首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glacial‐lake outburst floods (GLOFs) on 3 September 1977 and 4 August 1985 dramatically modified channels and valleys in the Mount Everest region of Nepal by eroding, transporting, and depositing large quantities of sediment for tens of kilometres along the flood routes. The GLOF discharges were 7 to 60 times greater than normal floods derived from snowmelt runoff, glacier meltwater, and monsoonal precipitation (referred to as seasonal high flow floods, SHFFs). Specific stream power values ranged from as low as 1900 W m?2 in wide, low‐gradient valley segments to as high as 51 700 W m?2 in narrow, high‐gradient valley segments bounded by bedrock. Along the upper 16 km of the GLOF routes, the reach‐averaged specific stream power of the GLOFs was 3·2 to 8·0 times greater than the reach‐averaged specific stream power of the SHFFs. The greatest geomorphic change occurred along the upper 10 to 16 km of the GLOF routes, where the ratio between the GLOF specific stream power and the SHFF specific stream power was the greatest, there was an abundant supply of sediment, and channel/valley boundaries consisted primarily of unconsolidated sediment. Below 11 to 16 km from the source area, the geomorphic effects of the GLOFs were reduced because of the lower specific stream power ratio between the GLOFs and SHFFs, more resistant bedrock flow boundaries, reduced sediment supply, and the occurrence of past GLOFs. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

2.
The advent of 2D hydraulic modelling has improved our understanding of flood hydraulics, thresholds, and dynamic effects on floodplain geomorphology and riparian vegetation at the morphological-unit scale. Hydraulic concepts of bed shear stress, stream power maxima, and energy (cumulative stream power) have been used to characterize floods and define their geomorphic effectiveness. These hydraulic concepts were developed in the context of reach-averaged, 1D hydraulic analyses, but their application to 2D model results is problematic due to differences in the treatment of energy losses in 1D and 2D analyses. Here we present methods for estimating total and boundary resistance from 2D modelling of an extreme flood on a subtropical river. Hydraulic model results are correlated with observations of the flood impacts on floodplain geomorphology and the riparian vegetation to identify thresholds and compute variants of flood energy. Comparison of LiDAR data in 2011 and 2014 shows that the 2011 flood produced 2–4 m of erosion on floodplain bars that were previously forested or grass-covered. Deposition on flood levees, dunes, and chute bars was up to 3.4 m thick. Various hydraulic metrics were trialled as candidates for thresholds of vegetation disturbance. The accuracy of thresholds using metrics extracted at the flood peak (i.e. boundary resistance and stream power maxima) was similar to that using energy as a threshold. Disturbance to forest and grass on vegetated bars was associated with stream powers of >834 W/m2 and unit flows of >26 m2/s, respectively. Correlation of the hydraulic metrics with erosion and deposition depths showed no substantial improvement in using flood energy compared to metrics extracted at the flood peak for describing erosion and deposition. The extent of vegetation disturbances and morphological adjustments was limited for this extreme flood, and further 2D studies are needed to compare disturbance thresholds across different environments.  相似文献   

3.
Floods play a critical role in geomorphic change, but whether peak magnitude, duration, volume, or frequency determines the resulting magnitude of erosion and deposition is a question often proposed in geomorphic effectiveness studies. This study investigated that question using digital elevation model differencing to compare and contrast three hydrologically distinct epochs of topographic change spanning 18 years in the 37-km gravel–cobble lower Yuba River in northern California, USA. Scour and fill were analysed by volume at segment and geomorphic reach scales. Each epoch's hydrology was characterized using 15-min and daily averaged flow to obtain distinct peak and recurrence, duration, and volume metrics. Epochs 1 (1999–2008) and 3 (2014–2017) were wetter than average with large floods reaching 3206 and 2466 m3/s, respectively, though of different flood durations. Epoch 2 (2008–2014) was a drought period with only four brief moderate floods (peak of 1245 m3/s). Total volumetric changes showed that major geomorphic response occurred primarily during large flood events; however, total scour and net export of sediment varied greatly, with 20 times more export in epoch 3 compared to epoch 1. The key finding was that greater peak discharge was not correlated with greater net and total erosion; differences were better explained by duration and volume above floodway-filling stage. This finding highlights the importance of considering flood duration and volume, along with peak, to assess flood magnitude in the context of flood management, frequency analysis, and resulting geomorphic changes.  相似文献   

