首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This brief review summarizes recent findings related to particle precipitation associated with electromagnetic ion–cyclotron (EMIC) waves seen on the ground as geomagnetic Pc1 and IPDP pulsations.Particle precipitation signatures of ion–cyclotron interaction are described as revealed from low-altitude satellite measurements of the energetic proton fluxes as well as from observations of the proton aurora. As a result, localized proton precipitation patterns situated equatorward of the isotropy boundary are disclosed. One of the patterns is a proton precipitation spot in the morning sector, presumably mapped onto plasmapause; another one is an elongated region of the precipitation, presumably mapped onto the plasmaspheric plume.Clear evidence of the pitch-angle scattering associated with the ion–cyclotron wave activity is found near the equatorial plane in the region conjugated with the localized proton precipitation at low altitude.Thus, the revealed precipitation patterns determine the location of the region of intense pitch-angle scattering of energetic protons, and, therefore, their observations can be used to monitor the region of the ion–cyclotron interaction and to study its origin and properties. Some examples of such application of the low-altitude observations of energetic particles are described.  相似文献   

2.
Regions of the detection of electromagnetic ion-cyclotron (EMIC) waves on the THEMIS satellites near the equatorial plane and the precipitation of energetic protons on POES low Earth orbiting satellites are compared with the magnetospheric magnetic field model. It is confirmed that low Earth orbiting satellites detect the precipitation of energetic protons in the regon associated with observations of EMIC waves in the magnetosphere. This is consistent with the idea that protons are scattered in the loss cone as a result of ioncyclotron interaction. Thus, observations of fluxes of energetic protons in low Earth orbits can be used to monitor ion-cyclotron instability regions in the magnetosphere. Simultaneous observations at high and low Earth orbits contribute to the construction of a spatiotemporal pattern of the interaction region of EMIC waves and energetic protons. In addition, it is shown that proton precipitation associated with EMIC waves can cause errors in determining the latitude of the isotropic boundary (the equatorial boundary of isotropic fluxes of energetic protons), which is an indicator of the configuration of the magnetic field in the magnetosphere.  相似文献   

3.
The position of the auroral oval poleward and equatorward boundary projections on the equatorial plane in the nightside MLT sector during magnetically quiet periods (|AL| < 200 nT, |Dst| < 10 nT) has been determined. The oval boundary positions were determined according to the precipitation model developed at Polar Geophysical Institute (http://apm.pgia.ru/). The isotropy of the averaged plasma pressure and the experimentally confirmed balance of pressures during the nighttime have been taken into account. The morphological mapping method has been used to map the oval poleward and equatorward edges without the use of any magnetic field model on the assumption that the condition of magnetostatic equilibrium is valid. Ion pressures at ionospheric altitudes and in the equatorial plane have been compared. It has been shown that the auroral oval equatorward boundary in the midnight sector is localized at geocentric distances of ~7 RE, which is in good agreement with the position of the energetic particle injection boundary in the equatorial plane. The oval poleward edge is localized at the ~10 RE geocentric distance, which is in good agreement with the position of the equatorward boundary of the region with a high turbulence level in the Earth’s magnetosphere plasma sheet.  相似文献   

4.
This work is devoted to the study of the generation of the equatorial noise—electromagnetic emission below the LHR frequency observed near the equatorial plane of the magnetosphere at distances of ~4RE. According to accepted views, the generation of the equatorial noise is related to the instability of ring current protons. In this work, a logarithmic distribution of energetic protons over the magnetic moment with an empty loss cone is proposed, and arguments for the formation of such a distribution are presented. The main result of the work is the calculation and analysis of the instability growth rate of waves forming the equatorial noise. The growth rate obtained in this work significantly differs from that encountered in the literature.  相似文献   

5.
The comparison of selected cases of polarization jet observation at ground stations and measurements of energetic ions at the AMPTE/CCE satellite shows that these phenomena occur simultaneously and on the same L shells. Polarization jet observations at DMSP satellites make it possible to statistically determine the dependence of its equatorial boundary position on the AE-index value. It is also shown that, in the case of isolated magnetic disturbances, the position of the inner boundary of injection of energetic ions measured at the AMPTE/CCE satellite depends on the AE index. It was found that the dependences of both boundaries on the AE index match over a wide range of AE variations. This is evidence that the equatorial boundary polarization jet band and the inner boundary of the injection of energetic ions are physically interconnected and are formed on the same L shells during substorms.  相似文献   

