首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 67 毫秒
1.
福建敖江流域水域生态系统健康评估   总被引:7,自引:1,他引:6  
以敖江流域为研究区,通过采集底栖动物、鱼类等样品,结合监测数据分析流域水域生态系统健康状况,并采用指标体系评估方法对水域生态系统进行评估.结果表明:敖江流域水质总体良好,但山仔水库总氮、总磷浓度长期超标,水体存在富营养化和藻类水华暴发生态环境问题;底栖动物种类呈现支流多于干流、河流多于水库的规律;鱼类种类上、中、下游各科物种组成差异不显著,鱼类区系特点具有较明显的热带、亚热带区系特点;流域上游、中游水域生态健康良好,下游水域生态健康一般.  相似文献   

2.
The impact of a single hydropeaking event was studied in the Alpine stream Noce Bianco. Four stations were selected, one upstream and three, respectively, at 0.25, 6, and 8 km downstream from a hydropower plant. We collected drifting invertebrates during a planned water release that increased the discharge 7-fold. At the onset of the hydropeaking wave the number of invertebrates lost from the riverbed per minute to the drift increased 9-fold at the first downstream station and the same effects propagated 8 km downstream. The drift was composed mainly of aquatic insect larvae (Chironomidae, Plecoptera, Ephemeroptera Baetidae, and Psychodidae, with Chironomidae as the most abundant taxon at all stations) and partly by larval and adult riparian insects, and by Oligochaeta, which were particularly abundant at the station 6 km downstream. We monitored drift for 30 min from the start of the water release: peaks in drifting invertebrates occurred within 5–10 min of the beginning of the hydropeaking wave, and most of the invertebrates were washed out within the first 15 min of the water release. The different timeframes were possibly due to habitat preferences (most of the taxa that increased in the drift at the arrival of the wave were associated with algae and organic debris, which were washed off quickly by the increase in discharge) and/or behavioral adaptations (other taxa initially resisted the shear stress and began to drift with a delay of 5–10 min). The temporal pattern and drift composition corresponded well with those reported in literature, and indicate that repeated high-flow events of similar magnitude cause considerable losses from benthic populations to drift.  相似文献   

3.
Macroinvertebrates in the bed sediment of the Yellow River   总被引:1,自引:1,他引:0  
Extensive agricultural,industrial and urban development in the Yellow River,China,have modified the sediment-water balance,flow and inundation regimes,longitudinal connectivity,integrity of riparian vegetation,and water quality.Macroinvertebrate assemblages in the bed sediment of main channel and major reservoirs of the Yellow River are described in detail for the first time.A total of 74 taxa comprising 17 taxa of oligochaetes,48 taxa of aquatic insects,5 taxa of molluscs,and 4 taxa of other animals were recorded.A range of feeding guilds were represented,including, collector-gatherers(32 taxa),predators(17 taxa),scrapers(16 taxa),shredders(6 taxa)and collector-filterers(2 taxa).Both the mean density and biomass of macroinvertebrates were significantly higher in sites located in the artificial reservoirs compared with the main river channel. Assemblages varied spatially;Oligochaetes dominated assemblages in upper reaches,insects dominated in middle reaches and other animals(e.g.Crustacea)dominated in lower reaches. Collector-gatherers were dominant throughout the entire river.Classification analysis identified five site-groups on the basis of macroinvertebrate presence/absence:downstream of reservoirs;vegetated sites;reservoir sites;polluted sites,and;lower-reach sites.Lower macroinvertebrate richness,density and biomass,compared with other similar large rivers,were attributed to modification of the sediment-water balance and associated disturbance of benthic habitats.Pollution,stability of sediment and sediment concentration combined to influence the distribution of macroinvertebrates.This knowledge will substantially benefit the recent focus on the health and environmental water requirements of the Yellow River.  相似文献   