4.
Geomorphological evidence and recent trash lines were used as stage indicators in a step-backwater computer model of high discharges through an ungauged bedrock channel. The simulation indicated that the peak discharge from the 26.7 m2 catchment was close to 150m3s?1 during the passage of Hurricane Charlie in August 1986. This estimate can be compared with an estimate of 130–160 m3s?1 obtained using the Flood Studies Report (FSR) unit hydrograph methodology. Other palaeostage marks indicate that higher stages have occurred at an earlier time associated with a discharge of 200 m3s?1. However, consideration of both the geometry of a plunge pool and transport criteria for bedrock blocks in the channel indicates that floods since 1986 have not exceeded 150 m3s?1. Given that the estimated probable maximum flood (PMF) calculated from revised FSR procedure is at least 240 m3s?1, it is concluded that compelling evidence for floods equal to the PMF is lacking. Taking into consideration the uncertainty of the discharge estimation, the 1986 flood computed using field evidence has a minimum return period of 100 years using the FSR procedure. This may be compared with a return period for the same event in the neighbouring gauged River Greta of > 100 years and a rainfall return period of 190 years. In as much as discharges of similar order to FSR estimates are indicated, it is concluded (a) that regional geomorphological evidence and flood simulation within ungauged catchments may be useful as a verification for hydrological estimates of recent widespread flood magnitude and (b) that palaeohydraulic computation can be useful in determining the magnitude of the local maximum [historic] flood when determining design discharges for hydraulic structures within specific catchments.  相似文献   

5.
This study assessed the effect of the largest flood since dam regulation on geomorphic and large wood (LW) trends using LW distributions at three time periods on the 150 km long Garrison Reach of the Missouri River. In 2011, a flood exceeded 4390 m3/s for a two‐week period (705% above mean flow; 500 year flood). LW was measured using high resolution satellite imagery in summer 2010 and 2012. Ancillary data including forest character, vegetation cover, lateral bank retreat, and channel capacity. Lateral bank erosion removed approximately 7400 standing trees during the flood. Other mechanisms, that could account for the other two‐thirds of the measured in‐channel LW, include overland flow through floodplains and islands. LW transport was commonly near or over 100 km as indicated by longitudinal forest and bank loss and post‐flood LW distribution. LW concentrations shift at several locations along the river, both pre‐ and post‐flood, and correspond to geomorphic river regions created by the interaction of the Garrison Dam upstream and the Oahe Dam downstream. Areas near the upstream dam experienced proportionally higher rates of bank erosion and forest loss but in‐channel LW decreased, likely due to scouring. A large amount of LW moved during this flood, the chief anchoring mechanism was not bridges or narrow channel reaches but the channel complexity of the river delta created by the downstream reservoir. Areas near the downstream dam experienced bank accretion and large amounts of LW deposition. This study confirms the results of similar work in the Reach: despite a historic flood longitudinal LW and channel trends remain the same. Dam regulation has created a geomorphic and LW pattern that is largely uninterrupted by an unprecedented dam regulation era flood. River managers may require other tools than infrequent high intensity floods to restore geomorphic and LW patterns. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

6.
Predicting spatial and temporal variations in bank erosion due to extreme floods presents a long‐standing challenge in geomorphology. We develop two methodologies for rapid, regional‐scale assessments of stream reaches susceptible to channel widening. The first proposes that channel widening occurs when unit stream power exceeds a critical threshold (300 W/m2). The second is motivated by the observation that widening often occurs at channel bends. We introduce a new metric, the bend stress parameter, which is proportional to the centripetal force exerted on a concave bank. We propose that high centripetal forces generate locally high bank shear forces and enhance channel bank erosion. We test both metrics using the geomorphic signature of Tropical Storm Irene (2011) on the White and the Saxtons Rivers, Vermont. Specifically, we test if reaches where significant channel widening occurred during Irene required one or both metrics to exceed threshold values. We observe two distinct styles of channel widening. Where unit stream power and bend stress parameter are high, widening is usually due to bank retreat. Elsewhere widening is usually due to the stripping of the upstream end of mid‐channel islands. Excluding widening associated with the stripping of the heads of mid‐channel islands, almost all the widening (> 98%) occurred along reaches identified as susceptible to widening. The combined metrics identify up to one‐quarter of the reaches lacking susceptibility to channel widening. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
Bedload transport measurements in two upland streams are considered as a function of the excess stream power exerted on the bed by the flow. During low flows when the framework gravels remain undisturbed, fine sediments are winnowed from the bed-surface layer once a threshold of 3·4 W m?2 is exceeded and the transport rate is strongly supply limited. However for stream powers in excess of 15 W m?2 framework gravels are mobilized and the efficiency of the transport process approaches a local maximum of about 1 per cent for discharges up to 2/3 of bankfull. An inverse depth dependence in the efficiency of the transport process was noted but although bedload calibre increased as a function of discharge its influence on efficiency could not be demonstrated. However it was suspected that the size-sorting relationships of the bed-material in a number of rivers in relation to the transport efficiency might profitably be examined further.  相似文献   

