首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 125 毫秒
1.
The belowground part of terrestrial ecosystem is a huge carbon pool. It is believed that of the total 2500Gt carbon stored in global terrestrial ecosystem, soil carbon storage within the 1 m surface layer ac- counts for 2000Gt, which is 4-fold of vegetation car- bon storage[1,2]. Compared with the carbon in the vegetation, carbon in the deep soil layers is much more stable, and it will stay in soil profile permanentlyunless geological vicissitude occurs. Essentially, forest restoration is the…  相似文献   

2.
Soil is a huge terrestrial carbon pool, which has higher carbon storage than the sum of atmospheric and terrestrial vegetation carbon. Small fluctuations in soil carbon pool can affect regional carbon flux and global climate change. As soil organic carbon plays key roles in soil carbon storage and sequestration, studying its composition, sources and stability mechanism is a key to deeply understand the functions of terrestrial ecosystem and how it will respond to climate changes. The recently-proposed concept of soil Microbial Carbon Pump(MCP) emphasizes the importance of soil microbial anabolism and its contributions to soil carbon formation and stabilization, which can be applied for elucidating the source, formation and sequestration of soil organic carbon. This article elaborates MCP-mediated soil carbon sequestration mechanism and its influencing factors, as well as representative scientific questions we may explore with the soil MCP conceptual framework.  相似文献   

3.
Land use and land cover in China have changed greatly during the past 300 a, indicated by the rapid abrupt decrease of forest land area and the rapid increase of cropland area, which can affect terrestrial carbon cycle greatly. The first-hand materials are used to analyze main characteristics for land use and land cover changes in China during the study period. The following conclusions can be drawn from this study. The cropland area in China kept increasing from 60.78×106 hm2 in 1661 to 96.09×106 hm2 in 1998. Correspondingly, the forest land area decreased from 248.13×106 hm2 in 1700 to 109.01×106 hm2 in 1949. Affected by such changes, the terrestrial ecosystem carbon storage decreased in the mean time. Car-bon lost from land use and land cover changes mainly consist of the loss from vegetation biomass and soil. In the past 300 a, about 3.70 PgC was lost from vegetation biomass, and emissions from soil ranged from 0.80 to 5.84 PgC. The moderate evaluation of soil losses was 2.48 PgC. The total loss from vegetation and soil was between 4.50 and 9.54 PgC. The moderate and optimum evaluation was 6.18 PgC. Such carbon losses distribution varied spatially from region to region. Carbon lost more significantly in Northeast China and Southwest China than in other regions, because losses of forest land in these two regions were far greater than in the other regions during the past 300 a. And losses of carbon in the other regions were also definite, such as Inner Mongolia, the western part of South China, the Xinjiang Uygur Autonomous Region, and the Qinghai-Tibet Plateau. But the carbon lost very little from the traditional agricultural regions in China, such as North China and East China. Studies on the relationship between land use and land cover change and carbon cycle in China show that the land use activities, especially those related to agriculture and forest management, began to affect terrestrial carbon storage positively in recent years.  相似文献   

4.
Vegetation and soil carbon storage in China   总被引:18,自引:2,他引:18  
This study estimated the current vegetation and soil carbon storage in China using a biogeochemical model driven with climate, soil and vegetation data at 0.5° latitude-longitude grid spatial resolution. The results indicate that the total carbon storage in China's vegetation and soils was 13.33 Gt C and 82.65 Gt C respectively, about 3% and 4% of the global total. The nationally mean vegetation and soil carbon densities were 1.47 kg C/m2 and 9.17 kg C/m2, respectively, differing greatly in various regions affected by climate, vegetation, and soil types. They were generally higher in the warm and wet Southeast China and Southwest China than in the arid Northwest China; whereas vegetation carbon density was the highest in the warm Southeast China and Southwest China, soil carbon density was the highest in the cold Northeast China and southeastern fringe of the Qinghai-Tibetan Plateau. These spatial patterns are clearly correlated with variations in the climate that regulates plant growth and soil organi  相似文献   

