首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
The effects of plate rheology (strong plate interiors and weak plate margins) and stiff subducted lithosphere (slabs) on the geoid and plate motions, considered jointly, are examined with three-dimensional spherical models of mantle flow. Buoyancy forces are based on the internal distribution of subducted lithosphere estimated from the last 160 Ma of subduction history. While the ratio of the lower mantle/upper mantle viscosity has a strong effect on the long-wavelength geoid, as has been shown before, we find that plate rheology is also significant and that its inclusion yields a better geoid model while simultaneously reproducing basic features of observed plate motion. Slab viscosity can strongly affect the geoid, depending on whether a slab is coupled to the surface. In particular, deep, high-viscosity slabs beneath the northern Pacific that are disconnected from the surface as a result of subduction history produce significant long-wavelength geoid highs that differ from the observation. This suggests that slabs in the lower mantle may be not as stiff as predicted from a simple thermally activated rheology, if the slab model is accurate.  相似文献   

2.
A non-standard new code to solve multiphase viscous thermo–mechanical problems applied to geophysics is presented. Two numerical methodologies employed in the code are described: A level set technique to track the position of the materials and an enrichment of the solution to allow the strain rate to be discontinuous across the interface. These techniques have low computational cost and can be used in standard desktop PCs. Examples of phase tracking with level set are presented in two and three dimensions to study slab detachment in subduction processes and Rayleigh–Taylor instabilities, respectively. The modelling of slab detachment processes includes realistic rheology with viscosity depending on temperature, pressure and strain rate; shear and adiabatic heating mechanisms; density including mineral phase changes and varying thermal conductivity. Detachment models show a first prolonged period of thermal diffusion until a fast necking of the subducting slab results in the break–off. The influence of several numerical and physical parameters on the detachment process is analyzed: The shear heating exerts a major influence accelerating the detachment process, reducing the onset time to one half and lubricating the sinking of the detached slab. The adiabatic heating term acts as a thermal stabilizer. If the mantle temperature follows an adiabatic gradient, neglecting this heating term must be included, otherwise all temperature contrasts are overestimated. As expected, the phase change at 410 km depth (olivine–spinel transition) facilitates the detachment process due to the increase in negative buoyancy. Finally, simple plume simulations are used to show how the presented numerical methodologies can be extended to three dimensions.  相似文献   

3.
We have performed 3-D scaled lithospheric experiments to investigate the role of the gravitational force exerted by a subducting slab on the deformation of the subducting plate itself. Experiments have been constructed using a dense silicone putty plate, to simulate a thin viscous lithosphere, floating in the middle of a large box filled with glucose syrup, simulating the upper mantle. We examine three different plate configurations: (i) subduction of a uniform oceanic plate, (ii) subduction of an oceanic-continental plate system and, (iii) subduction of a more complex oceanic-continental system simulating the asymmetric Africa-Eurasia system. Each model has been performed with and without the presence of a circular weak zone inside the subducting plate to test the near-surface weakening effect of a plume activity. Our results show that a subducting plate can deform in its interior only if the force distribution varies laterally along the subduction zone, i.e. by the asymmetrical entrance of continental material along the trench. In particular, extensional deformation of the plate occurs when a portion of the subduction zone is locked by the collisional process. The results of this study can be used to analyze the formation of the Arabian plate. We found that intraplate stresses, similar to those that generated the Africa-Arabia break-up, can be related to the Neogene evolution of the northern convergent margin of the African plate, where a lateral change from collision (Mediterranean and Bitlis) to active subduction (Makran) has been described. Second, intraplate stress and strain localization are favored by the presence of a weakness zone, such as the one generated by the Afar plume, producing a pattern of extensional deformation belts resembling the Red Sea-Gulf of Aden rift system.  相似文献   

4.
从Global CMT目录搜集了1976年1月至2016年6月之间的震源深度大于70km的255个震源机制解,用阻尼应力反演方法,分70~160km和170~310km两个深度,计算了帕米尔—兴都库什地区的构造应力场;同时以10km为间隔计算了兴都库什地区深度介于70~310km之间的应力形因子.得到以下初步结论:兴都库什板片向下俯冲和帕米尔地区断裂带的横向拉张,可能是导致应力场不同的原因.兴都库什俯冲带与帕米尔俯冲带碰撞,导致交汇地区(37°N—37.5°N)的应力场参数突变.兴都库什俯冲板片受到深部温度、压力等因素,出现薄弱面进而形成拆离板片.其脱离了主俯冲板片的束缚后,重力的上下拉张作用导致空区附近张轴倾伏角接近90°,拆离板片俯冲至上地幔不连续面,导致板片部分熔融进而应力形因子随着深度变小.而拆离板片受到地幔挤压其内部发生破碎,其压应力轴由西部的NS到东部NW-SE方向偏转及纵向张应力轴倾伏角变小.  相似文献   