8.
In much of western United States destructive floods after wildfire are frequently caused by localized, short‐duration convective thunderstorms; however, little is known about post‐fire flooding from longer‐duration, low‐intensity mesoscale storms. In this study we estimate and compare peak flows from convective and mesoscale floods following the 2012 High Park Fire in the ungaged 15.5 km2 Skin Gulch basin in the northcentral Colorado Front Range. The convective storm on 6 July 2012 came just days after the wildfire was contained. Radar data indicated that the total rainfall was 20–47 mm, and the maximum rainfall intensities (upwards of 50 mm h?1) were concentrated over portions of the watershed that burned at high severity. The mesoscale storm on 9–15 September 2013 produced 220–240 mm of rain but had maximum 15‐min intensities of only 25–32 mm h?1. Peak flows for each flood were estimated using three independent techniques. Our best estimate using a 2D hydraulic model was 28 m3 s?1 km?2 for the flood following the convective storm, placing it among the largest rainfall‐runoff floods per unit area in the United States. In contrast, the flood associated with the mesoscale flood was only 6 m3 s?1 km?2, but the long‐duration flood caused extensive channel incision and widening, indicating that this storm was much more geomorphically effective. The peak flow estimates for the 2013 flood had a higher relative uncertainty and this stemmed from whether we used pre‐ or post‐flood channel topography. The results document the extent to which a high and moderate severity forest fire can greatly increase peak flows and alter channel morphology, illustrate how indirect peak flow estimates have larger errors than is generally assumed, and indicate that the magnitude of post‐fire floods and geomorphic change can be affected by the timing, magnitude, duration, and sequence of rainstorms. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

9.
Arid regions generally lack surface water records for developing flood characteristics for hydraulic design purposes. Consequently good records of floods, particularly large ones, are a data asset to arid zone hydrology. A large rainfall and runoff event which occurred on 23 April 1985 has been fully recorded on Wadi Ghat, a 597 km2 catchment in southwest Saudi Arabia. Maximum point rainfall intensity was 115.4 mm hr?1. The peak discharge was 3200 m3 s?1. Point rainfall has an expected frequency of occurrence in excess of once every 200 years. The peak discharge is expected to occur on an average once in 143 years.  相似文献   

10.
Abstract

River science and management often require a design or reference discharge. The common (and sometimes unavoidable) use of such discharges may, however, obscure the fact that the magnitude and frequency of critical flows can differ due to various hydrological, geomorphological, and ecological criteria. Threshold stages and discharges were identified for six lower Brazos River, Texas gaging stations corresponding to thalweg connectivity, bed inundation, high sub-banktop flows, channel–floodplain connectivity (CFC), and overbank flooding. Critical flows were also identified for estimated thresholds for sandy bedform and medium gravel mobility, critical specific stream power for potential channel modifications, and cohesive-bank channel erosion. These thresholds have variable relationships to mean, median, and maximum flows. For four of the six stations, daily recurrence probabilities for all but flood flows are at least 1%, and as high as 11%. All stations achieve channel–floodplain connectivity at stages less than banktop. Estimated threshold flows for sediment mobility and channel erosion occur relatively frequently, with daily probabilities of 2–77%. Critical flows for bank erosion occur least often, and for sandy bedform and gravel mobility most often. Thalweg connectivity is always maintained at all sites, while bed inundation flows have a daily probability of about 80% or more. Overall, results suggest that no single flow level is dominant in hydrological or geomorphic dynamics, and that the frequency of a given threshold varies considerably even along a single river. The results support the idea that multiple flow levels and ranges are necessary to create and maintain the hydrological, geomorphological, and ecological characteristics of rivers, and that no single flow level is a reliable determinant of fluvial state.
Editor Z.W. Kundzewicz; Associate editor Q. Zhang  相似文献   

