首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this article we craft process‐specific algorithms that capture climate control of hillslope evolution in order to elucidate the legacy of past climate on present critical zone architecture and topography. Models of hillslope evolution traditionally comprise rock detachment into the mobile layer, mobile regolith transport, and a channel incision or aggradation boundary condition. We extend this system into the deep critical zone by considering a weathering damage zone below the mobile regolith in which rock strength is diminished; the degree of damage conditions the rate of mobile regolith production. We first discuss generic damage profiles in which appropriate length and damage scales govern profile shapes, and examine their dependence upon exhumation rate. We then introduce climate control through the example of rock damage by frost‐generated crack growth. We augment existing frost cracking models by incorporating damage rate limitations for long transport distances for water to the freezing front. Finally we link the frost cracking damage model, a mobile regolith production rule in which rock entrainment is conditioned by the damage state of the rock, and a frost creep transport model, to examine the evolution of an interfluve under oscillating climate. Aspect‐related differences in mean annual surface temperatures result in differences in bedrock damage rate and mobile regolith transport efficiency, which in turn lead to asymmetries in critical zone architecture and hillslope form (divide migration). In a quasi‐steady state hillslope, the lowering rate is uniform, and the damage profile is better developed on north‐facing slopes where the frost damage process is most intense. Because the residence times of mobile regolith and weathered bedrock in such landscapes are on the order of 10 to 100 ka, climate cycles over similar timescales result in modulation of transport and damage efficiencies. These lead to temporal variation in mobile regolith thickness, and to corresponding changes in sediment delivery to bounding streams. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
Rock temperatures were monitored for a year at two alpine rockwalls in the Akaishi Range, Japan, where permafrost is absent. Diurnal frost and thaw penetration depths were evaluated from subsurface isotherms drawn on the basis of the temperature records at 0, 10 and 40 cm depths. The surface of the rockwalls experienced more than 100 diurnal freeze-thaw cycles, most of which accompanied a frost or thaw penetration shallower than 50 cm, and several long duration cycles with deeper frost or thaw penetration. Theoretical frost and thaw depths were also calculated by incorporating the surface freezing indices into the modified Berggren equation, the results from which were then compared with the actual values. The modified Berggren equation provided values that showed a strong correlation with observed depths, despite somewhat underestimating the actual values. Using the modified Berggren equation, the seasonal frost depth in the observed winter was estimated to be about 4·5 m. The frost and thaw depths are considered to give the maximum estimation of the depth to which frost-induced cracking can propagate in the bedrock.  相似文献   

3.
In 2008–2009, a severe cold snap affected the otherwise temperate mid‐latitude coasts of the English Channel of France. In March 2009, we gathered rock spalling observations at Mesnil Val, NW France, to document the effect of frost on platform lowering in macro‐tidal environments. Six epochs of frost were recorded in 2 months, the two longest lasted 16 and 8 days, with minimum air temperature dropping to –9.5°C. Semi‐diurnal tides flood the entire platform, imposing up to 25 freeze–thaw cycles below –2.5°C, the freezing temperature of seawater. 19 cycles occurred at neap tidal elevation lasting at most 3.5 h. Our integrated observations indicate that these frost cycles were responsible for a platform lowering of about 0.8±0.5 mm during a single winter. No clear spatial trend appears, nor do macroscopic chalk types clearly stand out as being more susceptible to erosion. Assuming that the long‐term platform retreat model preserves a constant slope, frost shattering would then account for 10 to 20% of the expected annual platform erosion rate. Under more contrasted climates, frost is thus likely to be a prominent shaping process for rocky coastal platforms. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
The bedrock freeze-thaw and moisture regimes at an actively eroding site on the Niagara Escarpment, Bruce Peninsula, southern Ontario, were monitored between December 1983 and April 1984, and the results compared with amounts of debris collected in an adjacent rock trap. Frost wedging in pre-existing rock fissures is the primary mechanism responsible for the observed rockfall events; hydration effects are negligible. Debris production was more closely related to the duration of the freezing leg of the freeze-thaw cycle than to intensity or to cycle frequency. Release also coincided with periods of high pore saturation (> 60 per cent) and the seepage of water from cracks and fissures. Fewer freeze-thaw cycles were recorded in the air than at 1 and 3.5 cm in the bedrock. The number of cycles that could be declared geomorphologically effective according to established temperature criteria was normally less than half the total number of freeze-thaw cycles recorded in both air and bedrock. Under the current temperature regime at the field site, few effective cycles are capable of penetrating more than 5 cm into the free face.  相似文献   

