状态的改变会导致AE序列时序特征的急剧变化,较高的加载速率对应较高的应变能释放及明显的低b值. 先期破碎带由于较低的破坏强度,其对差应力的微小变化具有特殊敏感性,从而成为源、兆分离、窗口或敏感点效应等地震活动性前兆现象的一种可能的原因.   相似文献   

19.
鲜水河断裂带炉霍段的震后滑动与形变   总被引:5,自引:0,他引:5       下载免费PDF全文
杜方  闻学泽  张培震 《地球物理学报》2010,53(10):2355-2366
1973年2月在鲜水河断裂带炉霍段发生了M7.6地震破裂.自那以来,先后在炉霍县虾拉沱布设了若干横跨该地震断层(1973年破裂带)的地壳形变观测系统,包括断层近场的短基线、短水准、蠕变仪、人工构筑物等,以及断层近-远场的GPS观测站.利用这些观测系统的长期观测资料,本文分析了鲜水河断裂带炉霍段的震后滑动/变形及其时、空变化特征,并建立起解释这些特征的动力学模式.研究表明:(1)1973年地震后的头5年,地震断层在虾拉沱场地表现为开放性质,近场的断层震后滑动以无震左旋蠕滑为主,速率达到10.27 mm/a,且伴有微量的拉张性蠕动作用;1979年以来,左旋蠕滑速率由5.3 mm/a逐渐减小到2.27 mm/a,减小的过程呈对数函数型,反映此阶段断层面已逐渐重新耦合、正朝闭锁的方向发展,并伴有部分应变积累.(2)1999年以来,地震断层两侧远场的相对左旋位移/变形速率为10 mm/a,远大于同时期断层近场(跨距40~144 m)的左旋蠕滑速率0.66~2.52 mm/a;远-近场位移/形变速率的显著变化发生在地震断层两侧各宽约30 km的范围,显示出这是与大地震应力应变积累-释放相关的断裂带宽度.(3)结合动力学背景与深部构造信息,本文对这里断层的震后位移/变形及其时、空变化的机理进行初步解释,要点是:震后约5年之后,由于逐渐增大的断层滑动/摩擦阻抗,上地壳脆性层中的断层面由震后初期的开放性质逐渐转向重新耦合、并朝闭锁的方向发展,但其两侧地块深部持续的延性相对运动拖拽着浅部脆性层发生相应的弹性位移/变形.(4)可估计再经历15~25年,研究断裂段将完全"闭锁",即进入积累下一次大地震应力应变的震间闭锁阶段.  相似文献   

20.
断层失稳错动热场前兆模式:雁列断层的实验研究   总被引:14,自引:4,他引:14       下载免费PDF全文
在实验室使用红外热像仪和接触式测温仪同步观测记录了压性和张性雁列断层失稳错动前后的热场变化过程.从实验记录中发现,在断层失稳引起温度场和热红外辐射亮温温度场上升之前,在两断层段之间的岩桥区发生降温变化.断层带开始升温发生在失稳前2~3 s内,岩桥区的降温却发生在失稳前约20s,这两个超前时间长度相差近一个量级.此类热场先降后升变化过程在雁列构造变形中有一定的普遍性,可能作为雁列断层失稳错动的热场前兆模式.根据实验观测结果,详细描述了上述热场变化的时间过程及其空间分布特征,分析了产生此种失稳前兆模式的机制,显著异常出现的条件及有利观测部位,讨论了它在地震前兆探索等研究中的意义.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号