4.
Molluscs are the proverbial examples of slow movement. In this review, dispersal distances and speed were assessed from literature data. Active upstream movement can occur both individually and in groups; and depends on traits such as size, sex and reproductive status, and on external factors such as flow velocity, temperature, sediment structure, and food availability. The potential for active dispersal follows the sequence Pulmonata ≥ Prosobranchia > Bivalvia, although data for Pulmonata originated from short-term experiments that likely overestimated dispersal capabilities. Active upstream movement may be 0.3 to 1.0 km per year for most snails and is probably well below 0.1 km per year for bivalves. Natural passive upstream dispersal increases the range 10-fold (snails) to 100-fold (bivalves), and anthropogenic vectors can increase upstream dispersal more than 100-fold (snails) to 1000-fold (bivalves). Three km seems to be the maximal within-stream distance at which many species display regular population mixing, and at which re-colonisation or successful restoration can be expected within 3–10 years. Lateral dispersal between unconnected water bodies is passive and mostly known from observational reports, but potential distances depend on vectors, climate and geomorphology. In general, active dispersal seems insufficient to furnish a compensatory mechanism, e.g., for the rate of projected climate change. We provide an overview on dispersal strategies in the light of applied issues. More rigorous field surveys and an integration of different approaches (such as mark-recapture, genetic) to quantify distances and probabilities of lateral dispersal are needed to predict species distributions across space and time.  相似文献   

5.
In order to assess and compare the ecological impacts of channelization and shallow lowland reservoirs, macroinvertebrate communities of a lowland metapotamal river below reservoirs with epilimnial release were studied. The study was carried out in the Dyje River (Czech Republic) at five sites located from 1.5 to 22.5 km downstream of the reservoir outfall. The five sites differed in the degree of channel modification from natural muddy banks to riprap regulation. Seven samples were collected during the years 1998 and 1999 at each site using a semiquantitative method. The data were processed using multivariate analyses and methods for assessing the ecological and functional structure of communities. Altogether, 261 species of benthic macroinvertebrates were recorded including several rare and threatened taxa. Based on the results of principal component analysis (PCA), most of the variability within the species data (the first PCA axis) was explained by the degree of channel modification, from natural muddy banks with aquatic vegetation to a man-made riprap. The second axis was strongly correlated with current velocity. The sites differed in species richness, total abundances, proportion of individual functional feeding groups, pattern of the distribution of the current preference groups, and values of several biotic indexes, all of which also corresponded to the degree of channel modification. Thus, the morphological man-made modifications of the river channel were found to be the main factor affecting lowland river macroinvertebrates and their biodiversity. Our results suggest that the biggest threat to benthic macroinvertebrate diversity of lowland rivers comes from channelization. The impact of reservoirs can be completely overwhelmed by the impact of channelization, especially when muddy banks with aquatic vegetation present a substantial part of habitat diversity and significantly contribute to the total species pool.  相似文献   

6.
To test the hypothesis of longitudinal variations in phytoplankton compositions from a eutrophic lake to its river downstream and determine the length of the transition zone, we applied functional groups as well as taxonomical methods to this coupled aquatic system, which is composed of the Dianchi Lake upstream and the Tanglang River downstream, by sampling at 9 stations during Microcystis blooms in the Dianchi Lake in 2013. The longitudinal variations in phytoplankton compositions from lacustrine species to fluvial species were reflected by: (1) the shift from Microcystis to Chlorococcales green algae and centric diatoms; (2) the shift from the dominance of codon M to the coexistence of a variety of coda without one outstanding codon; and (3) except for codon M, the shift from lacustrine coda (H1, LO, T) towards coda that are adapted to both lacustrine and fluvial circumstances (MP, X1, X2). The prominent difference of phytoplankton compositions between the Dianchi Lake and the lower reaches of the Tanglang River revealed that there was a transition zone in between. The upper and middle reaches of the Tanglang River with a length of approximately 26.4 km were considered the transition zone because: (1) the dominant lentic codon M in the Dianchi Lake disappeared at the lower reaches of the river; (2) the amount of codon P that is sensitive to stratification rose at the beginning of the river; and (3) the codon T, which is well adapted to the persistently mixed layer or epilimnia of lakes, lost a large number of biomass at the upper and middle reaches of the Tanglang River. In this study, we found that the eutrophic lake had a significant influence on the river downstream. In addition, we found that functional groups were sensitive to the changes of external aquatic conditions and helpful in determining the length of the transition zone.  相似文献   