5.
The incision rate and steepness of bedrock channels depend on water discharge, uplift rate, substrate lithology, sediment flux, and bedload size. However, the relative role of these factors and the sensitivity of channel steepness to rapid (>1 mm yr−1) uplift rates remain unclear. We conducted field and topographic analyses of fluvial bedrock channels with varying channel bed lithology and sediment source rock along the Coastal Range in eastern Taiwan, where uplift rates vary from 1.8 to 11.8 mm yr−1 and precipitation is relatively consistent (1.5–2.7 m yr−1), to evaluate the controls on bedrock channel steepness. We find that channel steepness is independent of rock uplift rate and annual precipitation but increases monotonically with sediment size and substrate strength. Furthermore, in reaches with uniform substrate lithology (mudstone and flysch), channel steepness systematically varies with sediment source rock but not with channel width. When applied to our data, a mechanistic incision model (saltation-abrasion model) suggests that the steepness of Coastal Range channels is set primarily by coarse-sediment supply. We also observe that larger particles are mainly composed of resistant lithologies derived from volcanic rocks and conglomerates. This result implies that hillslope bedrock properties in the source area exert a dominant control on the steepness of proximal channels through coarse-sediment production in this setting. We propose that channel steepness may be insensitive to uplift rate and flow discharge in fast-uplifting landscapes where incision processes are set by coarse sediment size and supply. Models assuming a proportionality between incision rate and basal shear stress (stream power) may not fully capture controls on fluvial channel profiles in landslide-dominated landscapes. Processes other than channel steepening, such as enhanced bedload impacts and debris-flow scour, may be required to balance rock uplift and incision in these transport-limited systems.  相似文献   

6.
Rock moisture is an important factor for the intensity and distribution of frost weathering processes. However, quantitative measurements are scarce, which is partly due to the lack of reliable measurement techniques. This paper presents five different techniques for obtaining rock moisture data. While collecting rock pieces and two‐dimensional geoelectric measurements allow determination of the spatial moisture distribution, the temporal variability can be derived from conductivity and time domain reflectometry records. Computer simulations, using rock properties and climatic records as input data, render it possible to clarify the important aspects that are responsible for the moisture distribution. It proved to be advisable to use several methods to check and validate the results. The results, obtained in study areas in the Bavarian Alps, make it clear that direct rainfall is the main source of rock moisture. The influence of snow is limited to the immediate vicinity of the snow fields and is not equally pronounced at different times and positions. Rock moisture levels are higher in summer than they are in winter, since in winter less water is supplied in liquid form. Northerly exposed rockwalls are generally more moist than those exposed in a southerly direction, which is due to the different insolation as well as to the wind direction during rainfall. In every position the rock is, on average, wetter on the inside than it is on the surface. This means that shallow frost cycles, as typical for south‐exposed sites, are not affecting weathering, since they take place at a depth level that is mostly dried out. Numerous spatial and temporal patterns of rockfall found in the same study areas can be explained through variations in rock moisture. Thus, the moisture content of the rock is considered to be one of the major controlling factors of the frost‐shattering rate. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