6.
Different types of proton auroras observed by the IMAGE satellite equatorward of the proton aurora oval are briefly reviewed. These auroras are caused by the precipitation of energetic protons from the Earth’s magnetosphere during the development of the ion-cyclotron instability. In addition to the previously considered types of proton auroras (spots, evening arcs, and dayside flashes), a new type is described: longlasting proton auroras on the dayside. The scheme of interrelation between different proton auroras equatorward of the oval with the distribution of cold plasmaspheric plasma is given.  相似文献   

7.
Sergeev  V. A.  Bikkuzina  G. R.  Newell  P. T. 《Annales Geophysicae》1997,15(10):1233-1245
Recently it has been shown that isotropic precipitation of energetic protons on the nightside is caused by a non-adiabatic effect, namely pitch-angle scattering of protons in curved magnetic field lines of the tail current sheet. Here we address the origin of isotropic proton precipitation on the dayside. Computations of proton scattering regions in the magnetopheric models T87, T89 and T95 reveal two regions which contribute to the isotropic precipitation. The first is the region of weak magnetic field in the outer cusp which provides the 1–2° wide isotropic precipitation on closed field lines in a 2–3 hour wide MLT sector centered on noon. A second zone is formed by the scattering on the closed field lines which cross the nightside equatorial region near the magnetopause which provides isotropic precipitation starting 1.5–2 h MLT from noon and which joins smoothly the precipitation coming from the tail current sheet. We also analyzed the isotropic proton precipitation using observations of NOAA low altitude polar spacecraft. We find that isotropic precipitation of >30 to > 80 keV protons continues around noon forming the continuous oval-shaped region of isotropic precipitation. Part of this region lies on open field lines in the region of cusp-like or mantle precipitation, its equatorward part is observed on closed field lines. Near noon it extends 1–2° below the sharp boundary of solar electron fluxes (proxy of the open/closed field line boundary) and equatorward of the cusp-like auroral precipitation. The observed energy dispersion of its equatorward boundary (isotropic boundary) agrees with model predictions of expected particle scattering in the regions of weak and highly curved magnetic field. We also found some disagreement with model computations. We did not observe the predicted split of the isotropic precipitation region into separate nightside and dayside isotropic zones. Also, the oval-like shape of the isotropic boundary has a symmetry line in 10–12 MLT sector, which with increasing activity rotates toward dawn while the latitude of isotropic boundary is decreasing. Our conclusion is that for both dayside and nightside the isotropic boundary location is basically controlled by the magnetospheric magnetic field, and therefore the isotropic boundaries can be used as a tool to probe the magnetospheric configuration in different external conditions and at different activity levels.  相似文献   

8.
亚暴期间磁尾等离子体片离子注入内磁层能够激发电磁离子回旋(EMIC)波.对应于这种EMIC波,地面磁力仪可观测到周期逐渐减小的地磁脉动(IPDP).利用GOES卫星数据,地磁指数和加拿大CARISMA地磁台站的数据,我们研究了IPDP事件的产生与亚暴磁尾注入的关系.同时利用CARISMA地磁台链中的MCMU和MSTK两个台站,从2005年4月到2014年5月期间的观测数据,统计分析了亚暴期间的IPDP事件,研究了IPDP事件的出现率关于季节和磁地方时的分布特征.我们总共获得128个两个台站同时观测的IPDP事件.该类事件关于季节分布的发生率,冬季最小,为13.28%,春季最大,为32.81%,结果表明IPDP事件关于季节分布的发生率受到电离层电导率及亚暴发生率的影响.两个台站同时观测到的IPDP事件最大出现率出现在15—18 MLT(磁地方时),结果表明IPDP事件主要由亚暴期间产生的能量离子注入内磁层,西向漂移遇到等离子体层羽状结构(Plume)区的高密度等离子体所激发.  相似文献   