7.
Storage of large woody debris in the wide, mountain, Czarny Dunajec River, southern Poland, was investigated following two floods of June and July 2001 with a seven‐year frequency. Within a reach, to which wood was delivered only by bank erosion and transport from upstream, wood quantities were estimated for eighty‐nine, 100 m long, channel segments grouped into nine sections of similar morphology. Results from regression analysis indicated the quantity of stored wood to be directly related to the length of eroded, wooded banks and river width, and inversely related to unit stream power at the flood peak. The largest quantities of wood (up to 33 t ha?1) were stored in wide, multi‐thread river sections. Here, the relatively low transporting ability of the river facilitated deposition of transported wood while a considerable length of eroded channel and island banks resulted in a large number of trees delivered from the local riparian forest. In these sections, a few morphological and ecological situations led to the accumulation of especially large quantities of wood within a small river area. Very low amounts of wood were stored in narrow, single‐thread sections of regulated or bedrock channel. High stream power facilitated transport of wood through these sections while the high strength of the banks and low channel sinuosity prevented bank retreat and delivery of trees to the channel. Considerable differences in the character of deposited wood existed between wide, multi‐thread channel sections located at different distances below a narrow, 7 km long, channellized reach of the river. Wood deposited close to the downstream end of the channellized reach was highly disintegrated and structured into jams, whereas further downstream well preserved shrubs and trees prevailed. This apparently reflects differences in the distance of wood transport and shows that in a mountain river wider than the height of trees growing on its banks, wood can be transported long distances along relatively narrow, single‐thread reaches but is preferentially deposited in wide, multi‐thread reaches. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
Excessive biomass development of benthic algae is often considered undesirable, but understanding the causes is confounded by complex interactions among driving factors. Pristine rivers allow a benchmark where human interference should be limited to climate change. In this study a time series comprising >20 years of annual benthic algae surveys from two pristine, soft water, boreal stream sites is used to determine whether year-to-year variations in benthic algal assemblages and cover were related to climate (temperature, precipitation, North Atlantic Oscillation) or hydrological regime. Total benthic algal cover ranged from 6 to 100% at Atna (the outflow of the Atna River from Lake Atnasjø), and from 3 to 50% at the headwater stream Li. Climate and hydrological regime explained 18 - 74% of the variability in benthic algal assemblages and cover. Generally, more variance was explained at Li than at Atna, possibly because (i) aquatic bryophytes blurred nutrient-mediated effects of climate and hydrology at Atna, and (ii) the upstream lake buffered hydrological variation. Temperature was more important for explaining benthic algal assemblages and cover at Atna, while hydrology was more important at Li. Climate and hydrological regime had no major impact on benthic algal taxon richness. High temperatures were associated with high benthic algal cover, particularly at Atna, while high suspended particle concentrations were associated with reduced benthic algal cover at Li, possibly due to scouring. Cover of the cyanobacterium Phormidium sp. increased at Li with increasing temperature, and decreased with prolonged periods of high discharge. Current predictions of climate change would lead to a “greener” Atna (increased cover of benthic algae), while Li would become more “bluegreen” (more Phormidium sp. but less filamentous green algae). It would also lead to a slightly more “eutrophic” algal assemblage at Atna (as indicated by the PIT-index for ecological status assessment), while a possible drift of the PIT-index is less clear at Li. The differences between Atna and Li likely reflect differences among river types, and it seems possible to make some generalizations: climate will likely affect benthic algae in lake outlets primarily via temperature, while headwater streams will primarily be affected via altered hydrology and particle concentrations.  相似文献   

9.
In this study, we investigated patterns of spatial variation in macroinvertebrate assemblages in the Lower Mekong Basin (LMB) and examined their relationship with environmental factors. Cluster analysis was used to group macroinvertebrate samples and Linear Discriminant Analysis was performed to discriminate the major factors associated with the macroinvertebrate assemblages. Four clusters could be distinguished based on the dissimilarity between macroinvertebrate assemblages. The assemblages related to the tributaries and the upstream parts (cluster II) were characterized by a lower richness, abundance, diversity and a lower number of indicator taxa compared to the assemblage found downstream in the Mekong delta (cluster I). Aquatic insects and their indicator taxa (e.g. Caenodes sp., Dipseudopsis sp. and Gomphidae sp.), preferring a high-altitude environment with a high dissolved oxygen concentration and a high density of wood/shrub and evergreen forests, were the most predominant group in the assemblages occupying the tributaries and the upstream parts (cluster IIa). The assemblage found in the delta, consisting largely of molluscs and a moderate richness and abundance of worms, crustaceans and dipteran insects, was mainly represented by Corbicula leviuscula and C. moreletiana (molluscs), Namalycastis longicirris and Chaetogaster langi (worms), Corophium minutum and Grandidierella lignorum (crustaceans), and Cricotopus sp. and Clinotanypus sp. (dipteran insects). This assemblage was associated with a large watershed surface area, deep and wide rivers and a high water temperature. The intermediate assemblage (cluster IIb1) in-between could be discriminated based on land cover types including inundated, wetland and agricultural land, and was represented most by molluscs. Strikingly, the assemblage occupying the upstream parts (cluster IIa), which is related to intensified agriculture and a moderate conductivity, was characterized by a higher macroinvertebrate diversity compared to the mountainous and less impacted tributaries. This could mean that the natural stress is high in these systems for some taxa, leading to a lower overall taxonomic richness and abundance. Nevertheless, the number of taxa and the diversity of macroinvertebrates remained relatively high across the basin, especially in the delta assemblage. Therefore, the LMB deserves a particular attention for conservation.  相似文献   

