首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several authors have suggested that a link exists between the flux of galactic cosmic rays (GCR) and cloudiness. Here we review the evidence for such a connection from studies of cloud factors using both satellite and ground-based data. In particular, we search for evidence for the low cloud decrease predicted by the rising levels of solar activity and the low cloud-cosmic ray flux correlation indicated by satellite data. Sunshine and synoptic cloud records both indicate that the global total cloud cover has increased during the past century. This increase in total cloud cover argues against a dominating role by solar activity (via GCR) over cloud formation on centennial time scales. Either the predicted low cloud decrease has not occurred or the medium-high level cloud has increased to a greater extent than low cloud has decreased.As there is no accurate long term data available on low cloud behaviour during the last century, we are not able to totally dismiss the link between GCR and cloudiness, but we list a number of arguments for and against the proposed cosmic ray-cloud connection.  相似文献   

2.
Cosmic ray vertical cutoff rigidities at sea level have been calculated, using the trajectory-tracing method, for a number of different epochs. These calculations have been carried out for a world-wide grid of locations, and, in an effort to locate the cosmic ray equator, for a fine grid in the equatorial region. Comparison of the vertical cutoff rigidity values obtained using the International Geomagnetic Reference Field model for 1980.0 with those obtained from previous models shows systematic significant changes in the Atlantic Ocean region and over South America. The differences are greater than those predicted utilizing the older field models with their predicted secular change. The cutoff rigidity values calculated using the new IGRF 1980.0 field model appear to be in better agreement with data from cosmic ray latitude surveys in the Atlantic Ocean region. The changes in the cosmic ray equator are asymmetrical with essentially no changes in the equator position in the Asian and Pacific region, but with significant changes in the South American, Atlantic Ocean and West African regions. Calculations have also been undertaken for different directions of arrival for a satellite orbiting at 400 km altitude using the predicted 1980 field model and the interim 1980 field model adopted in 1981. Some differences have been found.  相似文献   

3.
4.
Galactic cosmic rays (GCR) have been suggested as a possible contributory mechanism to cloud formation. If these are significant then, in addition to the similarity between long-term (years) changes in GCR and cloud cover, there should also be a similarity over shorter (days) time scales. This paper reports an analysis of changes in global cloud cover and GCR recorded at 3 hourly intervals over 22 years. There is a significant correlation between short-term changes in low cloud cover over northern and southern hemispheres, consistent with about 3% of the variation arising from common factors. However, GCR is not a major factor responsible for cloud cover changes. There is an association between short-term changes in low cloud cover and galactic cosmic radiation over a period of several days. This could arise if approximately 3% of the variations in cloud cover resulted from GCR.  相似文献   

5.
The cause of the correlation of low cloud cover with the sunspot cycle, and the associated cosmic ray intensity, is still the subject of controversy. Insofar as ‘clouds’ come in different types with, doubtless, different sensitivities to the cloud condensation nuclei (charged or otherwise) it is useful to search for differences in the correlation between cloud types. Here, we examine the major cloud components: stratiform and cumuliform, the latter with its much higher upthrust velocities being expected to be less efficient as cosmic ray induced cloud generation. No difference is found between the two types of cloud, in the sense that there is no dependence on the fraction of cloud of stratiform type for the various parameters studied. This result is true over the Globe as a whole and as a function of cosmic ray cutoff rigidity. Once more there is no support for the cosmic ray hypothesis for cloud modulation. There is no obvious implication for the alternative hypotheses of solar irradiance modulation, but this is probably still the more likely.  相似文献   

6.
The relationships between the solar radiation input to the lower atmosphere at higher and middle latitudes and different phenomena related to solar activity have been studied at the network of actinometric stations of Russia. It was shown that the effects of galactic cosmic ray variations and solar flares on the half-yearly sums of global radiation strongly depend on latitude, with a negative correlation being observed in the high-latitudinal belt and a positive one at lower latitudes. The change of the correlation sign was found to take place at the latitude ∼57°. Auroral phenomena are likely to affect the radiation fluxes only in the high-latitude (auroral) region. The effects observed seem to be due to the latitudinal dependence of cloud cover variations associated with the helio/geophysical phenomena under study.  相似文献   