5.
Spatiotemporal dynamic simulation of grassland carbon storage in China   总被引:1,自引:0,他引:1  
Based on the Terrestrial Ecosystem Model(TEM 5.0), together with the data of climate(temperature, precipitation and solar radiation) and environment(grassland vegetation types, soil texture, altitude, longitude and latitude, and atmospheric CO2 concentration data), the spatiotemporal variations of carbon storage and density, and their controlling factors were discussed in this paper. The results indicated that:(1) the total carbon storage of China's grasslands with a total area of 394.93×104 km2 was 59.47 Pg C. Among them, there were 3.15 Pg C in vegetation and 56.32 Pg C in soil carbon. China's grasslands covering 7.0–11.3% of the total world's grassland area had 1.3–11.3% of the vegetation carbon and 9.7–22.5% of the soil carbon in the world grasslands. The total carbon storage increased from 59.13 to 60.16 Pg C during 1961–2013 with an increasing rate of 19.4 Tg C yr~(-1).(2) The grasslands in the Qinghai-Tibetan Plateau contributed most to the total carbon storage during 1961–2013, accounting for 63.2% of the total grassland carbon storage, followed by Xinjiang grasslands(15.8%) and Inner Mongolia grasslands(11.1%).(3) The vegetation carbon storage showed an increasing trend, with the average annual growth rate of 9.62 Tg C yr~(-1) during 1961–2013, and temperature was the main determinant factor, explaining approximately 85% of its variation. The vegetation carbon storage showed an increasing trend in most grassland regions, however, a decreasing trend in the central grassland in the southern China, the western and central parts of the Inner Mongolian grasslands as well as some parts on the Qinghai-Tibetan Plateau. The soil carbon storage showed a significantly increasing trend with a rate of 7.96 Tg C yr~(-1), which resulted from the interaction of more precipitation and low temperature in the 1980 s and 1990 s. Among them, precipitation was the main determinant factor of increasing soil carbon increases of China's grasslands.  相似文献   

6.
As the third largest country in the world, China has highly variable environmental condition and eco- logical pattern in both space and time. Quantification of the spatial-temporal pattern and dynamic of terrestrial ecosystem carbon cycle in China is of great significance to regional and global carbon budget. In this study, we used a high-resolution climate database and an improved ecosystem process-based model to quantify spatio-temporal pattern and dynamic of net ecosystem productivity (NEP) in China and its responses to climate change during 1981 to 2000. The results showed that NEP increased from north to south and from northeast to southwest. Positive NEP (carbon sinks) occurred in the west of Southwest China, southeastern Tibet, Sanjiang Plain, Da Hinggan Mountains and the mid-west of North China. Negative NEP (carbon sources) were mainly found in Central China, the south of Southwest China, the north of Xinjiang, west and north of Inner Mongolia, and parts of North China. From the 1980s to 1990s, the increasing trend of NEP occurred in the middle of Northeast China Plain and the Loess Plateau and decreasing trends mainly occurred in a greater part of Central China. In the study period, natural forests had minimal carbon uptake, while grassland and shrublands accounted for nearly three fourths of the total carbon terrestrial uptakes in China during 1981―2000.  相似文献   