10.
11.
An analysis of observational data suggests salt exchange in a sinuous coastal plain estuary is significantly impacted by counter-rotating residual horizontal eddies formed by channel curvature in meandering channels. The parts of adjacent eddies that advect material downstream follow the deep part of the channel where the flow continually criss-crosses from one side of the channel to the other and follows a relatively unimpeded trajectory to the sea. On the other hand, the parts of adjacent eddies that advect material upstream cross the channel at a different location where it encounters a series of shoals. In this case, the resulting upstream transport of salt is relatively inefficient and retards the rate at which salt can disperse upstream into the estuary. The strength of these circulations is modulated by the spring/neap cycle, allowing for a stronger gravitational mode of exchange to develop near neap tides, but has minimal impact on the length of the salt intrusion. It is suggested that the impeded upstream salt transport accounts for the observation that an impulse of river discharge advects a given isohaline 10 km downstream in 20 days, but that after the impulse, 70 days are required to return the isohaline to a similar position, counter to the notion of a simple dependence of intrusion length on river discharge.  相似文献   

12.
13.
Abstract

A three-dimensional Environmental Fluid Dynamics Code model was developed for a 17-km segment of the Mobile River, Alabama, USA. The model external forcing factors include river inflows from upstream, tides from downstream, and atmospheric conditions. The model was calibrated against measured water levels, velocities, and temperatures from 26 April to 29 August 2011. The Nash-Sutcliffe coefficients for water levels were greater than 0.94 and for water temperatures ranged from 0.88 to 0.99. The calibrated model was extended approximately 13 km upstream for simulating unsteady flow, dye, and temperature distributions in the Mobile River under different upstream inflows and downstream harmonic tides. Velocity profiles and distributions of flow, dye, and temperature at various locations were analyzed and show that flow recirculation could only occur under small inflow (50 m3 s-1) when downstream tides control the flow pattern in the Mobile River. The model results reveal complex interactions among discharges from a power plant, inflows, and tides.
Editor D. Koutsoyiannis; Associate editor D. Yang  相似文献   

14.
Rooted aquatic macrophytes affect abiotic conditions in low-gradient rivers by altering channel hydraulics, consuming biologically available nutrients, controlling sediment transport and deposition, and shading the water surface. Due to seasonal macrophyte growth and senescence, the magnitude of these effects may vary temporally. Seasonal changes in aquatic macrophyte biomass, channel roughness and flow velocity, were quantified and trends were related to spatiotemporal patterns in water temperature in a low-gradient, spring-fed river downstream from high-volume, constant-temperature groundwater springs. Between spring and summer, a nearly threefold increase in macrophyte biomass was positively correlated with channel roughness and inversely related to flow velocity. On average, flow velocity declined by 34% during the study period, and channel roughness increased 63% (from 0.064 to 0.104). During the spring and fall period, the location of a minimum water temperature variability “node” migrated upstream more than 4 km, whereas daily maximum water temperature cooled by 2–3°C. Water temperature modelling shows that the longitudinal extent of cold-water habitat was shortened due to increased channel roughness independent of seasonal surface water diversions. These results suggest that macrophyte growth mediates spatiotemporal patterns of water temperature, constraining available cold-water habitat while simultaneously improving its quality. Understanding complex spatial and temporal dynamics between macrophyte growth and water temperature is critical to developing regulatory standards reflective of naturally occurring variability and has important implications for the management and conservation of cold-water biota.  相似文献   

