首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
基于常规弹性波动方程的反射波走时反演结合走时和反射波信息可以有效的摄取模型参数中的低波数成分,然而纵横波之间的耦合效应以及纵横波速度对波场的敏感性差异,导致反演的非线性问题增强.为此本文研究了基于解耦波动方程的反射波走时反演,并提出改进的时移互相关目标函数,分别隐式计入射波场快照与反传波场快照的时移量,很大程度的降低了纵波、横波之间的耦合关系,并提高纵横波速度低波数信息的反演质量.最后模型测试证明了本文方法的正确性.  相似文献   

2.
从广义反演理论出发,对多层反射波的走时联合反演,可以同时获得所有的各层速度及厚度参数。其优点是在不需要把问题线性化过程的同时,统一考虑了各层反射波走时的离散对整个地壳模型的影响,又可兼顾观测数据的不同误差分布。本文将该方法进行了数值模拟并应用于华北北部的几个不同构造单元,反演得出了其反射P波速度结构,并与正演结果进行了对比。  相似文献   

3.
The travel time and amplitude of ground-penetrating radar (GPR) waves are closely related to medium parameters such as water content, porosity, and dielectric permittivity. However, conventional estimation methods, which are mostly based on wave velocity, are not suitable for real complex media because of limited resolution. Impedance inversion uses the reflection coefficient of radar waves to directly calculate GPR impedance and other parameters of subsurface media. We construct a 3D multiscale stochastic medium model and use the mixed Gaussian and exponential autocorrelation function to describe the distribution of parameters in real subsurface media. We introduce an elliptical Gaussian function to describe local random anomalies. The tapering function is also introduced to reduce calculation errors caused by the numerical simulation of discrete grids. We derive the impedance inversion workflow and test the calculation precision in complex media. Finally, we use impedance inversion to process GPR field data in a polluted site in Mongolia. The inversion results were constrained using borehole data and validated by resistivity data.  相似文献   

4.
深反射地震剖面法为了获取深部结构特征常常采取大的偏移距采集数据.目前公开发表的相关资料中,鲜有利用深反射地震炮集数据获取近地表的结构特征.为此,本文通过正演测试了相关数据处理流程,即利用有限差分正演了起伏地表模型的大偏移距地震单炮弹性波场特征,通过共检波点域面波信号F-K频谱叠加构建新方法,从深反射地震数据集中提取了高品质的多阶面波频散曲线,再利用多阶面波联合反演获得了近地表的结构特征.在前述正演流程基础上,利用跨越班公湖—怒江缝合带的SinoProbe深反射地震剖面中的实际炮集数据,求取了基阶和一阶瑞利波频散曲线,联合反演后得到近地表横波速度结构.该结果与初至波走时反演获取的纵波速度结构具有较好的一致性,且在近地表的浅层分辨率较纵波速度结构特征更高,而更与已有地质认识相吻合.本文提供的相关数据处理流程表明利用深反射地震炮集数据,也能够获取近地表浅层的横波速度结构.  相似文献   

5.
In the context of wide-angle seismic profiling, the determination of the physical properties of the Earth crust, such as the elastic layer depth and seismic velocity, is often performed by inversion of P- and/or S-phases propagation data supplying the geometry of the medium (reflector depths) or any other structural parameter (P- or S-wave velocity, density...). Moreover, the inversion for velocity structure and interfaces is commonly performed using only seismic reflection travel times and/or crustal phase amplitudes in isotropic media. But it is very important to utilize more available information to constrain the non-uniqueness of the solution. In this paper, we present a simultaneous inversion method of seismic reflection travel times and polarizations data of transient elastic waves in stratified media to reconstruct not only layer depth and vertical P-wave velocity but also the anisotropy feature of the crust based on the estimation of the Thomsen’s parameters. We carry out a checking with synthetic data, comparing the inversion results obtained by anisotropic travel-time inversion to the results derived by joint inversion of seismic reflection travel times and polarizations data. The comparison proves that the first procedure leads to biased anisotropic models, while the second one fits nearly the real model. This makes the joint inversion method feasible. Finally, we investigate the geometry, P-wave velocity structure and anisotropy of the crust beneath Southeastern China by applying the proposed inversion method to previously acquired wide-angle seismic data. In this case, the anisotropy signature provides clear evidence that the Jiangshan-Shaoxing fault is the natural boundary between the Yangtze and Cathaysia blocks.  相似文献   