7.
Scientific assessment of the accounting over carbon in the terrestrial ecosystem in the process land use/land cover changes caused by human activities will help reduce the uncertainty in estimating carbon emissions from the terrestrial ecosystem. This study employs a bookkeeping model to estimate the carbon emissions from farmland reclamation in China during the past 300 years based on the annual rate of land use changes(derived from historical natural vegetation, farmland data), preset carbon density and coefficients of disturbance curves. We find out that:(1) there was a net increase of 79.30×10~4km~2 in national farmland; about 65% of reclaimed farmland had been forest land and 26% of that had been grass land previously;(2) the total amount of carbon emissions from farmland expansion in China had been between 2.94 and 5.61 Pg with the median 3.78 Pg during the past 300 years; specifically, carbon emissions of vegetation were 1.58 Pg while those of soil ranged from 1.35 Pg to4.03 Pg with the median 2.20 Pg;(3) carbon emissions vary greatly across various ecosystems: the emissions were most from forest land, and then grass land and swamps, and the least from shrubs; deserts functioned more likely to be carbon stock in the process of land reclamation;(4) along the time line, carbon emissions had decreased first and then increased while the peak emissions occurred in the first half of 20 th century; and spatially, carbon emissions were most released in Northeast and Southwest China; Northwest China was of the minimum carbon emissions.  相似文献   

8.
Knowledge of seasonal variation of net ecosystem CO2 exchange (NEE) and its biotic and abiotic controllers will further our understanding of carbon cycling process, mechanism and large-scale modelling. Eddy covariance technique was used to measure NEE, biotic and abiotic factors for nearly 3 years in the hinterland alpine steppe--Korbresia meadow grassland on the Tibetan Plateau, the present highest fluxnet station in the world. The main objectives are to investigate dynamics of NEE and its components and to determine the major controlling factors. Maximum carbon assimilation took place in August and maximum carbon loss occurred in November. In June, rainfall amount due to monsoon climate played a great role in grass greening and consequently influenced interannual variation of ecosystem carbon gain. From July through September, monthly NEE presented net carbon assimilation. In other months, ecosystem exhibited carbon loss. In growing season, daytime NEE was mainly controlled by photosynthetically active radiation (PAR). In addition, leaf area index (LAI) interacted with PAR and together modulated NEE rates. Ecosystem respiration was controlled mainly by soil temperature and simultaneously by soil moisture. Q10 was negatively correlated with soil temperature but positively correlated with soil moisture. Large daily range of air temperature is not necessary to enhance carbon gain. Standard respiration rate at referenced 10℃(R10) was positively correlated with soil moisture, soil temperature, LAI and aboveground biomass. Rainfall patterns in growing season markedly influenced soil moisture and therefore soil moisture controlled seasonal change of ecosystem respiration. Pulse rainfall in the beginning and at the end of growing season induced great ecosystem respiration and consequently a great amount of carbon was lost. Short growing season and relative low temperature restrained alpine grass vegetation development. The results suggested that LAI be usually in a low level and carbon uptake be relatively low. Rainfall patterns in the growing season and pulse rainfall in the beginning and at end of growing season control ecosystem respiration and consequently influence carbon balance of ecosystem.  相似文献   

9.
The future potential changes in precipitation and monsoon circulation in the summer in East Asia are projected using the latest generation of coupled climate models under Intergovernmental Panel on Climate Change (IPCC) Special Report on Emission Scenarios (SRES) A1B scenario (a medium emission scenario).The multi-model ensemble means show that during the period of 2010-2099,the summer precipitation in East Asia will increase and experience a prominent change around the 2040s,with a small increase (~1%) before the end of the 2040s and a large increase (~9%) afterward.This kind of two-stage evolution characteristic of precipitation change can be seen most clearly in North China,and then in South China and in the mid and lower Yangtze River Valley.In 2010-2099,the projected precipitation pattern will be dominated by a pattern of "wet East China" that explains 33.6% of EOF total variance.The corresponded time coefficient will markedly increase after the 2040s,indicating a great contribution from this mode to the enhanced precipitation across all East China.Other precipitation patterns that prevail in the current climate only contribute a small proportion to the total variance,with no prominent liner trend in the future.By the late 21st century,the monsoon circulation will be stronger in East Asia.At low level,this is due to the intensification of southwesterly airflow north of the anticyclone over the western Pacific and the SCS,and at high level,it is caused by the increased northeasterly airflow east of the anticyclone over South Asia.The enhanced monsoon circulation will also experience a two-stage evolution in 2010-2099,with a prominent increase (by ~0.6 m s-1) after the 2040s.The atmospheric water vapor content over East Asia will greatly increase (by ~9%) at the end of 21st century.The water vapor transported northward into East China will be intensified and display a prominent increase around the 2040s similar to other examined variables.These indicate that the enhanced precipitation over East Asia is caused by the increases in both monsoon circulation and water vapor,which is greatly different from South Asia.Both the dynamical and thermal dynamic variables will evolve consistently in response to the global warming in East Asia,i.e.,the intensified southwesterly monsoon airflow corresponding to the increased water vapor and southwesterly moisture transport.  相似文献   