5.
马尼拉海沟俯冲带热结构的模拟研究   总被引:6,自引:3,他引:3       下载免费PDF全文
俯冲带热结构的数值模拟研究是对地表观测研究的重要补充,也是验证地球动力学模型的重要方法.本文沿马尼拉海沟俯冲带东火山链(EVC)和西火山链(WVC)各取一条剖面,依据地质、地球物理条件,进行了有限元热模拟计算.计算过程中,分析了摩擦和剪切热对俯冲带热结构的影响,模拟了EVC和WVC两条测线下俯冲带的热结构,并结合岩石学实验结果预测了俯冲板块发生脱水和部分熔融的位置.模拟结果表明,在100 km深度处,考虑摩擦和剪切热时,俯冲板块表面的温度约为865 ℃;而不考虑摩擦和剪切时,俯冲板块表面的温度仅为770 ℃,二者温差可达95 ℃.在相同深度处,考虑摩擦和剪切热时,在EVC和WVC测线下俯冲板块表面的温度分别为865 ℃和895 ℃,俯冲洋壳底部温度分别为560 ℃和605 ℃.俯冲板块表面少量矿物开始脱水的深度小于50 km,但大量脱水和部分熔融主要发生在深度100 km左右,这与地表观测的火山活动位置一致.  相似文献   

6.
A Newtonian fluid model is proposed to describe the oblique subduction of a planar 2-D slab. The slab is assumed to subduct in response to the ridge push force exerted along the trench, the slab pull force at the downdip of the slab, the gravitational body force within the slab, and the frictional resistance force at the upper surface of the slab. Because the slab motion along strike is being resisted by the frictional resistance at the interplate coupling area while the slab motion along the trench normal is being maintained by the gravitational pulling, the slab turns gradually toward the trench normal direction as it subducts. This model offers an alternative explanation for earthquake slip partitioning, the observation that the earthquake slip vectors deflect away from the relative plate motion direction toward the trench normal direction along most of the oblique subduction zones worldwide. Numerical models suggest that slip partitioning caused by slab deformation could be as much as 30% at 100 km downdip of the slab. The slab viscosity, the plate coupling width, the interplate resistance coefficient, the slab pull force, and the gravitational body force are all important in determining the geometry of the slab subduction.  相似文献   

7.
Continental subduction and collision normally follows oceanic subduction,with the remarkable event of formation and exhumation of high-to ultra-high-pressure(HP-UHP)metamorphic rocks.Based on the summary of numerical geodynamic models,six modes of continental convergence have been identified:pure shear thickening,folding and buckling,one-sided steep subduction,flat subduction,two-sided subduction,and subducting slab break-off.In addition,the exhumation of HP-UHP rocks can be formulated into eight modes:thrust fault exhumation,buckling exhumation,material circulation,overpressure model,exhumation of a coherent crustal slice,episodic ductile extrusion,slab break-off induced eduction,and exhumation through fractured overriding lithosphere.During the transition from subduction to exhumation,the weakening and detachment of subducted continental crust are prerequisites.However,the dominant weakening mechanisms and their roles in the subduction channel are poorly constrained.To a first degree approximation,the mechanism of continental subduction and exhumation can be treated as a subduction channel flow model,which incorporates the competing effects of downward Couette(subduction)flow and upward Poiseuille(exhumation)flow in the subduction channel.However,the(de-)hydration effect plays significant roles in the deformation of subduction channel and overriding lithosphere,which thereby result in very different modes from the simple subduction channel flow.Three-dimensionality is another important issue with highlighting the along-strike differential modes of continental subduction,collision and exhumation in the same continental convergence belt.  相似文献   