6.
P波偏振层析成像   总被引:2,自引:2,他引:0  
论述了P波偏振层析成像方法。这是一个利用P波远震偏振资料去反演速度结构的方法,与走时层析成像相比,它有几个显著的优点:不受震源定位和发震时刻误差的影响;对深地幔速度结构不敏感而对接收器附近的速度结构和速度梯度最敏感,在这一意义上它与时反演是互补的。如果联合使用走时和偏振资料可以改善层析成像的结果。走时的变化对应于速度的变化,而偏振的变化则与速度梯度的变化相对应,因昆,要确定速度异常的边界,用偏振数  相似文献   

7.
用平面波延拓方程进行地震数据的叠前速度反演   总被引:1,自引:1,他引:1  
本文讨论地震勘探数据的叠前速度反演方法及其在海洋地震勘探数据上的反演试验.反演主要的计算步骤是:1.采用Fourier-Hankel变换把球面波分解为平面谐波;2.用平面谐波的延拓方程将上行波与下行波同时向下延拓,并计算每一层底部的反射系数和下一层的波阻抗;3.用最小二乘法从波阻抗中确定该层的声波速度.重复第2步与第3步,直到某一预定深度时结束.通过反演试验,对地震振幅比例的改变,子波变形,以及第1层速度和密度的误差对反演方法的稳定性及其精度的影响进行了分析.还通过实际海洋地震勘探数据的反演试验,对这一方法在地震勘探中的应用前景作了论述.  相似文献   

8.
优化15点频率-空间域有限差分正演模拟   总被引:4,自引:4,他引:0       下载免费PDF全文
频率域正演是频率域波形反演的基础,有效快速的正演差分格式可以保证反演结果的精度和效率.本文以用较小的系数矩阵带宽来高效地压制频域正演频散为目标,综合利用加权平均算子、平均加速度项和优化系数三种方法,提出了优化15点差分格式;并且采用压缩存储方式来存放大型系数矩阵,极大地缩小了内存使用量;进而结合最佳匹配层(PML)边界条件,明显地压制了边界反射;最后,通过与前人方法的对比验证,证实了本方法可以在不明显增加计算量的情况下,较好地压制频散.  相似文献   

9.
In reflection surveys and velocity analysis, calculations of interval velocities and layer-thicknesses of a multilayered horizontal structure are often based on Dix's equation which requires the travel times at zero offsets and a prior estimate of the root mean squared velocities.In this paper a method is presented which requires only the reflection travel-time data. A set of equations are derived which relate the interval velocity and thickness of a layer to the reflection travel time from the top and the bottom of that layer, the offset distances and the ray parameter. It is shown that the difference of the offset distances and the difference of the picked travel times of any reflected rays with the same value of ray parameter from the top and the bottom of a horizontal layer can be used to calculate the interval velocity and thickness of that layer.  相似文献   

10.
The main problem in seismic prospecting is to infer from the observed reflection response the distribution of density and seismic velocity with depth. This process is generally called the inversion of the reflection data. For plane waves propagating through plane parallel stratification, it can be shown that at any depth the ratio between the amplitude of the transmitted and reflected wave satisfies the Riccati equation. Based on this equation we have formulated an iterative inversion method, which is found to be suitable for numerical computations. We have applied this method on synthetic reflection data, and found that it provides a very fast and accurate inversion.  相似文献   

11.
An iterative inversion method which also takes into account wave energy absorption is described. This method allows estimates of the acoustic impedance in sedimentary layers with nearly plane and parallel stratification. A set of reflection data has been inverted and an impedance model was obtained which correlates well with the essential features of the borehole velocity log.  相似文献   

12.
Field static corrections in general need be applied to all onshore seismic reflection data to eliminate the disturbing effects a weathering layer or near-surface low velocity zone has on the continuity of deep seismic reflections. The traveltimes of waves refracted at the bottom of the low velocity zone (or intermediate refracting interfaces) can often be observed as first breaks on shot records and used to develop a laterally inhomogeneous velocity model for this layer, from which the field static corrections can then be obtained. A simple method is described for computing accurate field statics from first breaks. It is based on a linearization principal for traveltimes and leads to the algorithms that are widely and successfully applied within the framework of seismic tomography. We refine an initial model for the low velocity layer (estimated by a standard traveltime inversion technique) by minimizing the errors between the observed first arrivals on field records and those computed by ray theory through an initial model of the low velocity layer. Thus, one can include more lateral velocity variations within the low velocity layers, which are important to obtain good field static corrections. Traditional first break traveltime inversion methods cannot, in general, provide such refined velocity values. The technique is successfully applied to seismic data from the Amazon Basin. It is based on a simple model for the low velocity layer that consists of an undulating earth surface and one planar horizontal refractor overlain by a laterally changing velocity field.  相似文献   