7.
The saltation–abrasion model predicts rates of river incision into bedrock as an explicit function of sediment supply, grain size, boundary shear stress and rock strength. Here we use this experimentally calibrated model to explore the controls on river longitudinal profile concavity and relief for the simple but illustrative case of steady‐state topography. Over a wide range of rock uplift rates we find a characteristic downstream trend, in which upstream reaches are close to the threshold of sediment motion with large extents of bedrock exposure in the channel bed, while downstream reaches have higher excess shear stresses and lesser extents of bedrock exposure. Profile concavity is most sensitive to spatial gradients in runoff and the rate of downstream sediment fining. Concavity is also sensitive to the supply rate of coarse sediment, which varies with rock uplift rate and with the fraction of the total sediment load in the bedload size class. Variations in rock strength have little influence on profile concavity. Profile relief is most sensitive to grain size and amount of runoff. Rock uplift rate and rock strength influence relief most strongly for high rates of rock uplift. Analysis of potential covariation of grain size with rock uplift rate and rock strength suggests that the influence of these variables on profile form could occur in large part through their influence on grain size. Similarly, covariation between grain size and the fraction of sediment load in the bedload size class provides another indirect avenue for rock uplift and strength to influence profile form. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
Rock moisture content is a major control of mechanical weathering, particularly freeze-thaw, and yet almost no data exist from field situations. This study presents moisture content values for rocks, taken from a variety of positions and conditions, in the maritime Antarctic. Additional information regarding the amount of water the rock could take up, as observed from laboratory experiments, is also presented. The results show that the approaches used in simulation experiments, particularly that of soaking a rock for 24 hours, may produce exaggerated results. It was found that the saturation coefficient (S-value) was a good indicator of frost susceptibility (based on water content) but that the derivation of that value may underestimate the potential of some rocks. The distribution of moisture within rocks is seen as an important, but unkown, factor. The results of these field moisture contents suggest that for simulations of freeze-thaw or hydration to be meaningful then they should have rock water contents based on field observations.  相似文献   

9.
Rapid surface lowering of bedrock is taking place in the supratidal zone by salt spray weathering. A seven-year run of data demonstrates a mean rate of lowering of 0·625 mm a?1. Considerable variation exists in annual point lowering values within measurement sites, although between-site variation is not significant. Aggregate year to year variations in surface lowering are not significant. Spatial variation in individual point values may be compensated by temporal variation over an 11-year period. There is a marked summer maximum in surface lowering rate, and this is strongly correlated with monthly air temperature. Spatially and temporally episodic swelling of the rock surface is demonstrated. This does not correlate statistically with any available climatic variable and is deemed to be a real and largely stochastic phenomenon. It is interpreted as rock bursting at the granular scale due to haloclasty. The processes most likely to be responsible for the observed rapid denudation are crystallization and thermal expansion of halite, both of which are enhanced by high summer temperatures.  相似文献   

10.
Knickpoints in bedrock streams are often interpreted as transient features generated by a change in boundary conditions. It is typically assumed that knickpoints propagate upstream with constant vertical velocities, though this relies on a stream being in erosional steady state (erosion rate equals rock uplift rate) prior to the knickpoint's formation. Recent modeling and field studies suggest that along-stream contrasts in rock erodibility perturb streams from erosional steady state. To evaluate how contrasts in rock erodibility might impact knickpoint interpretations, we test parameter space (rock erodibility, rock contact dip angle, change in rock uplift rate) in a one-dimensional (1D) bedrock stream model that has variable rock erodibility and produces a knickpoint with a sudden change in rock uplift rate. Upstream of a rock contact, the vertical velocity of a knickpoint generated by a change in rock uplift rate is strongly correlated with how the rock contact has previously perturbed erosion rates. These knickpoints increase vertical velocity upon propagating upstream of a hard over soft contact and decrease vertical velocity upon propagating upstream of a soft over hard contact. However, interactions with other transient perturbations produced by rock contacts make for nuances in knickpoint behavior. Rock contacts also influence the geometry of knickpoints, which can become particularly difficult to identify upstream of soft over hard rock contacts. Using our simulations, we demonstrate how a contact's along-stream horizontal migration rate and cross-contact change in rock strength control how much an upstream reach is perturbed from erosional steady state. When simulations include multiple contacts, the knickpoint is particularly prone to colliding with other transient perturbations and can even disappear altogether if rock contact dips are sufficiently shallow. Caution should be taken when analyzing stream profiles in areas with significant changes in rock strength, especially when rock contact dip angles are near the stream's slope.  相似文献   

