首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
以汶川地震为研究背景,针对震后典型钢筋混凝土框架结构进行地震易损性研究。基于Cornell理论框架结合汶川地质资料,拟合出考虑场地特点的地震危险性模型,同时定义损伤水平状态及限值指标,以概率解析易损性研究方法为基础,运用考虑地震动参数的解析易损性评估方法绘制汶川地区钢筋混凝土框架建筑的地震易损性曲线。研究结果表明:考虑地震动参数的概率解析易损性研究方法是一种有效的地震易损性评估方法;以PGA作为地震强度输入指标的结构反应,随自振周期的增大体系最大响应的相关性降低,结构各个损伤状态的失效概率均随之增大。  相似文献   

2.
地震破坏状态概率分析是抗震结构最优设防水平决策与全寿命优化设计的关键问题之一,作者们曾根据"三水准"设防原则和地震烈度的危险性分析结果提出了二种实用分析方法.本文建立了结构破坏状态概率分析的地震易损性理论基础,提出了极限状态地震易损性和破坏状态地震易损性的概念.从地震易损性理论的角度,对二种地震破坏状态概率简化分析方法进行了深入分析,指出第1种方法是一种考虑结构宏观抗震能力不确定性的半理论半经验易损性分析方法,而第2种方法则是一种不考虑结构宏观抗震能力不确定性的简化易损性分析方法,根据地震破坏状态概率的计算结果对二种方法进行了对比分析,并提出了相关的建议.  相似文献   

3.
在易损性分析中,存在对结构阈值的不确定性研究较少,对阈值的选择通常为规范中的数值,得到的破坏概率仅为固定数值等问题,文中同时考虑结构响应和阈值不确定性,建立一种基于概率-非概率混合模型的结构地震易损性分析方法。基于Opensees建立桥梁有限元模型,选择最大支座纵向位移、最大桥墩柱弯曲延性作为衡量结构性能的工程需求参数,并被视为符合二元对数正态分布的概率随机变量;以混凝土应变作为反映结构极限状态的指标,利用增量动力分析法,获得工程需求参数阈值的样本数据,利用灰度理论得到阈值的取值区间,并将阈值视为非概率凸集变量;建立基于概率-非概率混合模型的二维性能极限状态方程,利用混合模型的可靠性分析法求解破坏概率,建立易损性曲线。为对比计算结果,将阈值分别拟定为服从对数正态分布的随机变量和固定数值,并通过蒙特卡洛法求解破坏概率,研究表明:通过概率-非概率混合模型可有效得到破坏概率的区间估计,从而弥补了传统研究中只能得到固定数值破坏概率的问题;不考虑阈值的随机性会对分析结果产生较大影响。  相似文献   

4.
基于时变地震损伤模型提出酸性大气环境作用下多龄期钢框架结构概率地震易损性分析的方法及步骤;考虑服役龄期对钢框架结构抗震性能的影响,分别建立时变概率地震需求模型、时变概率抗震能力模型及时变易损性模型;在概率地震需求分析及概率抗震能力分析的基础上,得到多龄期(20年、30年、40年、50年)钢框架结构的易损性模型及易损性曲线。  相似文献   

5.
基于均匀设计法,考虑围岩和衬砌的不确定性,提出了一种高效计算山岭隧道地震易损性的模型。基于该模型,得到了计算岩石山岭隧道结构的易损性计算曲线。根据计算结果得出:(1)均匀设计法能够考虑多种不确定性并为计算生成好的样本参数;(2)根据计算所得的地震结构易损性曲线与经验易损性曲线相对比,得出所提出的计算模型有较好的适用性。当交通隧道穿越地震带时,所提出的地震易损性曲线分析可为隧道线路规划以及设计参考。  相似文献   

6.
以汶川地区典型钢筋混凝土简支梁桥为背景,在充分考虑模型参数不确定性的基础上建立一系列桥梁有限元模型样本。采用汶川地震实测地震动,对建立的有限元模型进行非线性动力时程分析,并记录每组分析中桥梁构件的地震峰值响应。采用主成分分析方法对桥梁构件的地震需求参数进行降维处理,计算桥梁结构综合地震需求响应。通过回归分析建立地震动强度与桥梁结构综合需求之间的概率性关系,并对不同地震动强度指标进行分析和比较。结果表明基于速度的地震动强度指标具有较好的有效性、适用性和完备性,可以进一步用于地震易损性分析和地震风险评估。  相似文献   