13.
The travel time inversion of wide-angle seismic data is a technique commonly used in the deep seismic sounding. We propose an application of this technique to a smaller scale of a sedimentary layer, where the characteristics of seismic observations changes significantly. Field observations confirmed by synthetic analysis recognize the dominant amplitudes of wide-angle post-critical reflections. A case study is presented in this paper, of a joint interpretation of conventional reflection seismic with reflection imaging, combined with the wide-angle travel time inversion of additional full-spread observations. A joint interpretation results in a precise recognition of the seismic velocity distribution, that is further used for the seismic depth conversion with the uncertainty analysis of the depth of the reflecting horizons. Despite the salt layer in the studied structure this method is able to precisely recognize the seismic velocities of the sub-salt structures.  相似文献   

14.
如何正确地消除复杂地表对地震波场的影响,提高地下构造成像的质量一直是中国西部复杂地区地震勘探中存在的难题.本文在三维复杂表层速度模型层析反演\[1\]的基础上,研究了关于复杂地表的静校正问题,提出用三维波动方程在炮集上对地震波场进行正、反向延拓,消除复杂地表对波场的影响,实现三维复杂表层模型校正.理论和实际应用证明,该方法已超越常规静校正的含义,属时变校正方法.用本方法处理复杂地表问题,不但能消除表层对不同深度反射波产生的不同时差影响,提高叠加剖面质量,而且能使校正后的地震波场保持波动特征不发生畸变,可为建立正确的深层速度模型和波动方程叠前深度偏移奠定良好的基础.  相似文献   

15.
Impedance is a physical parameter that plays an important role in seismic data processing and interpretation. A relative impedance perturbation (the ratio of the impedance perturbation and the impedance for the background models) imaging method in depth domain based on the reflection wave equation is proposed. Under the small perturbation assumption, primary wave and high-frequency approximation condition, a linear propagation equation of the primary reflection waves based on the relative impedance perturbation was first derived. On this basis, we further derived the imaging formula of the relative impedance perturbation using a linear inversion theory. Then, the source–receiver bidirectional illumination compensation was used to improve the image quality of the subsurface structures. The image result obtained by this method can be used to estimate the relative impedance perturbation. In the angle domain, the extracted near-angle-domain image gather with amplitude compensation can estimate the relative impedance perturbation, and the far-angle image gather provides the estimation of the relative velocity perturbation (the ratio of the velocity perturbation and the background velocity). Finally, several numerical tests demonstrate the effectiveness of the method.  相似文献   

16.
Full waveform inversion for reflection events is limited by its linearised update requirements given by a process equivalent to migration. Unless the background velocity model is reasonably accurate, the resulting gradient can have an inaccurate update direction leading the inversion to converge what we refer to as local minima of the objective function. In our approach, we consider mild lateral variation in the model and, thus, use a gradient given by the oriented time‐domain imaging method. Specifically, we apply the oriented time‐domain imaging on the data residual to obtain the geometrical features of the velocity perturbation. After updating the model in the time domain, we convert the perturbation from the time domain to depth using the average velocity. Considering density is constant, we can expand the conventional 1D impedance inversion method to two‐dimensional or three‐dimensional velocity inversion within the process of full waveform inversion. This method is not only capable of inverting for velocity, but it is also capable of retrieving anisotropic parameters relying on linearised representations of the reflection response. To eliminate the crosstalk artifacts between different parameters, we utilise what we consider being an optimal parametrisation for this step. To do so, we extend the prestack time‐domain migration image in incident angle dimension to incorporate angular dependence needed by the multiparameter inversion. For simple models, this approach provides an efficient and stable way to do full waveform inversion or modified seismic inversion and makes the anisotropic inversion more practicable. The proposed method still needs kinematically accurate initial models since it only recovers the high‐wavenumber part as conventional full waveform inversion method does. Results on synthetic data of isotropic and anisotropic cases illustrate the benefits and limitations of this method.  相似文献   