15.
This study assessed the effect of the largest flood since dam regulation on geomorphic and large wood (LW) trends using LW distributions at three time periods on the 150 km long Garrison Reach of the Missouri River. In 2011, a flood exceeded 4390 m3/s for a two‐week period (705% above mean flow; 500 year flood). LW was measured using high resolution satellite imagery in summer 2010 and 2012. Ancillary data including forest character, vegetation cover, lateral bank retreat, and channel capacity. Lateral bank erosion removed approximately 7400 standing trees during the flood. Other mechanisms, that could account for the other two‐thirds of the measured in‐channel LW, include overland flow through floodplains and islands. LW transport was commonly near or over 100 km as indicated by longitudinal forest and bank loss and post‐flood LW distribution. LW concentrations shift at several locations along the river, both pre‐ and post‐flood, and correspond to geomorphic river regions created by the interaction of the Garrison Dam upstream and the Oahe Dam downstream. Areas near the upstream dam experienced proportionally higher rates of bank erosion and forest loss but in‐channel LW decreased, likely due to scouring. A large amount of LW moved during this flood, the chief anchoring mechanism was not bridges or narrow channel reaches but the channel complexity of the river delta created by the downstream reservoir. Areas near the downstream dam experienced bank accretion and large amounts of LW deposition. This study confirms the results of similar work in the Reach: despite a historic flood longitudinal LW and channel trends remain the same. Dam regulation has created a geomorphic and LW pattern that is largely uninterrupted by an unprecedented dam regulation era flood. River managers may require other tools than infrequent high intensity floods to restore geomorphic and LW patterns. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

16.
Biological communities in shallow lakes are often subject to the combined effects of eutrophication and wind-wave disturbance. However, their relative importance in regulating macrozoobenthic community assembly has not been well addressed. In the present study, a monthly sampling of macrozoobenthos and environmental parameters was conducted at ten sites from December 2012 to November 2013 in Lake Hongze, the fourth largest freshwater lake in China, which has undergone serious water quality deterioration over the past few decades. A total of 30 taxa were recorded during the 12 sampling occasions, including 6 chironomids, 6 bivalves, 4 gastropods, 4 oligochaetes, 4 polychaetes, 4 crustaceans and 2 other aquatic insects. The mean abundance and biomass of total macrozoobenthos varied greatly among the ten sites and presented distinctive taxonomic composition between the protected bays and the offshore zone. Three eutrophication parameters (including permanganate index (CODMn), chlorophyll a, and total phosphorus in surficial sediments) and three wind-wave variables (including Secchi depth, turbidity, and mean effective fetch) were highly related to spatial variation of macrozoobenthic assemblages. When eutrophication variables were controlled, there was a significant correlation between community similarity and wind-wave disturbance condition, and vice versa. Variation partitioning showed that wind wave disturbance explained 15.9% of the variation in benthic community composition, slightly lower than that explained by eutrophication (17.9%). These results indicate that wind-wave disturbance is as important as eutrophication in regulating benthic community structure in this large shallow lake. Wind-wave disturbance imposed opposite effects on benthic community relative to eutrophication, and were more prominent in the offshore zone weakening the role of eutrophication.  相似文献   

17.
We evaluated the response of diatom community relative to environmental changes with the aim of characterizing and comparing, along a linear gradient, three environments across the Cascavel River microbasin with distinct land-uses. In June 2016, 10 substrates were collected for periphyton extraction in locations with different land-uses (conservation, urban, and agriculture respectively). One-hundred and nine infrageneric taxa and 30 genera were found. Eunotia and Gomphonema presented elevated and representative taxa richness at all stations, with totals of 14 and 11 respectively. Pinnularia and Navicula (12 and 8 taxa respectively) were significant indicators at the more upstream points; while Encyonema, Achnanthidium and Navicula (5, 5, and 6 taxa respectively) occurred primarily downstream. The sampling stations were quite distinct in their densities, species richness, and physical, chemical, and biological characteristics. The tests showed a significant difference among the stations based on the species abundance matrix. Upstream points, within the conservation area, revealed high Eunotia density, high nitrate concentrations and low pH. The urbanized area was characterized by greater exposure to light associated with elevated electrical conductivity and high ammoniacal nitrogen concentration, favoring the cosmopolitan species development such as Gomphonema lagenula, Gomphonema exilissimum and Fragilaria gracilis. The agricultural area exhibited elevated flow, a factor limiting the colonization of species and favoring the development of Achnanthidium and Fragilaria species. The distribution of the community across the microbasin were related to flow, dissolved oxygen, electrical conductivity, nitrate, ammonia, and total coliforms, confirming the distinctiveness among the environments. Except for spatial autocorrelation, there wasn’t a single environmental filtering explanation for the diatom community variation. The abiotic variables differentiated the environment in conjunction with the spatial variation. Along the river, physical characteristics such as depth, water volume, flow, solar incidence, concentration of solids, and temperature varied, directly interfer with the periphytic community’s primary production.  相似文献   