7.
We present results obtained at El Leoncito (CASLEO, San Juan, Argentina) with the CARPET charged particles detector installed in April 2006. The observed modulation of the cosmic ray flux is discussed as a function of its time variability and it is related to longer solar activity variations and to shorter variations during solar and geomagnetic transient activity. Short period (few minutes, few hours) cosmic ray modulation events are observed during rain time (precipitation) and significant variations of the atmospheric electric field. Complementary observations of the atmospheric electric field indicate that its time variations play an important role in the detected cosmic ray event.  相似文献   

8.
利用Morlet小波变换方法对北京宇宙线台站的地面宇宙线强度在地磁暴前后的变化特征进行分析,得到:1)在平静期,北京宇宙线数据存在准24h周期性的特征,且通过分析周期为12h的Morlet小波"模",发现值稳定,且小于0.6;2)以90天为时间窗口,对2004年7月地磁暴前后的小波频谱变化进行详细分析,发现当发生大地磁暴时,宇宙线的静日准24h周期被打破,其他周期的波动开始增强.进一步研究发现,周期12h的波动在大地磁暴数小时到1天左右会出现显著增强,这一现象在2001、2002和2004年期间的大地磁暴前得到验证.3)Morlet小波"模"数据的急速增大是发生地磁暴的先兆特征,当小波模变化达到一定的阈值就可能发生大磁暴.本文分析了周期为12h时小波的模数据,对强地磁暴事件进行统计,选定阈值0.6,并通过2003年的6次大地磁暴进行预报验证,结果表明该方法不仅能够对大地磁暴事件进行预报,而且提前量满足预报需求,为基于宇宙线实测数据预报地磁暴方法提供了重要基础.  相似文献   

9.
We have used the thermodynamic model of the climate to estimate the effect of variations in the oceanic cloud cover on the surface temperature of the Earth in the North Hemisphere (NH) during the period 1984–1990. We assume that the variations in the cloud cover are proportional to the variation of the cosmic ray flux measured during the same period. The results indicate that the effect in the temperature is slightly noticeable when we consider the surface hemispheric temperature on July 1987, finding an average temperature anomaly between −0.06°C and −0.14°C, along a latitudinal band between 20° and 40°. The surface temperature averaged globally in the NH presents a decrease of 0.01°C in average, which is almost the same for continents and oceans. However, these values are not significant when compared to the overall variability of the time series with and without forcing.  相似文献   

10.
Variations in the cosmic ray intensity (specifically, Forbush effects) and in the geomagnetic cutoff rigidity planetary system during powerful geomagnetic disturbances in cycle 23 were studied based on worldwide station network data by the global spectrographic survey method. The cosmic ray variation spectra during these periods and the spectral indices of these variations when the spectrum was approximated by the power function of the particle rigidity varying from 10 to 50 GV during different Forbush effect development phases are presented. It was indicated that the spectral indices of cosmic ray variations during spectrum approximation by the power function of the particle rigidity are larger during the maximal modulation phase than during the cosmic ray intensity decline and recovery phases. The fact that the amplitude of the second harmonic of the cosmic ray pitch angle anisotropy did not increase on November 20, 2003, confirms that the Earth fell into a Sun-independent spheromark magnetic cloud. The increased amplitudes of the second harmonic of the cosmic ray pitch angle anisotropy during other Forbush effects in July 2000, March–April 2001, October 2003, and November 2004 indicate that the Earth was in the coronal mass ejection region, in which the interplanetary magnetic field structure was loop-like during these periods.  相似文献   

11.
It is becoming apparent that the correlation of clouds at different altitudes with cosmic rays and solar activity is a matter of complexity. Specifically, evidence has been presented favouring particular regions of the Earth having positive or negative correlations of cloud cover with respect to cosmic rays and to solar irradiation.In this work we examine the evidence critically from several standpoints and conclude that the evidence for a negative correlation of low and a positive correlation for middle cloud cover with solar irradiance (as measured by UV) over a significant fraction of the Earth (20–30%) is good. No other claimed correlations are supported.  相似文献   