7.
以某典型的12层钢筋混凝土框架结构作为研究对象,研究基于非线性动力时程分析和地震动参数的RC框架结构易损性分析方法。首先采用静力pushover分析判定结构薄弱层,并确定结构性能(capacity)参数;然后应用非线性动力时程分析估计结构地震反应,研究以峰值加速度和基本周期加速度反应谱作为地震动参数结构反应的不确定性,并进一步分析结构地震需求(demand)参数与地震动参数的关系;在此基础上,分别建立该结构基于峰值加速度和加速度反应谱的易损性曲线,通过考虑场地条件对地震动特性的影响,研究场地条件对结构易损性的影响,结果表明不同场地条件下的结构易损性曲线有一定差异。应用本文方法,根据新一代地震区划图或地震安全性评价确定的地震动参数,可以直接估计结构在未来地震中出现不同破坏的概率,这在结构的抗震性能评估和地震损失预测中有一定意义。  相似文献   

8.
针对液化场地多跨简支桩基桥梁体系,考虑地震随机性的不确定性和认知的不确定性,结合地震危险性曲线自身的不确定性,推导性态指标危险性曲线的解析表达式.利用地震动强度指标PGV/PGA,输入不同幅值的地震动,进行液化场地多跨桩基桥梁体系地震反应有限元分析.基于有限元数值分析结果,选取地震过程中关键位置位移和弯矩的最大值作为性...  相似文献   

9.
为研究高层RC框架结构罕遇地震下的易损性,设计了一个7度区典型11层RC框架结构。采用IDA方法进行时程分析,以地震动峰值地面加速度和结构第一自振周期对应的谱加速度为地震动强度指标,最大层间位移角为结构损伤指标,分别得到了单一地震动强度和双地震动强度参数下的IDA曲线和失效概率,绘制了双地震动强度参数下易损性曲面,并对单一地震动强度和双地震动强度参数下的易损性分析结果进行了对比。结果表明:罕遇地震下,采用双地震动强度参数结构失效概率明显低于采用单一地震动强度参数结构失效概率;对高层RC框架结构,采用双地震动强度参数进行易损性分析反映的地震动信息更全面;采用双地震动强度参数得到的结构失效概率公式更能真实量化不同强度地震作用下结构的失效概率。  相似文献   

10.
主要讨论了地震潜在风险的计算方法.根据水平向地震加速度超越概率曲线,通过曲线拟合得到曲线的表达形式,从而获得地震加速度的概率密度函数;通过建筑结构的以易损性指数表达的易损性矩阵及多个城市的数据处理,得到建筑结构破坏程度即易损性指数的概率密度函数;最后通过上述的地震危险性分析和建筑结构的易损性分析就可以评估地震潜在风险.  相似文献   