8.
A two-dimensional numerical convection model in cartesian geometry is used to study the influence of trench migration on the ability of subducted slabs to penetrate an endothermic phase boundary at 660 km depth. The transient subduction history of an oceanic plate is modelled by imposing plate and trench motion at the surface. The viscosity depends on temperature and depth. A variety of styles of slab behaviour is found, depending predominantly on the trench velocity. When trench retreat is faster than 2–4 cm/a, the descending slab flattens above the phase boundary. At slower rates it penetrates straight into the lower mantle, although flattening in the transition zone may occur later, leading to a complex slab morphology. The slab can buckle, independent of whether it penetrates or not, especially when there is a localised increase in viscosity at the phase boundary. Flattened slabs are only temporarily arrested in the transition zone and sink ultimately into the lower mantle. The results offer a framework for understanding the variety in slab geometry revealed by seismic tomography.  相似文献   

9.
Although subducting slabs undergo a bending deformation that resists tectonic plate motions, the magnitude of this resistance is not known because of poor constraints on slab strength. However, because slab bending slows the relatively rapid motions of oceanic plates, observed plate motions constrain the importance of bending. We estimated the slab pull force and the bending resistance globally for 207 subduction zone transects using new measurements of the bending curvature determined from slab seismicity. Predicting plate motions using a global mantle flow model, we constrain the viscosity of the bending slab to be at most ~ 300 times more viscous than the upper mantle; stronger slabs are intolerably slowed by the bending deformation. Weaker slabs, however, cannot transmit a pull force sufficient to explain rapid trenchward plate motions unless slabs stretch faster than seismically observed rates of ~ 10− 15 s− 1. The constrained bending viscosity (~ 2 × 1023 Pa s) is larger than previous estimates that yielded similar or larger bending resistance (here ~ 25% of forces). This apparent discrepancy occurs because slabs bend more gently than previously thought, with an average radius of curvature of 390 km that permits subduction of strong slabs. This gentle bending may ultimately permit plate tectonics on Earth.  相似文献   

10.
In this paper we discuss characteristic features of subduction zone seismicity at depths between about 100 km and 700 km, with emphasis on the role of temperature and rheology in controlling the deformation of, and the seismic energy release in downgoing lithosphere. This is done in two steps. After a brief review of earlier developments, we first show that the depth distribution of hypocentres at depths between 100 km and 700 km in subducted lithosphere can be explained by a model in which seismic activity is confined to those parts of the slab which have temperatures below a depth-dependent critical valueT cr.Second, the variation of seismic energy release (frequency of events, magnitude) with depth is addressed by inferring a rheological evolution from the slab's thermal evolution and by combining this with models for the system of forces acting on the subducting lithosphere. It is found that considerable stress concentration occurs in a reheating slab in the depth range of 400 to 650–700 km: the slab weakens, but the stress level strongly increases. On the basis of this stress concentration a model is formulated for earthquake generation within subducting slabs. The model predicts a maximum depth of seismic activity in the depth range of 635 to 760 km and, for deep earthquake zones, a relative maximum in seismic energy release near the maximum depth of earthquakes. From our modelling it follows that, whereas such a maximum is indeed likely to develop in deep earthquake zones, zones with a maximum depth around 300 km (such as the Aleutians) are expected to exhibit a smooth decay in seismic energy release with depth. This is in excellent agreement with observational data. In conclusion, the incoroporation of both depth-dependent forces and depth-dependent rheology provides new insight into the generation of intermediate and deep earthquakes and into the variation of seismic activity with depth.Our results imply that no barrier to slab penetration at a depth of 650–700 km is required to explain the maximum depth of seismic activity and the pattern of seismic energy release in deep earthquake zones.  相似文献   