12.
The distribution of the cosmic ray flux over the Earth is not uniform, but the result of complex phenomena within the Sun–Earth environment. A Forbush decrease (Fd) is a rapid decrease in the intensity of cosmic rays. A given Fd can appear in different forms at different locations of the Earth. An investigation of simultaneous observations of Fd events by a selection of cosmic ray stations remains a subject of interest among researchers and numerous methods of analysis can be found in literature. Although these studies have contributed significantly to our knowledge, the variability in the manifestations of Fds demonstrates that there are still open questions in this field. The present work suggests that multivariate analysis is a simple method that can be used to discriminate between globally simultaneous and non-simultaneous Fds.  相似文献   

13.
The solar wind modulates the flux of galactic cosmic rays impinging on Earth inversely with solar activity. Cosmic ray ionisation is the major source of air's electrical conductivity over the oceans and well above the continents. Differential solar modulation of the cosmic ray energy spectrum modifies the cosmic ray ionisation at different latitudes, varying the total atmospheric columnar conductance. This redistributes current flow in the global atmospheric electrical circuit, including the local vertical current density and the related surface potential gradient. Surface vertical current density and potential gradient measurements made independently at Lerwick Observatory, Shetland, from 1978 to 1985 are compared with modelled changes in cosmic ray ionisation arising from solar activity changes. Both the lower troposphere atmospheric electricity quantities are significantly increased at cosmic ray maximum (solar minimum), with a proportional change greater than that of the cosmic ray change.  相似文献   

14.
We demonstrate evidence that past composite based studies centred around the onset of Forbush decrease (FD) events may have improperly isolated the maximal galactic cosmic ray (GCR) decrease associated with the FD events. After an adjustment of the composite to account for such shortcomings we find indications of anomalous cloud cover decreases (of around 3%) located in the upper levels of the troposphere at high southern latitudes. These cloud changes are detectable after latitudinal averaging, suggesting the possibility of a second order relationship between the rate of GCR flux and cloud cover in this region. The maximal cloud change is observed in advance of the maximal GCR decrease; this implies that if the observed cloud changes bear a causal relationship to the rate of GCR flux, then cloud properties may be sensitive to changes in GCR conditions rather than the maximal deviations themselves.  相似文献   

15.
Among the most puzzling questions in climate change is that of solar-climate variability, which has attracted the attention of scientists for more than two centuries. Until recently, even the existence of solar-climate variability has been controversial—perhaps because the observations had largely involved correlations between climate and the sunspot cycle that had persisted for only a few decades. Over the last few years, however, diverse reconstructions of past climate change have revealed clear associations with cosmic ray variations recorded in cosmogenic isotope archives, providing persuasive evidence for solar or cosmic ray forcing of the climate. However, despite the increasing evidence of its importance, solar-climate variability is likely to remain controversial until a physical mechanism is established. Although this remains a mystery, observations suggest that cloud cover may be influenced by cosmic rays, which are modulated by the solar wind and, on longer time scales, by the geomagnetic field and by the galactic environment of Earth. Two different classes of microphysical mechanisms have been proposed to connect cosmic rays with clouds: firstly, an influence of cosmic rays on the production of cloud condensation nuclei and, secondly, an influence of cosmic rays on the global electrical circuit in the atmosphere and, in turn, on ice nucleation and other cloud microphysical processes. Considerable progress on understanding ion–aerosol–cloud processes has been made in recent years, and the results are suggestive of a physically-plausible link between cosmic rays, clouds and climate. However, a concerted effort is now required to carry out definitive laboratory measurements of the fundamental physical and chemical processes involved, and to evaluate their climatic significance with dedicated field observations and modelling studies.  相似文献   