10.
Using China's ground observations, e.g., forest inventory, grassland resource, agricultural statistics, climate, and satellite data, we estimate terrestrial vegetation carbon sinks for China's major biomes between 1981 and 2000. The main results are in the following: (1) Forest area and forest biomass car- bon (C) stock increased from 116.5×106 ha and 4.3 Pg C (1 Pg C = 1015 g C) in the early 1980s to 142.8×106 ha and 5.9 Pg C in the early 2000s, respectively. Forest biomass carbon density increased form 36.9 Mg C/ha (1 Mg C = 106 g C) to 41.0 Mg C/ha, with an annual carbon sequestration rate of 0.075 Pg C/a. Grassland, shrub, and crop biomass sequestrate carbon at annual rates of 0.007 Pg C/a, 0.014― 0.024 Pg C/a, and 0.0125―0.0143 Pg C/a, respectively. (2) The total terrestrial vegetation C sink in China is in a range of 0.096―0.106 Pg C/a between 1981 and 2000, accounting for 14.6%―16.1% of carbon dioxide (CO2) emitted by China's industry in the same period. In addition, soil carbon sink is estimated at 0.04―0.07 Pg C/a. Accordingly, carbon sequestration by China's terrestrial ecosystems (vegetation and soil) offsets 20.8%―26.8% of its industrial CO2 emission for the study period. (3) Considerable uncertainties exist in the present study, especially in the estimation of soil carbon sinks, and need further intensive investigation in the future.  相似文献   

11.
Terrestrial ecosystems are both a carbon source and sink, therefore play an important role in the global carbon cycle that act as a link of interactions between human activities and climate changes[1,2]. Climate change impacts ecosystem carbon cycle through af- fecting biological processes, e.g. plant photosynthesis, respiration, and soil carbon decomposition. Land-use change directly modifies the distribution and structure of terrestrial ecosystems and hence the carbon storage and fluxes. Usi…  相似文献   

12.
Increased nitrogen(N) deposition and land-use and land-cover change(LUCC) have influenced the terrestrial ecosystem carbon budget in China over the past few decades.However,the coupling effects of N deposition and LUCC on the carbon cycle remain unclear.This study first evaluated the effects of LUCC on N deposition based on estimated N deposition data from NO_2 column remote sensing data and the GlobeLand30 LUCC dataset,and then assessed the coupling effects of N deposition and LUCC on carbon budgets in China based on a terrestrial ecosystem process-based model.The results showed that the average rate of increase in N deposition in China was 0.35 Tg N yr~(-1)(Tg = 10~(12) g),which caused net primary production(NPP) and net ecosystem production(NEP) to rise by 92.2 Tg C yr~(-1) and 46.9 Tg C yr~(-1),respectively.The effects of LUCC reduced N deposition by 0.21 GgNyr~(-1)(Gg= 10~9g).The land changed from forest to cropland had the greatest rate of increase in N deposition among all types of land-cover change.Changes from cropland to forest slowed the rate of N deposition increase the most.Generally,the change in N deposition resulting from LUCC reduced NPP and NEP by 0.7 and 0.4 Gg C yr~(-1),respectively.Compared with the total effects of N deposition on NPP and NEP,N deposition changes caused by LUCC had a limited aggregate effect on the C budget.  相似文献   