11.
This paper describes up to ten years of continuous monitoring of frost heave, creep and associated parameters on high mountain crest slopes in the Japanese and Swiss Alps, aiming to evaluate spatial and interannual variations in the rates and controls of soil movement. Shallow frost creep re?ecting diurnal frost heave activity dominates the crest slopes that lack a vegetation mat and have a thin debris mantle with good drainage. Seasonal frost heave activity can induce slightly deeper movement where ?ne soil exists below the depth reached by diurnal freeze–thaw penetration, although the shallow bedrock impedes movements below 20 cm depth. As a result, downslope velocity pro?les display strong concavity with surface velocities of 2–50 cm a?1. The frost creep rates vary spatially, depending on the soil texture, slope gradient, frequency of temperature cycling across 0 °C and moisture availability during freeze–thaw periods. Soil movements recur in every freeze–thaw period, although with some interannual variations affected by the length of seasonal snow cover and the occurrence of precipitation during freeze–thaw periods. The Swiss Alps encounter more signi?cant interannual variations than the Japanese Alps, re?ecting the large variability of the annual snow regime. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
This study presents an approach for delineating groundwater basins and estimating rates of recharge to fractured crystalline bedrock. It entailed the use of completion report data (boring logs) from 2500 domestic wells in bedrock from the Coventry Quadrangle, which is located in northeastern Connecticut and characterized by metamorphic gneiss and schist. Completion report data were digitized and imported into ArcGIS® for data analysis. The data were processed to delineate groundwater drainage basins for the fractured rock based on flow conditions and to estimate groundwater recharge to the bedrock. Results indicate that drainage basins derived from surface topography, in general, may not correspond with bedrock drainage basins due to scale. Estimates of recharge to the bedrock for the study area indicate that only a small fraction of the precipitation or the amount of water that enters the overburden recharges the rock. The approach presented here can be a useful method for water resource‐related assessments that involve fractured rock aquifers.  相似文献   

13.
Contaminated groundwater in fractured bedrock can expose ecosystems to undesired levels of risk for extended periods due to prolonged back-diffusion from rock matrix to permeable fractures. Therefore, it is key to characterize the diffusive mass loading (intrusion) of contaminants into the rock matrix for successful management of contaminated bedrock sites. Even the most detailed site characterization techniques often fail to delineate contamination in rock matrix. This study presents a set of analytical solutions to estimate diffusive mass intrusion into matrix blocks, it is recovered by pumping and concentration rebound when pumping ceases. The analytical models were validated by comparing the results with (1) numerical model results using the same model parameters and (2) observed chloride mass recovery, rebound concentration, and concentration in pumped groundwater at a highly fractured bedrock site in Alberta, Canada. It is also demonstrated that the analytical solutions can be used to estimate the total mass stored in the fractured bedrock prior to any remediation thereby providing insights into site contamination history. The predictive results of the analytical models clearly show that successful remediation by pumping depends largely on diffusive intrusion period. The results of initial mass from the analytical model was used to successfully calibrate a three-dimensional discrete fracture network numerical model further highlighting the utility of the simple analytical solutions in supplementing the more detailed site numerical modeling. Overall, the study shows the utility of simple analytical methods to support long-term management of a contaminated fractured bedrock site including site investigations and complex numerical modeling.  相似文献   