9.
This paper presents the results of simultaneous observations of narrow-band noise VLF emissions in the frequency range 4–10 kHz at Kannuslehto ground station in Northern Finland and by Van Allen Probes (previously RBSP) in the equatorial part of the magnetosphere. The event of December 25, 2015, is considered. During the event, narrow-band noise VLF emissions were detected on the Earth in two frequency ranges, f = 3.5–6 kHz and f = 8–10 kHz, between 1100 and 1300 UT. Narrow-band VLF emissions in the equatorial zone were also observed during that time by the RBSP-B satellite; their frequency was close to the electron equatorial half-gyrofrequency and gradually increased from 3 to 11 kHz during the satellite motion from L = 5.0 to L = 3.0. Analysis of the fine structure of the emissions on the ground showed that their spectral and temporal characteristics corresponded to emissions by the satellites in localized zones at different L-shells. The ground-based observations at lower frequencies correlated with the satellite observations at larger L-shells. In order to localize the regions of the generation of the VLF emissions observed at Kannuslehto auroral station at different frequencies, we calculated the ray trajectories of waves from the equator for the plasma density distributions detected by Van Allen Probes. The calculations of the trajectories showed that the VLF waves detected at Kannuslehto station could travel to the ground only if they propagated in the large-scale density ducts (700–900 km) observed by Van Allen Probes.  相似文献   

10.
The regularities in the southward drift of the ionospheric current centers and luminosity boundaries during strong magnetic storms of November 2003 and 2004 (with Dst ≈ ?400 and ?470 nT, respectively) are studied based on the global geomagnetic observations and TV measurements of auroras. It has been indicated that the eastward and westward electrojets in the dayside and nightside sectors simultaneously shift equatorward to minimal latitudes of Φ min ° ~53°–55°. It has been obtained that the Φ min ° latitude decreases with increasing negative values of Dst, IMF B z component, and westward electric field strength in the solar wind. The dependence of the electrojet equatorward shift velocity (V av) on the rate of IMF B z variations (ΔB z t) has been determined. It is assumed that the electrojet dynamics along the meridian is caused by a change in the structure of the magnetosphere and electric fields in the solar wind and the Earth’s magnetosphere.  相似文献   

11.
Characteristics of ion and electron precipitations in the dawn and dusk sectors are investigated by DMSP F6 and F7 satellite observations. It is shown that in the dusk sector the positions of electron and ion precipitation boundaries are nearly coincident for all levels of magnetic activity; however the latitudinal distribution of energy fluxes indicates that the positions of electron and ion precipitation maxima are spatially separated. Maximum energy fluxes of ions is observed at the equatorial precipitation boundary, while those of electrons at the poleward one. In the dawn sector, the electron precipitation region is 3°–4° wider than that of ions. The isotropy boundary in the dusk sector is located in the region of diffuse precipitation (DAZ) near its poleward boundary for all levels of magnetic activity, while in the dawn sector it falls in the region of structured precipitations (AOP). Electron precipitations are dominating in the dawn sector. Here in the region of diffuse precipitation (DAZ), the ion energy fluxes Fi make less than 5% as compared to the electron energy flux Fe. In the region of structured precipitations (AOP), the portion of Fi decreases with increasing magnetic activity from ~10–20% for AL ≈ -100 nT to <5% for AL ≈ -1000 nT. As for the dusk sector, in the AOP region, electron precipitations are dominating as well, while in the DAZ region the ion energy fluxes are significant. In the 1500–1800 MLT sector, the ratio Fi/Fe increases from ~0.7 to ~3.0 with AL changing from -100 nT to -1000 nT.  相似文献   