11.
12.
In this research, variability of spring (from 1 March to 30 May) and flash (from 1 June to 30 November) floods in rivers of different regions was analysed. The territory of Lithuania is divided into three regions according to hydrological regime of the rivers: Western, Central, and Southeastern. The maximum river discharge data of spring and flash floods [a total of 31 water gauging stations (WGS)] were analysed. Comparison of the data of four periods (1922–2013, 1941–2013, 1961–2013, and 1991–2013) with the data of the reference period (1961–1990) was performed. Analysis included the longest discharge data set of the Nemunas River at Smalininkai WGS (1812–2013) as well. Mixed patterns of flood changes in Lithuanian rivers were detected. The analysis of flood discharges of the Nemunas River indicated that both spring and flash floods in Lithuania were getting smaller.  相似文献   

13.
14.
基于长江中下游一、二维耦合水动力学模型,以1954和1998年洪水为典型,模拟了三峡水库调蓄前后洞庭湖区的洪水过程,定量分析了三峡水库对洞庭湖区防洪的贡献.结果表明:在长江发生1954和1998年全流域大洪水期间,三峡水库实施兼顾对城陵矶河段的防洪补偿调度,可有效缓解荆南三口河系及湖区的防洪压力,减少荆南三口 1.58...  相似文献   

15.
We use field measurements and airborne LiDAR data to quantify the potential effects of valley geometry and large wood on channel erosional and depositional response to a large flood (estimated 150-year recurrence interval) in 2011 along a mountain stream. Topographic data along 3 km of Biscuit Brook in the Catskill Mountains, New York, USA reveal repeated downstream alternations between steep, narrow bedrock reaches and alluvial reaches that retain large wood, with wood loads as high as 1261 m3 ha−1. We hypothesized that, within alluvial reaches, geomorphic response to the flood, in the form of changes in bed elevation, net volume of sediment eroded or aggraded, and grain size, correlates with wood load. We hypothesized that greater wood load corresponds to lower modelled average velocity and less channel-bed erosion during the flood, and finer median bed grain size and a lower gradation coefficient of bed sediment. The results partly support this hypothesis. Wood results in lower reach-average modelled velocity for the 2011 flood, but the magnitude of change in channel-bed elevation after the 2011 flood among alluvial and bedrock reaches does not correlate with wood load. Wood load does correlate with changes in sediment volume and bed substrate, with finer grain size and smaller sediment gradation in reaches with more wood. The proportion of wood in jams is a stronger predictor of bed grain-size characteristics than is total wood load. We also see evidence of a threshold: greater wood load correlates with channel aggradation at wood loads exceeding approximately 200 m3 ha−1. In this mountain stream, abundant large wood in channel reaches with alluvial substrate creates lower velocity that results in finer bed material and, when wood load exceeds a threshold, reach scale increases in aggradation. This suggests that reintroducing small amounts of wood or one logjam for river restoration will have limited geomorphic effects. © 2020 John Wiley & Sons, Ltd.  相似文献   

16.
Geomorphic evidence along bedrock-confined reaches of the Salt River in east-central Arizona provides a record of the river's largest flood events. Fine-grained flood slackwater deposits accumulated at channel margin irregularities several metres above the low-flow channel. Discharges associated with flow events responsible for the deposits were estimated by computer flow modelling. These estimates document flood magnitudes in excess of gauged historic streamflows. Relative and radiocarbon dating suggest that a flood record in excess of 600 y is preserved in the slackwater sequences. A prominent flood scar cut into grussy hillslope soils allows the extension of the prehistoric flood record to several thousand years. A maximum discharge estimate of 4600 m3s?1 affixed to the flood scar represents the largest flood event in the record, and is given a minimum recurrence interval of 1000–2000 y. The 1952 flood is the largest historic flow event experienced along the study reach and is estimated at 2900 m3s?1. Two palaeoflood events preserved in the slackwater stratigraphy exceed the 1952 event, and are given recurrence intervals of 300 and 600 y. The latter flood event had an estimated discharge of 3200 m3s?1. It is apparent that discharge estimates affixed to these infrequent, large-magnitude flood events approach a maximum with decreased probabilities (large recurrence intervals). This suggests that a physical limit on discharge may exist within the Salt River drainage basin and is perhaps directly related to drainage basin size.  相似文献   