14.
In this paper, we examined the role of bedrock groundwater discharge and recharge on the water balance and runoff characteristics in forested headwater catchments. Using rigorous observations of catchment precipitation, discharge and streamwater chemistry, we quantified net bedrock flow rates and contributions to streamwater runoff and the water balance in three forested catchments (second‐order to third‐order catchments) underlain by uniform bedrock in Japan. We found that annual rainfall in 2010 was 3130 mm. In the same period, annual discharge in the three catchments varied from 1800 to 3900 mm/year. Annual net bedrock flow rates estimated by the chloride mass balance method at each catchment ranged from ?1600 to 700 mm/year. The net bedrock flow rates were substantially different in the second‐order and third‐order catchments. During baseflow, discharge from the three catchments was significantly different; conversely, peak flows during large storm events and direct runoff ratios were not significantly different. These results suggest that differences in baseflow discharge rates, which are affected by bedrock flow and intercatchment groundwater transfer, result in the differences in water balance among the catchments. This study also suggests that in these second‐order to third‐order catchments, the drainage area during baseflow varies because of differences between the bedrock drainage area and surface drainage area, but that the effective drainage area during storm flow approaches the surface drainage area. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
Erosion processes in bedrock‐floored rivers shape channel cross‐sectional geometry and the broader landscape. However, the influence of weathering on channel slope and geometry is not well understood. Weathering can produce variation in rock erodibility within channel cross‐sections. Recent numerical modeling results suggest that weathering may preferentially weaken rock on channel banks relative to the thalweg, strongly influencing channel form. Here, we present the first quantitative field study of differential weathering across channel cross‐sections. We hypothesize that average cross‐section erosion rate controls the magnitude of this contrast in weathering between the banks and the thalweg. Erosion rate, in turn, is moderated by the extent to which weathering processes increase bedrock erodibility. We test these hypotheses on tributaries to the Potomac River, Virginia, with inferred erosion rates from ~0.1 m/kyr to >0.8 m/kyr, with higher rates in knickpoints spawned by the migratory Great Falls knickzone. We selected nine channel cross‐sections on three tributaries spanning the full range of erosion rates, and at multiple flow heights we measured (1) rock compressive strength using a Schmidt hammer, (2) rock surface roughness using a contour gage combined with automated photograph analysis, and (3) crack density (crack length/area) at three cross‐sections on one channel. All cross‐sections showed significant (p < 0.01 for strength, p < 0.05 for roughness) increases in weathering by at least one metric with height above the thalweg. These results, assuming that the weathered state of rock is a proxy for erodibility, indicate that rock erodibility varies inversely with bedrock inundation frequency. Differences in weathering between the thalweg and the channel margins tend to decrease as inferred erosion rates increase, leading to variations in channel form related to the interplay of weathering and erosion rate. This observation is consistent with numerical modeling that predicts a strong influence of weathering‐related erodibility on channel morphology. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

16.
Holocene rockwall retreat rates quantify integral values of rock slope erosion and talus cone evolution. Here we investigate Holocene rockwall retreat of exposed arctic sandstone cliffs in Longyeardalen, central Svalbard and apply laboratory‐calibrated electrical resistivity tomography (ERT) to determine talus sediment thickness. Temperature–resistivity functions of two sandstone samples are measured in the laboratory and compared with borehole temperatures from the talus slope. The resistivity of the higher and lower‐porosity sandstone at relevant borehole permafrost temperatures defines a threshold range that accounts for the lithological variability of the dominant bedrock and debris material. This helps to estimate the depth of the transition from higher resistivities of ice‐rich debris to lower resistivities of frozen bedrock in the six ERT transects. The depth of the debris–bedrock transition in ERT profiles is confirmed by a pronounced apparent resistivity gradient in the raw data plotted versus depth of investigation. High‐resolution LiDAR‐scanning and ERT subsurface information were collated in a GIS to interpolate the bedrock surface and to calculate the sediment volume of the talus cones. The resulting volumes were referenced to source areas to calculate rockwall retreat rates. The rock mass strength was estimated for the source areas. The integral rockwall retreat rates range from 0.33 to 1.96 mm yr–1, and are among the highest rockwall retreat rates measured in arctic environments, presumably modulated by harsh environmental forcing on a porous sandstone rock cliff with a comparatively low rock mass strength. Here, we show the potential of laboratory‐calibrated ERT to provide accurate estimates of rockwall retreat rates even in ice‐rich permafrost talus slopes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
As part of a study on freeze-thaw weathering in the maritime Antarctic an investigation was made of the physical properties of the local rock. Tests were made of point-load compressive strength, Schmidt hammer in situ rock strength, moisture content, indentor resistance and the size range of weathering products. The resulting data were used to consider the form of freeze-thaw weathering operative in the field and its relationship to laboratory simulations. A distinct difference between ‘massive rock’ and ‘intact rock’ is observed in the field. It is suggested that future studies should generate a greater database pertaining to rock properties as it is an invaluable aid in the study of mechanical weathering.  相似文献   