11.
The influence of vertical ground motions on the seismic response of highway bridges is not very well understood. Recent studies suggest that vertical ground motions can substantially increase force and moment demands on bridge columns and girders and cannot be overlooked in seismic design of bridge structures. For an evaluation of vertical ground motion effects on the response of single‐bent two‐span highway bridges, a systematic study combining the critical engineering demand parameters (EDPs) and ground motion intensity measures (IMs) is required. Results of a parametric study examining a range of highway bridge configurations subjected to selected sets of horizontal and vertical ground motions are used to determine the structural parameters that are significantly amplified by the vertical excitations. The amplification in these parameters is modeled using simple equations that are functions of horizontal and vertical spectral accelerations at the corresponding horizontal and vertical fundamental periods of the bridge. This paper describes the derivation of seismic demand models developed for typical highway overcrossings by incorporating critical EDPs and combined effects of horizontal and vertical ground motion IMs depending on the type of the parameter and the period of the structure. These models may be used individually as risk‐based design tools to determine the probability of exceeding the critical levels of EDP for pre‐determined levels of ground shaking or may be included explicitly in probabilistic seismic risk assessments. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
This study develops a framework to evaluate ground motion selection and modification (GMSM) procedures. The context is probabilistic seismic demand analysis, where response history analyses of a given structure, using ground motions determined by a GMSM procedure, are performed in order to estimate the seismic demand hazard curve (SDHC) for the structure at a given site. Currently, a GMSM procedure is evaluated in this context by comparing several resulting estimates of the SDHC, each derived from a different definition of the conditioning intensity measure (IM). Using a simple case study, we demonstrate that conclusions from such an approach are not always definitive; therefore, an alternative approach is desirable. In the alternative proposed herein, all estimates of the SDHC from GMSM procedures are compared against a benchmark SDHC, under a common set of ground motion information. This benchmark SDHC is determined by incorporating a prediction model for the seismic demand into the probabilistic seismic hazard analysis calculations. To develop an understanding of why one GMSM procedure may provide more accurate estimates of the SDHC than another procedure, we identify the role of ‘IM sufficiency’ in the relationship between (i) bias in the SDHC estimate and (ii) ‘hazard consistency’ of the corresponding ground motions obtained from a GMSM procedure. Finally, we provide examples of how misleading conclusions may potentially be obtained from erroneous implementations of the proposed framework. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
This paper characterizes the ability of natural ground motions to induce rocking demands on rigid structures. In particular, focusing on rocking blocks of different size and slenderness subjected to a large number of historic earthquake records, the study unveils the predominant importance of the strong‐motion duration to rocking amplification (ie, peak rocking response without overturning). It proposes original dimensionless intensity measures (IMs), which capture the total duration (or total impulse accordingly) of the time intervals during which the ground motion is capable of triggering rocking motion. The results show that the proposed duration‐based IMs outperform all other examined (intensity, frequency, duration, and/or energy‐based) scalar IMs in terms of both “efficiency” and “sufficiency.” Further, the pertinent probabilistic seismic demand models offer a prediction of the peak rocking demand, which is adequately “universal” and of satisfactory accuracy. Lastly, the analysis shows that an IM that “efficiently” captures rocking amplification is not necessarily an “efficient” IM for predicting rocking overturning, which is dominated by the velocity characteristics (eg, peak velocity) of the ground motion.  相似文献   

14.
This paper presents a proposed method of aftershock probabilistic seismic hazard analysis (APSHA) similar to conventional ‘mainshock’ PSHA in that it estimates the likelihoods of ground motion intensity (in terms of peak ground accelerations, spectral accelerations or other ground motion intensity measures) due to aftershocks following a mainshock occurrence. This proposed methodology differs from the conventional mainshock PSHA in that mainshock occurrence rates remain constant for a conventional (homogeneous Poisson) earthquake occurrence model, whereas aftershock occurrence rates decrease with increased elapsed time from the initial occurrence of the mainshock. In addition, the aftershock ground motion hazard at a site depends on the magnitude and location of the causative mainshock, and the location of aftershocks is limited to an aftershock zone, which is also dependent on the location and magnitude of the initial mainshock. APSHA is useful for post‐earthquake safety evaluation where there is a need to quantify the rates of occurrence of ground motions caused by aftershocks following the initial rupture. This knowledge will permit, for example, more informed decisions to be made for building tagging and entry of damaged buildings for rescue, repair or normal occupancy. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
This study presents a novel approach for evaluating ground motion selection and modification (GMSM) procedures in the context of probabilistic seismic demand analysis. In essence, synthetic ground motions are employed to derive the benchmark seismic demand hazard curve (SDHC), for any structure and response quantity of interest, and to establish the causal relationship between a GMSM procedure and the bias in its resulting estimate of the SDHC. An example is presented to illustrate how GMSM procedures may be evaluated using synthetic motions. To demonstrate the robustness of the proposed approach, two significantly different stochastic models for simulating ground motions are considered. By quantifying the bias in any estimate of the SDHC, the proposed approach enables the analyst to rank GMSM procedures in their ability to accurately estimate the SDHC, examine the sufficiency of intensity measures employed in ground motion selection, and assess the significance of the conditioning intensity measure in probabilistic seismic demand analysis. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
Earthquake‐induced pounding of adjacent structures can cause severe structural damage, and advanced probabilistic approaches are needed to obtain a reliable estimate of the risk of impact. This study aims to develop an efficient and accurate probabilistic seismic demand model (PSDM) for pounding risk assessment between adjacent buildings, which is suitable for use within modern performance‐based engineering frameworks. In developing a PSDM, different choices can be made regarding the intensity measures (IMs) to be used, the record selection, the analysis technique applied for estimating the system response at increasing IM levels, and the model to be employed for describing the response statistics given the IM. In the present paper, some of these choices are analyzed and evaluated first by performing an extensive parametric study for the adjacent buildings modeled as linear single‐degree‐of‐freedom systems, and successively by considering more complex nonlinear multi‐degree‐of‐freedom building models. An efficient and accurate PSDM is defined using advanced intensity measures and a bilinear regression model for the response samples obtained by cloud analysis. The results of the study demonstrate that the proposed PSDM allows accurate estimates of the risk of pounding to be obtained while limiting the number of simulations required. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
The objective of this paper is to present ground-motion prediction equations for ductility demand and inelastic spectral displacement of constant-strength perfectly elasto-plastic single-degree-of-freedom (SDOF) oscillators. Empirical equations have been developed to compute the ductility demand as a function of two earthquake parameters; moment magnitude, and source-to-site distance; one site parameter, the ground type; and three oscillator parameters, an undamped natural period, critical damping ratio, and the mass-normalized yield strength. In addition, a comparative study of the proposed model with selected previous studies and recommendations of Eurocode 8 is presented. Proposed equations can easily be incorporated in existing probabilistic seismic hazard analysis (PSHA) software packages with the introduction of an additional parameter. This leads to hazard curves for inelastic spectral displacement, which can provide better estimates of target displacement for nonlinear static procedures and an efficient intensity measure for probabilistic seismic demand analysis (PSDA). Proposed equations will be useful in performance evaluation of existing structures.  相似文献   