17.
高斯波包反射走时速度反演方法   总被引:1,自引:1,他引:0       下载免费PDF全文
李辉  殷俊锋  王华忠 《地球物理学报》2017,60(10):3916-3933
扰动高斯波包理论指出,在Gabor域描述模型的扰动成分,且入射波场为短时宽带信号时,扰动波场可在时间域通过高斯波包算子描述.在此基础上通过拟合反射波的走时,提出一种速度反演方法.反射波走时残差利用地震道局部波形的互相关函数表示,以走时残差的二范数作为目标函数,优化目标函数实现对速度场的反演.基于一阶Born近似,利用扰动高斯波包理论推导出目标函数对速度场的梯度是本文理论部分的核心内容.梯度包括两部分:正传的背景波场与反传的扰动高斯波包之间的互相关,反传的背景波场和正传的扰动高斯波包之间的互相关.梯度表达式中背景波场和扰动波场均利用高斯波包算子模拟.计算梯度的具体算法中,如何模拟扰动波场,以及如何计算反射波的走时残差是两个要点,文中对此做了详细的讨论.数值实验进一步阐述了反演的实现策略,实验结果表明高斯波包反射走时速度反演方法和实现策略有效可行,并得到了理想的反演结果.  相似文献   

18.
Pressure drops associated with reservoir production generate excess stress and strain that cause travel‐time shifts of reflected waves. Here, we invert time shifts of P‐, S‐, and PS‐waves measured between baseline and monitor surveys for pressure reduction and reservoir length. The inversion results can be used to estimate compaction‐induced stress and strain changes around the reservoir. We implement a hybrid inversion algorithm that incorporates elements of gradient, global/genetic, and nearest neighbour methods and permits exploration of the parameter space while simultaneously following local misfit gradients. Our synthetic examples indicate that optimal estimates of reservoir pressure from P‐wave data can be obtained using the reflections from the reservoir top. For S‐waves, time shifts from the top of the reservoir can be accurately inverted for pressure if the noise level is low. However, if noise contamination is significant, it is preferable to use S‐wave data (or combined shifts of all three modes) from reflectors beneath the reservoir. Joint wave type inversions demonstrate improvements over any single pure mode. Reservoir length can be estimated using the time shifts of any mode from the reservoir top or deeper reflectors. We also evaluate the differences between the actual strain field and those corresponding to the best‐case inversion results obtained using P‐ and S‐wave data. Another series of tests addresses the inversion of the time shifts for the pressure drops in two‐compartment reservoirs, as well as for the associated strain field. Numerical testing shows that a potentially serious source of error in the inversion is a distortion in the strain‐sensitivity coefficients, which govern the magnitude of stiffness changes. This feasibility study suggests which wave types and reflector locations may provide the most accurate estimates of reservoir parameters from compaction‐induced time shifts.  相似文献   

19.
In this paper,the dispersion curves of the Rayleigh wave and Love wave were extracted from the seismic noise records of 25 broadband stations of the Fujian Seismic Network, and inverted for the lithosphere velocity structure. Furthermore,the velocity model was verified by the seismic explosion observations. Our results indicate that the resolution of the lithosphere velocity structure obtained by this method is good in the shallow part,but in the deep part,inversion accuracy for the wave velocity structure is low,which is caused mainly by the small inter-station distance chosen in the paper. Thus the wave dispersion curves have high accuracy in the short-period part,but the warp of the wave dispersion curve in long-period part is large. Considering the results from both the noise inversion and the traditional inversion,we finally present a new velocity model,and the theoretical travel time calculated with the new model matches the explosion travel time very well.  相似文献   

20.
从波动方程出发,推导出平面波场传播基本公式,阐述了利用地表观测波场反演地球内部波速结构的理论关系.观测波场可通过-p 变换分解为地表平面波场,其最大振幅的轨迹能稳定地反映出地球内部波速随深度变化的趋势,这一特征可用来对反演解空间进行约束.波场延拓技术可以充分地利用观测波场中包含的丰富信息,在迭代反演中不仅能简单快速地得到反演解,而且所得解具有良好的稳定性,较少受主观因素影响,这是一种很好的反演技术.对波场延拓进行了理论分析与数值模拟,采用了同态反褶积等改善资料信噪比的措施,使解的分辨能力得到了提高.文中对南海北部一个声纳折射剖面进行了分析和计算.结果表明:该区1.4km 深处,存在一个从1.76km/s 到2.21km/s 的速度间断面.间断面上下两层的速度梯度分别为0.54kms-1/km,0.63kms-1/km.最后,从构造演化的角度对浅海构造特征进行了探讨.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号