17.
《国际泥沙研究》2020,35(1):97-104
The flood season is the main period of flow,sediment transport,and sedimentation in the lower Yellow River(LYR).Within the flood season,most of the flow,sediment transport,and sedimentation occurs during flood events.Because of the importance of floods in forming riverbeds in the LYR,the regularity of sediment transport and sedimentation during floods in the LYR was studied.Measured daily discharge and sediment transport rate data for the LYR from 1960 to 2006 were used.A total of 299 floods were selected;these floods had a complete evolution of the flood process from the Xiaolangdi to the Lijin hydrological stations.For five hydrological stations(Xiaolangdi,Huayuankou,Gaocun,Aishan,and Lijin),a correlation was first established for floods of different magnitudes between the average sediment transport rate at a given station and the average sediment concentration at the closest upstream station.The results showed that the sediment transport rate at the downstream station was strongly correlated with the inflow(upstream station) sediment concentration during a flood event.A relation then was established between sedimentation in the LYR and the average sediment concentration at the Xiaolangdi station during a flood event.From this relation,the critical sediment concentrations were obtained for absolute erosion,sedimentation equilibrium,and absolute deposition during floods of different magnitudes in the LYR.The results of the current study contri b ute to a better understanding of the mechanisms of sediment transport and the regularity of sedimentation in the LYR during floods,and provide technical support to guide the joint operation of reservoirs and the regulation of the LYR.  相似文献   

18.
The frequency of floods has been projected to increase across Europe in the coming decades due to extreme weather events. However, our understanding of how flood frequency is affected by geomorphic changes in river channel capacity remains limited. This paper seeks to quantify the influence of trends in channel capacity on flood hazards. Measuring and predicting the effect of geomorphic changes on freshwater flooding is essential to mitigate the potential effects of major floods through informed planning and response. Hydrometric records from 41 stream gauging stations were used to measure trends in the flood stage (i.e. water surface elevation) frequency above the 1% annual exceedance threshold. The hydrologic and geomorphic components of flood hazard were quantified separately to determine their contribution to the total trend in flood stage frequency. Trends in cross‐sectional flow area and mean flow velocity were also investigated at the same flood stage threshold. Results showed that a 10% decrease (or increase) in the channel capacity would result in an increase (or decrease) in the flood frequency of approximately 1.5 days per year on average across these 41 sites. Widespread increases in the flood hazard frequency were amplified through both hydrologic and geomorphic effects. These findings suggest that overlooking the potential influence of changing channel capacity on flooding may be hazardous. Better understanding and quantifying the influence of geomorphic trends on flood hazard will provide key insight for managers and engineers into the driving mechanisms of fluvial flooding over relatively short timescales. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
Floods are an important geomorphic agent that accelerate sediment supply from bank failures. The quantitative proportions supplied by lateral inputs and the transport conditions of the channel can create local or extended accumulation zones within the channel reaches. These accumulation zones play an important role in the geomorphic regime of the stream. Knowledge of long‐term history of sediment supply is necessary to determine how these input and deposition forms developed. This study introduces a new approach for the quantification of past sediment supply via lateral erosion (incised banks and individual bank failures), using a case study of the confluence of three partial tributaries in the accumulation zone in the Outer Western Carpathians. For each tributary, as well as the channel reach downstream of the confluence zone, we calculated the mean of the largest bed particles and the unit stream power as indicators of transport capacity. We found that two of the tributaries supply significant amounts of sediment to the accumulation zone because of their higher unit stream power related to their higher transport potential, and observed coarser bed sediment. Seventy‐three bank failures with a total volume 395.5 m3 were mapped, and the sediment supply volume was dated using dendrogeomorphic analysis of 114 scarred tree roots (246 samples). The total volume of the dated sediment supply in the individual tributaries was 193.9 m3, whereas the volume of erosion in the accumulation zone was only 4.9 m3 for a period of approximately 30 years. The period represented by the dated tree roots included 12 years in which erosion events occurred and impacted the total sediment budget in the study area. Although sediment supply was greater than erosion in the accumulation zone, there are no present‐day signs of accretion. The rupture of a dam in an old pond (which is situated approximately 50 m below the accumulation zone) probably increased the transport conditions in the accumulation zone so that it balanced the high sediment supply from individual tributaries. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
Abstract

It is generally accepted that the celerity of a discharge wave exceeds that of a floodwave. The discharge wave is the initial wavefront (shown by an increase in stage at a particular site), whereas the floodwave refers to the body of water moving downstream. Yet, few studies have investigated the varying relationship between discharge and suspended sediment concentration as floods propagate downstream. This paper examines the relative velocities of the discharge and sediment waves for natural flood events on the River Severn, UK. Four monitoring stations were established within the upper 35 km reach of the River Severn (drainage basin area 380 km2). Discharge was monitored using fixed structures, and suspended sediment concentrations were monitored at similar locations using Partech IR40C turbidity meters. Results showed discharge wave celerity increased with flood magnitude, but relationships were more complex for sediment wave celerity. Sediment wave celerity was greater than discharge wave celerity, and is attributed to the dominant source of sediment, which is most probably bank erosion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号