12.
We performed an analysis of mean daily variations in the ΔEz atmospheric electric field at the Hornsund (located near the polar cap boundary) and Kakioka (located at near-equatorial latitudes) observatories under magnetically quiet and weakly disturbed conditions. At both observatories, the mean daily variations in ΔEz were found to be mainly controlled by the location of the observation point with respect to the focuses of the convective vortices of the DP 0 system. The substorm evolution in the nightside of the magnetosphere (a sharp burst in the AE index) was shown to lead to negative variations in ΔEz in the dayside sector at polar latitudes (the Hornsund observatory) and positive deviations in ΔEz at premidnight time at equatorial latitudes (the Kakioka observatory). It is concluded that variations in ΔEz at the Kakioka observatory are largely controlled by the equatorial electrojet, which is maximal during day-time hours, and at the Hornsund observatory these variations are controlled by the auroral electrojet, which is maximal at night-time and early morning hours of local time.  相似文献   

13.
The dynamics of energetic electrons (E e =0.17–8 MeV) and protons (E p =1 MeV) of the outer radiation belt during the magnetic storm of May 15, 2005, at high (GOES-10 and LANL-84 geosynchronous satellites) and low (Meteor-3M polar satellite) altitudes is analyzed. The data have been compared to the density, plasma velocity, solar wind, and magnetic field measurements on the ACE satellite and geomagnetic disturbances. During the magnetic storm main phase, the nighttime boundary of the region of trapped radiation and the center of westward electrojet shifted to L ~ 3. Enhancements of only low-energy electrons were observed on May 15, 2005. The belt of relativistic electrons with a maximum at L ~ 4 was formed during the substorm, the amplitude of which reached its maximum at ~0630 UT on May 16. The results are in good agreement with the regularity relating the position of a maximum of the new relativistic electron belt, boundaries of the trapped radiation region, and extreme low-latitude position of westward electrojet center to the Dst variation amplitude.  相似文献   

14.
The structure and dynamics of electron fluxes of subrelativistic energies in the range 235–300 keV at L < 4 during December 3–8, 2014, are analyzed according to the RELEC instrument onboard the Vernov satellite. Sharp changes in the parameters of the solar wind and the IMF were detected on December 6, but they did not lead to a magnetic storm. However, after the event of December 6, subrelativistic electron fluxes in the inner belt and the slot region were enhanced and structured. The dynamics of electron fluxes in the local transient bursts at L ~ 1.5–1.7 is considered in detail. It is shown that these bursts are associated with the development of the cyclotron instability in the tops of magnetic flux tubes near the inner belt maximum. The electron anisotropic index is estimated in these bursts. It is shown that in the beginning these bursts are anisotropic and that they become isotropic as the decay proceeds. The most likely chain of physical mechanisms that could lead to variations in electron fluxes of the inner belt described in this paper is presented. For the first time, the topological effects in stationary distributions of the electrons of the inner belt observed at low altitudes in the South Atlantic Anomaly region are explained.  相似文献   

15.
The dynamics of the auroral precipitation boundaries in the daytime (0900–1200 MLT) and nighttime (2100–2400 MLT) sectors during two strong magnetic storms of February 8–9, 1986, and March 13–14, 1989, with a Dst value at a maximum of approximately ?300 and ?600 nT, respectively, are studied using the DMSP satellite data. It is shown that, during the main phase of a storm, a shift to lower latitudes of the poleward and equator ward boundaries of the daytime precipitation is observed. In the nighttime sector, the equatorward boundary of the precipitation also shifts to lower latitudes, whereas the position of the poleward boundary depends weakly on the magnetic activity level even in the periods of very strong magnetic disturbances. The increase in the polar cap area occurs mainly due to the equatorward shift of the daytime precipitation. A high correlation degree between the equatorward shift of the poleward boundary of the daytime precipitation and the position of the equatorward boundary of the precipitation at the nighttime side of the Earth is demonstrated. The analysis of the events shows that (1) the magnetic activity level in the nighttime sector of the auroral zone influences considerably the position of the daytime precipitation boundaries during magnetic storms and that (2) the ring current inputs considerably into the value of the Dst variations.  相似文献   