18.
Macroinvertebrates were sampled at 15 locations in the Iskar river basin in Bulgaria for the purpose of water quality assessment. Based on the chemical as well as the biological parameters, it was concluded that the water quality was still good upstream of Sofia, however, despite a huge waste water treatment plant, a strong decrease was observed when the river passed Sofia. Due to self-purification and dilution, a gradual amelioration of the water quality was observed 40 and 80 km downstream of Sofia, however, water quality was still insufficient. The Irish Biotic Index (IBI), which is currently used in Bulgaria for the national monitoring of macroinvertebrates for water quality assessment, does not fulfil the requirements of the European Union Water Framework Directive (WFD). The Multimetric Macroinvertebrate Index Flanders (MMIF), on the contrary, is a WFD compliant method developed for the northern part of Belgium, which is based on (1) the total number of taxa, (2) the number of Ephemeroptera, Plecoptera and Trichoptera taxa, (3) the number of other sensitive taxa, (4) the Shannon–Wiener index and (5) the mean tolerance score. The outcome of this MMIF was strongly correlated with the outcome of the Irish Biotic Index. Therefore, it should be possible to develop a similar multimetric index for macroinvertebrates to evaluate the biological water quality in Bulgaria without much effort.  相似文献   

19.
Abstract

The present work describes the development and calibration of a mathematical model for the Tigris River downstream of Sadam Dam. The river stretch studied is 75 km long extending from the Sadam Dam to Mosul city. The field work was conducted during the period from July to September 1986. Water samples were collected bimonthly from specified sampling points. The model simulates river assimilation capacity for a variety of water quality parameters by performing the numerical solution of a set of differential equations representing the aquatic system under steady state conditions. Generally, a noticeable increase in the concentrations of water quality parameters arising from water impoundment was observed. A good agreement was found between measured and simulated concentrations of water quality parameters. However, discrepancies noticed during model calibration were attributed to the assumptions adopted in the model formulation, to lack of field data, and to exclusion of some variables in model building.  相似文献   

20.
Population growth in urban areas is putting pressure on sewage treatment plants. The improper treatment of sewage entering the aquatic ecosystems causes deterioration of the water quality of the receiving water body. The effect of sewage effluent on the Sand River was assessed. Eight sampling sites were selected, site 1 and 2 were upstream of the sewage treatment plant along the urbanised area of Polokwane, whilst sites 3, 4, 5, 6, 7 and 8 were downstream. The physico-chemical parameters and coliform counts in the water samples were determined. The suitability of the water for irrigation was also determined. Hierarchical average linkage cluster analysis produced two clusters, grouping two sites above the sewage treatment works and six sites downstream of the sewage effluent discharge point. Principal component analysis (PCA) identified total nitrogen, total phosphorus, conductivity and salinity as the major factors contributing to the variability of the Sand River water quality. These factors are strongly associated with the downstream sites. Canonial correspondence analysis (CCA) indicated the macroinvertebrates, Chironomidae, Belastomatidae, Chaoborus and Hirudinea being strongly associated with nitrogen, phosphorus, conductivity and temperature. Escherichia coli levels in the Polokwane wastewater treatment works maturation ponds, could potentially lead to contamination of the Polokwane aquifer. The Sodium Adsorption Ratio was between 1.5 and 3.0 and residual sodium carbonate was below 1.24 Meq/l, indicating that the Sand River water is still suitable for irrigation. The total phosphorus concentrations fluctuated across the different site. Total nitrogen concentrations showed a gradual decrease downstream from the point of discharge. This shows that the river still has a good self-purification capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号