11.
The mantle convection model with phase transitions, non-Newtonian viscosity, and internal heat sources is calculated for two-dimensional (2D) Cartesian geometry. The temperature dependence of viscosity is described by the Arrhenius law with a viscosity step of 50 at the boundary between the upper and lower mantle. The viscosity in the model ranges within 4.5 orders of magnitude. The use of the non-Newtonian rheology enabled us to model the processes of softening in the zone of bending and subduction of the oceanic plates. The yield stress in the model is assumed to be 50 MPa. Based on the obtained model, the structure of the mantle flows and the spatial fields of the stresses σxz and σxx in the Earth’s mantle are studied. The model demonstrates a stepwise migration of the subduction zones and reveals the sharp changes in the stress fields depending on the stage of the slab detachment. In contrast to the previous model (Bobrov and Baranov, 2014), the self-consistent appearance of the rigid moving lithospheric plates on the surface is observed. Here, the intense flows in the upper mantle cause the drift and bending of the top segments of the slabs and the displacement of the plumes. It is established that when the upwelling plume intersects the boundary between the lower and upper mantle, it assumes a characteristic two-level structure: in the upper mantle, the ascending jet of the mantle material gets thinner, whereas its velocity increases. This effect is caused by the jump in the viscosity at the boundary and is enhanced by the effect of the endothermic phase boundary which impedes the penetration of the plume material from the lower mantle to the upper mantle. The values and distribution of the shear stresses σxz and superlithostatic horizontal stresses σxx are calculated. In the model area of the subducting slabs the stresses are 60–80 MPa, which is by about an order of magnitude higher than in the other mantle regions. The character of the stress fields in the transition region of the phase boundaries and viscosity step by the plumes and slabs is analyzed. It is established that the viscosity step and endothermic phase boundary at a depth of 660 km induce heterogeneities in the stress fields at the upper/lower mantle boundary. With the assumed model parameters, the exothermic phase transition at 410 km barely affects the stress fields. The slab regions manifest themselves in the stress fields much stronger than the plume regions. This numerically demonstrates that it is the slabs, not the plumes that are the main drivers of the convection. The plumes partly drive the convection and are partly passively involved into the convection stirred by the sinking slabs.  相似文献   

12.
汤加—克马德克俯冲带是太平洋板块向澳大利亚板块俯冲碰撞的动力作用区,是全球俯冲带动力学研究的热点区域.本研究基于EHB地震目录,对汤加—克马德克俯冲带(18.5°S—28.5°S)区域进行平面拟合,得到该范围内俯冲带走向约为196°,倾角约为48°;利用该俯冲带研究区域内Global CMT目录,对不同位置、不同深度进行区域应力张量反演,得到汤加—克马德克俯冲带研究区内精细的应力图像.结果显示:(1)俯冲带浅部(60~300km)应力结构非均匀特征明显,主应力轴倾伏角变化多样,并且最大主压应力轴方位在24°S左右发生明显偏转,我们推测这可能与洋底构造路易斯维尔海链俯冲有关;(2)中部(300~500km)最大主压、主张应力轴由北向南逐渐发生偏转,这可能与由北向南流动的地幔流对俯冲板片产生推挤作用有关,并且这种推挤作用向南逐渐减弱;(3)深部(500~700km)最大主压应力轴沿俯冲方向分布;(4)本文的结果还发现了主俯冲带深部西侧"偏移"板片与主俯冲带应力结构不同,表明"偏移"板片与主俯冲带是分离的.  相似文献   

13.
Joint bulk-sound and shear tomography for Western Pacific subduction zones   总被引:7,自引:0,他引:7  
Detailed regional body wave tomographic inversion of the Western Pacific region has been performed using P and S travel times from common sources and receivers, with a joint inversion in terms of bulk-sound and shear wave-speed variations in the mantle. This technique allows the separation of the influence of bulk and shear moduli, and hence a more direct comparison with mineral physics information. The study region is parameterized with cells of side 0.5° to 2° and 19 layers to a depth of 1500 km, while the rest of the mantle was parameterized with 5×5° cells with 16 layers between the surface and the core–mantle boundary. A simultaneous inversion is made for regional and global structures to minimize the influence of surrounding structures on the regional image. A nested iterative inversion scheme is employed with local linearization and three-dimensional ray tracing through the successive model updates. The results of the regional tomographic inversion reveal the penetration of a subducted slab below the 660 km discontinuity at the Kurile–Kamchatka trench, while flattening of slabs above this depth is observed in the Japan and Izu–Bonin subduction zones on both the bulk-sound and shear wave-speed images. The penetration of a subducted slab down to a depth of at least 1200 km is seen below the southern part of the Bonin trench, Mariana, Philippine, and Java subduction zones. Fast shear wave-speed perturbations associated with the subducted slabs, down to the 410 km transition zone, are larger than the comparable bulk-sound perturbations for all these subduction zones except the Philippines. The bulk-sound signature for the subducted slab is more pronounced than for shear in the Philippines, Talaud, New Guinea, Solomon, and Tonga subduction zones, where penetration of the slab into the middle mantle is observed. Variation in the amplitude ratio between bulk-sound and shear wave-speed anomalies correlates well with the subduction parameters of the descending slab. Slabs younger than 90 Ma at the trench show bulk-sound dominance in the upper mantle, while older slabs have a stronger shear wave-speed signature. Spreading of the fast shear wave-speed zone between 800 and 1000 km is observed in the areas of deep subducted slab penetration, but has no comparable expression in the bulk-sound images. This high-velocity feature may reflect physical or chemical disequilibria introduced to the lower mantle by subducted slabs.  相似文献   