16.
本文基于2002年至2010年的GRACE卫星的观测密度统计分析南北极点的热层大气密度的世界时(即磁地方时)变化.研究发现:在9—11月份地球处于行星际磁场为背向太阳的扇区内(背向扇区)时,南极点热层密度在约17∶00 UT(13∶30 MLT)达到最大值,比日平均值高约22%;而在6—8月份,当地球处于行星际磁场为面向太阳的扇区内(面向扇区)时,北极点热层密度在06∶00 UT(12∶30 MLT)达到最大值,比日平均值高约13%.南极点的磁纬是-74°,其在15∶30 UT处于磁地方时正午,恰与极尖区位置重合.北极点在5∶30 UT处于磁地方时正午,此时北极点与极尖区位置最靠近.因此,极点热层大气密度的磁地方时变化可能是其周期性靠近极尖区的结果.南北极点热层密度的磁地方时变化分别在背向和面向扇区内更明显,这可能与行星际磁场By分量对南北半球密度的不同影响有关.统计结果还表明,极点热层大气密度的磁地方时变化在冬季半球内不明显.这可能是由于在冬季半球,沉降于极尖区的粒子相比夏季半球少、沉降高度低,因而能量沉降所引起的热层上部的密度增强较小.  相似文献   

17.
Meteorological measurements from Lerwick Observatory, Shetland (60°09′N, 1°08′W), are compared with short-term changes in Climax neutron counter cosmic ray measurements. For transient neutron count reductions of 10–12%, broken cloud becomes at least 10% more frequent on the neutron minimum day, above expectations from sampling. This suggests a rapid timescale (~1 day) cloud response to cosmic ray changes. However, larger or smaller neutron count reductions do not coincide with cloud responses exceeding sampling effects. Larger events are too rare to provide a robust signal above the sampling noise. Smaller events are too weak to be observed above the natural variability.  相似文献   

18.
An analytical expression is derived for the cutoff rigidity of cosmic rays arriving at a point in an arbitrary direction, when the main geomagnetic field is approximated by that of an eccentric dipole. This expression is used to determine changes in geomagnetic cutoffs due to secular variation of the geomagnetic field since 1835. Effects of westward drift of the quadrupole field and decrease in the effective dipole moment are seen in the isorigidity contours. On account of the immense computer time required to determine the cutoff rigidities more accurately using the particle trajectory tracing technique, the present formulation may be useful in estimating the transmission factor of the geomagnetic field in cosmic ray studies, modulation of cosmogenic isotope production by geomagnetic secular variation, and the contribution of geomagnetic field variation to long term changes in climate through cosmic ray related modulation of the current flow in the global electric circuit.  相似文献   

19.
Recent studies have shown that, in addition to the role of solar variability, past climate changes may have been connected with variations in the Earth??s magnetic field elements at various timescales. An analysis of variations in geomagnetic field elements, such as field intensity, reversals, and excursions, allowed us to establish a link between climate changes at various timescales over the last millennia. Of particular interest are sharp changes in the geomagnetic field intensity and short reversals of the magnetic poles (excursions). The beginning and termination of the examined geomagnetic excursions can be attributed to periods of climate change. In this study, we analyzed the possible link between short-term geomagnetic variability (jerks) and climate change, as well as the accelerated drift of the north magnetic pole and surface temperature variations. The results do not rule out the possibility that geomagnetic field variations which modulate the cosmic ray flux could have played a major role in climate change in addition to previously induced by solar radiation.  相似文献   

20.
The cosmic ray geomagnetic cutoff rigidities are obtained by analytical calculations within an axisymmetric model of bounded magnetosphere, the magnetic field of which is created by the dipole field of the Earth and by two spheres located beyond the Earth with the currents that flow along the parallels and have a value proportional to the cosine of latitude. The inner sphere models the ring current flowing in the westerly direction; the outer sphere simulates the currents over the magnetopause, which flow in the easterly direction. The analytical results of calculations of variations in the geomagnetic cutoff rigidity for different levels of geomagnetic disturbances are given. The results are compared with the results of analytical calculations within the model of unbounded magnetosphere (when the outer sphere is absent).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号