18.
Width and temperature of rock joints were automatically monitored in the Japanese Alps. Three years of monitoring on a sandstone rock face shows two seasonal peaks of joint widening in autumn and spring. The autumn events are associated with short‐term freeze–thaw cycles, and the magnitude of widening reflects the freezing intensity and water availability. The short‐term freezing can produce wedging to a depth of at least 20 cm. The spring events follow a rise in the rock surface temperature to 0 °C beneath the seasonal snowcover, and likely originate from refreezing of meltwater entering the joint. Some of these events contribute to permanent enlargement of the joint. Two other joints on nearby rock faces experience only sporadic widening accompanying freeze–thaw cycles and insignificant permanent enlargement. Observations indicate that no single thermal criterion can explain frost weathering. The temperature range at which wedging occurs varies with the bedrock conditions, water availability and duration of freezing. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

19.
The base of Earth's critical zone (CZ) is commonly shielded from study by many meters of overlying rock and regolith. Though deep CZ processes may seem far removed from the surface, they are vital in shaping it, preparing rock for infusion into the biosphere and breaking Earth materials down for transport across landscapes. This special issue highlights outstanding challenges and recent advances of deep CZ research in a series of articles that we introduce here in the context of relevant literature dating back to the 1500s. Building on several contributions to the special issue, we highlight four exciting new hypotheses about factors that drive deep CZ weathering and thus influence the evolution of life‐sustaining CZ architecture. These hypotheses have emerged from recently developed process‐based models of subsurface phenomena including: fracturing related to subsurface stress fields; weathering related to drainage of bedrock under hydraulic head gradients; rock damage from frost cracking due to subsurface temperature gradients; and mineral reactions with reactive fluids in subsurface chemical potential gradients. The models predict distinct patterns of subsurface weathering and CZ thickness that can be compared with observations from drilling, sampling and geophysical imaging. We synthesize the four hypotheses into an overarching conceptual model of fracturing and weathering that occurs as Earth materials are exhumed to the surface across subsurface gradients in stress, hydraulic head, temperature, and chemical potential. We conclude with a call for a coordinated measurement campaign designed to comprehensively test the four hypotheses across a range of climatic, tectonic and geologic conditions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
During a 3-year period, several aspects of the glacier-rock interface were studied in a cavity beneath 5–8 m of ice near the terminus of Grinnell Glacier, Montana, U.S.A. Continuous week-long records of the summer sliding rate revealed a very uniform speed of about 12 m a?1 during the summer, a value about 20 per cent higher than the average annual sliding rate. Several decimetre-sized rock fragments were broken from the glacier bed near the lee sides of bedrock ledges and transported down-glacier. In the course of a two-week long experiment, the glacier abraded its bed significantly and non-uniformly. It is of interest that significant quarrying and abrasion occurred under thin ice with relatively little entrained debris.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号