14.
双地震带的影响因素探讨   总被引:8,自引:4,他引:4       下载免费PDF全文
张克亮  魏东平 《地球物理学报》2011,54(11):2838-2850
讨论了全球39个俯冲带内的双地震带层间距、应力类型与俯冲参数的相互关系,这些俯冲参数包括动力学参数(板块年龄、热参数、板片拉力)、运动学参数(俯冲板块速度、上覆板块运动速度、海沟迁移速度、弧后形变特征)、几何形态参数(浅俯冲角、深俯冲角、俯冲深度、长度)及上覆板块性质等.结果表明:(1)I型双地震带易形成于年龄较古老(...  相似文献   

15.
During subduction processes, slabs continuously have heat exchange with the ambient mantle, including both conduction and advection effects. The evolution of slab thermal structure is one of the dominant factors in controlling physical and chemical property changes in subduction zones. It also affects our understanding of many key geological processes, such as mineral dehydration, rock partial melting, arc volcanism, and seismic activities in subduction zones. There are mainly two ways for studying thermal structure of subduction zones with geodynamic models: analytical model and numerical model. Analytical model provides insights into the most dominant controlling physical parameters on the thermal structure, such as slab age, velocity and dip angle, shear stress and thermal conductivity, etc. Numerical model can further deal with more complicated environments, such as viscosity change in the mantle wedge, coupling process between slabs and the ambient mantle, and incorporation of petrology and mineralogy. When applying geodynamic modeling results to specific subduction zones on the Earth, there are many factors which may complicate the process, therefore it is difficult to precisely constrain the thermal structure of subduction zones. With the development of new quantitative methods in geophysics and geochemistry, we may obtain more observational constraints for thermal structure of subduction zones, thus providing more reasonable explanations for geological processes related to subduction zones.  相似文献   

16.
The mechanism by which high-pressure metamorphosed continental material is emplaced at high structural levels is a major unsolved problem of collisional orogenesis. We suggest that the emplacement results from partial subduction of the continental margin which, because of its high flexural rigidity, produces a rapid change in the trajectory of the descending slab. We assume a two-fold increase in effective elastic thickness of the lithosphere as the continental margin approaches the subduction zone, and calculate the flexural profile of a thin plate for progressive downward migration of the zone of increased rigidity. We assess the effect of changes in the flexural profile on the overlying accretionary prism and mantle wedge as the continent approaches by estimating the extra stresses that are imposed on the wedge due to the bending moment exerted by the continental part of the plate. The wedges overlying the subduction zones, and the subducting slab itself, experience substantial extra compressional stress at depths of around 100 km, and extensional stress at shallower depths, as the continental margin passes through the zone of maximum curvature. The magnitudes of such extra stresses are probably adequate to effect significant deformation of the wedge and/or the descending plate, and are experienced in a time interval of less than 5 m.y. for typical subduction rates. The spatial variation of yield stresses in the region of the wedge and descending slab indicates that much of this deformation may be taken up in the crustal part of the descending slab, which is the weakest region in the deeper parts of the subduction zone. This may result in rapid upward migration of the crust of the partially subducted continental margin, against the flow of subduction. High-pressure metamorphosed terranes emplaced by the mechanism envisaged in this paper would be bounded by thrust faults below and normal faults above. Movement on the faults would have been coeval, and would have resulted in rapid unroofing of the high-pressure terranes, synchronous with arrival of the continental margin at the subduction zone and, therefore, relatively early in the history of a collisional orogen.  相似文献   