16.
The ring current is conventionally considered responsible for the shift of the boundary of solar proton penetration into the inner Earth’s magnetosphere during magnetic storms. The cases of a boundary shift were observed in some works on the dark side before the onset of a magnetic storm, i.e., at positive values of the Dst index. In this work, this type of shift of the penetration boundary is considered in detail with two storms as examples. It is shown that the corresponding distortion of the magnetosphere configuration is induced by an increase in the solar wind pressure during the initial phase of a magnetic storm. The current induced in this case on the magnetopause is closed by a current in the equator plane, which changes the configuration of the dark side of the inner magnetosphere, weakens the magnetic field, and allows solar protons to penetrate the inner magnetosphere. The significant difference in the positions of the penetration boundary and the boundary found from models of the magnetosphere magnetic field can be explained by insufficient consideration of closing currents.  相似文献   

17.
We study the interaction between energetic protons of the Earth’s radiation belts and quasi-electrostatic whistler mode waves. The nature of these waves is well known: whistler waves, which are excited in the magnetosphere due to cyclotron instability, enter the resonant regime of propagation and become quasielectrostatic, while their amplitude significantly increases. Far enough from the equator where proton gyrofrequency and transversal velocity increase the nonlinear interaction between these waves and energetic protons becomes possible. We show that plasma inhomogeneity may destroy cyclotron resonance between wave and proton on the time scale of the order of particle gyroperiod which in fact means the absence of cyclotron resonance; nevertheless, the interaction between waves and energetic particles remains nonlinear. In this case, particle dynamics in the phase space has the character of diffusion; however, the diffusion coefficients are determined by the averaged amplitude of the wave field, but not by its resonant harmonics. For real parameters of the waves and magnetospheric plasma, proton pitch-angle diffusion leading to their precipitation from the magnetosphere becomes essential.  相似文献   

18.
The powerful solar flares that occurred on September 4–10, 2017 are analyzed based on a quantitative diagnostics method for proton flares developed at the Institute of Terrestrial Magnetism, the Ionosphere and Radio-Wave Propagation (IZMIRAN) in the 1970–1980s. We show that the fluxes and energy spectra of the protons reached the Earth with the energies of tens of MeV qualitatively and quantitatively correspond to the intensity and frequency spectra of the microwave radio bursts in the range of 2.7–15.4 GHz. Specifically, the flare of September 4 with a peak radio flux S ~ 2000 sfu at the frequency f ~ 3 GHz (i.e., with the soft radio spectrum) was accompanied by a significant proton flux J (>10 MeV) ~100 pfu and a soft energy spectrum with the index γ ~3.0, while the strong flare on September 10 with S ~ 21000 sfu at f ~ 15 GHz (i.e., with the hard radio spectrum) led to a very intense proton event with J (>10 MeV) ~1000 pfu with a hard spectrum (γ ~ 1.4), including the ground level enhancement (GLE72). This is further evidence that microwave radio data can be successfully used in diagnostics of proton flares independently of a specific source of particle acceleration at the Sun, in particular, with the IZMIRAN method.  相似文献   

19.
The influence of penetration electric fields (PEF) on storm-time energetic particles in the inner magnetosphere and on the stability of plasma in the low-latitude ionosphere is widely recognized. We describe two consequences of PEFs, regularly observed during magnetic storms that indicate their persistence throughout the main phases. These are (1) the presence of equatorial plasma bubbles (EPB) across the evening local time sector during main phases and their absence throughout recovery, and (2) detections of low-energy ion precipitation in the dawn sector equatorward of the auroral electron boundary.  相似文献   

20.
The unique spectrographic observations of auroras on the Kola Peninsula, simultaneously performed in 1970 at Loparskaya and Kem stations using C-180-S cameras, have been analyzed by up-to-date digital data processing. The position and dynamics of proton precipitation relative to other manifestations of auroral and substorm activity (auroral arcs and electrojets) under moderately and weakly disturbed conditions have been analyzed. Several previously known regularities in the morphology of proton auroras have been confirmed. It has been indicated that the direction of motion of the proton band equatorward boundary in the evening sector changes at a sign reversal of the IMF Z component. Weak breakups affect the poleward boundary of the proton band but do not influence the position of the equatorward boundary of this band, which results in the expansion of the proton emission region. When a disturbance is stronger, the proton emission disappears near an active electron arc and subsequently appears poleward of its position before intensification. Short-term proton precipitation is also observed in the region of active electron precipitation during an intense breakup in the form of N–S structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号