18.
在基于性能的地震工程学(PBEE)中,建立概率地震需求模型(PSDM)时需要对桥梁结构的工程需求参数(EDP)进行概率估计。其中,强地面运动参数(IM)的选择对EDP的概率估计影响很大,因此需要正确选择IM。分别采用目前最广泛使用的结构第一模态周期弹性谱加速度(5%阻尼比)Sa(T1,5%)和峰值地面加速度PGA作为IM,选择实际地震波并进行合理的调值,对一座钢筋混凝土桥墩进行IDA分析,其计算结果表明:对于不同性质EDP的概率估计值,以PGA作为IM计算所得的结果明显偏于非保守,且离散度一般也更大。说明可以针对不同性质的EDP,根据地面运动强度的大小,选择不同的IM,通过合理的调值对EDP进行概率估计,可以更加精确、高效地建立PSDM。  相似文献   

19.
A fundamental issue in the framework of seismic probabilistic risk analysis is the choice of ground motion intensity measures (IMs). Based on the floor response spectrum method, the present contribution focuses on the ability of IMs to predict non‐structural components (NSCs) horizontal acceleration demand. A large panel of IMs is examined and a new IM, namely equipment relative average spectral acceleration (E‐ASAR), is proposed for the purpose of NSCs acceleration demand prediction. The IMs efficiency and sufficiency comparisons are based on (i) the use of a large dataset of recorded earthquake ground motions; (ii) numerical analyses performed on three‐dimensional numerical models, representing actual structural wall and frame buildings; and (iii) systematic statistical analysis of the results. From the comparative study, the herein introduced E‐ASAR shows high efficiency with respect to the estimation of maximum floor response spectra ordinates. Such efficiency is particularly remarkable in the case of structural wall buildings. Besides, the sufficiency and the simple formulation allowing the use of existing ground motion prediction models make the E‐ASAR a promising IMs for seismic probabilistic risk assessment. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
This paper summarizes results of a comprehensive analytical study aimed at evaluating the amplitude and heightwise distribution of residual drift demands in multi‐storey moment‐resisting frames after earthquake excitation. For that purpose, a family of 12 one‐bay two‐dimensional generic frame models was subjected to an ensemble of 40 ground motions scaled to different intensities. In this investigation, an inelastic ground motion intensity measure was employed to scale each record, which allowed reducing the record‐to‐record variability in the estimation of residual drift demands. The results were statistically processed in order to evaluate the influence of ground motion intensity, number of stories, period of vibration, frame mechanism, system overstrength, and hysteretic behaviour on central tendency of residual drift demands. In addition, a special emphasis was given to evaluate the uncertainty in the estimation of residual drift demands. Results of incremental dynamic analyses indicate that the amplitude and heightwise distribution of residual drift demands strongly depends on the frame mechanism, the heightwise system structural overstrength and the component hysteretic behaviour. An important conclusion for performance‐based assessment is that the evaluation of residual drift demands involves significantly larger levels of uncertainty (i.e. record‐to‐record variability) than that of maximum drift demands, which suggests that this variability and corresponding uncertainty should be explicitly taken into account when estimating residual drift demands during performance‐based seismic assessment of frame buildings. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号