17.
It has been suggested that much of the lithopheric mantle beneath the Colorado Plateau was hydrated by the dehydration of the Farallon plate when it was undergoing low angle subduction during the Laramide orogeny. If correct, low angle subduction could be a viable mechanism for weakening laterally extensive regions of continental lithosphere, allowing such lithosphere potentially to be recycled back into the Earth's interior and into the asthenospheric mantle wedge. To test this hypothesis, we model the release of water during prograde metamorphism of a flat-subducting Farallon plate by considering a thermal model for flat subduction and tracking open-system metamorphic phase equilibria. Our model indicates that significant amounts of water can be laterally transported ∼700 km inboard of the trench, close to the width of the North American Cordillera. The amount of water released is shown here to have been large enough to influence the rheology of the overriding North American lithosphere and the potential for melting at its base. Anomalously high S-velocities in the lithospheric mantle supports our modeled calculations of laterally extensive weakening at the base of the continental lithosphere.  相似文献   

18.
The dynamics of plate tectonics are strongly related to those of subduction. To obtain a better understanding of the driving forces of subduction, we compare relations between Cenozoic subduction motions at major trenches with the trends expected for the simplest form of subduction. i.e., free subduction, driven solely by the buoyancy of the downgoing plate. In models with an Earth-like plate stiffness (corresponding to a plate–mantle viscosity contrast of 2–3 orders of magnitude), free plates subduct by a combination of downgoing plate motion and trench retreat, while the slab is draped and folded on top of the upper-lower mantle viscosity transition. In these models, the slabs sink according to their Stokes’ velocities. Observed downgoing-plate motion–plate-age trends are compatible with >80% of the Cenozoic slabs sinking according to their upper-mantle Stokes’ velocity, i.e., subducting-plate motion is largely driven by upper-mantle slab pull. Only in a few cases, do young plates move at velocities that require a higher driving force (possibly supplied by lower-mantle–slab induced flow). About 80% of the Cenozoic trenches retreat, with retreat accounting for about 10% of the total convergence. The few advancing trench sections are likely affected by regional factors. The low trench motions are likely encouraged by low asthenospheric drag (equivalent to that for effective asthenospheric viscosity 2–3 orders below the upper-mantle average), and low lithospheric strength (effective bending viscosity ~2 orders of magnitude above the upper-mantle average). Total Cenozoic trench motions are often very oblique to the direction of downgoing-plate motion (mean angle of 73°). This indicates that other forces than slab buoyancy exert the main control on upper-plate/trench motion. However, the component of trench retreat in the direction of downgoing plate motion (≈ slab pull) correlates with downgoing-plate motion, and this component of retreat generally does not exceed the amount expected for free buoyancy-driven subduction. High present-day slab dips (on average about 70°) are compatible with largely upper-mantle slab-pull driven subduction of relatively weak plates, where motion partitioning and slab geometry adjust to external constraints/forces on trench motion.  相似文献   

19.
活动海岭俯冲与岛弧火山活动的热模拟研究   总被引:7,自引:1,他引:6       下载免费PDF全文
为解释活动海岭的俯冲会造成岛弧火山活动的间断这一现象,本文采用有限单元法对活动海岭俯冲的热演化过程进行了模拟计算.一般情况下,摩擦剪切生热使岛弧下100km左右深度形成地温反转,俯冲板片海洋地壳内角门岩等含水矿物脱水,释放的水进入其上覆板块,降低了地幔岩石的熔点,使热的地幔楔状体内发生部分熔融,形成岛弧火山活动.高温的活动海岭俯冲时不再出现这种温度反转,俯冲板片在较浅深度达到较高温度而脱水,水进入上覆相对较冷的地幔楔状体不能造成熔融,因此岛弧火山活动会中断.  相似文献   

20.
The rate of the olivine→spinel transition at high overpressure increases with diminishing grain size, or increasing shear stress, temperature, and possibly pressure. The transition rate is higher in Fe-rich compositions than in Mg-rich compositions, and it can be greatly increased by adding water or other mineralizers. Of all variables controlling the kinetics of the olivine→spinel transition in the mantle, temperature is the most critical. The olivine→spinel transition can be suppressed below 500°C in Mg-rich compositions, even in geological period of time. Since the temperature within a downgoing slab varies greatly according to different models of calculation, it is not clear at this stage whether the temperature is low enough to suppress the olivine→spinel transition. If the olvine→spinel transition cannot be suppressed, it may not be responsible for the genesis of deep-focus earthquakes. However, the rise of the olivine-spinel boundary in the cold interior of downgoing slabs provides an additional driving force for the plunging of these slabs. The distortion of the olivine-spinel boundary may also control the stress distribution in downgoing slabs and may be responsible for the observed alignment of principal stress axes of deep-focus earthquakes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号