13.
As the third largest country in the world, China has highly variable environmental condition and ecological pattern in both space and time. Quantification of the spatial-temporal pattern and dynamic of terrestrial ecosystem carbon cycle in China is of great significance to regional and global carbon budget. In this study, we used a high-resolution climate database and an improved ecosystem process-based model to quantify spatio-temporal pattern and dynamic of net ecosystem productivity (NEP) in China and its responses to climate change during 1981 to 2000. The results showed that NEP increased from north to south and from northeast to southwest. Positive NEP (carbon sinks) occurred in the west of Southwest China, southeastern Tibet, Sanjiang Plain, Da Hinggan Mountains and the mid-west of North China. Negative NEP (carbon sources) were mainly found in Central China, the south of Southwest China, the north of Xinjiang, west and north of Inner Mongolia, and parts of North China. From the 1980s to 1990s, the increasing trend of NEP occurred in the middle of Northeast China Plain and the Loess Plateau and decreasing trends mainly occurred in a greater part of Central China. In the study period, natural forests had minimal carbon uptake, while grassland and shrublands accounted for nearly three fourths of the total carbon terrestrial uptakes in China during 1981–2000. Supported by the Ministry of Science and Technology of China (G2002CB412507), the Major Program of the National Natural Science Foundation of China (Grant No.30590384), the “Hundred Talent” Program of the Chinese Academy of Sciences, and K C WONE Education Foundation  相似文献   

14.
High-resolution sampling, measurements of organic carbon contents and 14C signatures of selected four soil profiles in the Haibei Station situated on the northeast Tibetan Plateau, and application of 14C tracing technology were conducted in an attempt to investigate the turnover times of soil organic carbon and the soil-CO2 flux in the alpine meadow ecosystem. The results show that the organic carbon stored in the soils varies from 22.12×104 kg C hm−2 to 30.75×104 kg C hm−2 in the alpine meadow ecosystems, with an average of 26.86×104 kg C hm−2. Turnover times of organic carbon pools increase with depth from 45 a to 73 a in the surface soil horizon to hundreds of years or millennia or even longer at the deep soil horizons in the alpine meadow ecosystems. The soil-CO2 flux ranges from 103.24 g C m−2 a−1 to 254.93 gC m−2 a−1, with an average of 191.23 g C m−2 a−1. The CO2 efflux produced from microbial decomposition of organic matter varies from 73.3 g C m−2 a−1 to 181 g C m−2 a−1. More than 30% of total soil organic carbon resides in the active carbon pool and 72.8%281.23% of total CO2 emitted from organic matter decomposition results from the topsoil horizon (from 0 cm to 10 cm) for the Kobresia meadow. Responding to global warming, the storage, volume of flow and fate of the soil organic carbon in the alpine meadow ecosystem of the Tibetan Plateau will be changed, which needs further research. Supported by the National Natural Science Foundation of China (Grant Nos. 40231015, 40471120 and 40473002) and the Guangdong Provincial Natural Science Foundation of China (Grant No. 06300102)  相似文献   

15.
As the third largest country in the world, China has highly variable environmental condition and eco logical pattern in both space and time. Quantification of the spatial-temporal pattern and dynamic of terrestrial ecosystem carbon cycle in China is of great significance to regional and global carbon budget. In this study, we used a high-resolution climate database and an improved ecosystem process-based model to quantify spatio-temporal pattern and dynamic of net ecosystem productivity (NEP) in China and its responses to climate change during 1981 to 2000. The results showed that NEP increased from north to south and from northeast to southwest. Positive NEP (carbon sinks) occurred in the west of Southwest China, southeastern Tibet, Sanjiang Plain, Da Hinggan Mountains and the mid-west of North China. Negative NEP (carbon sources) were mainly found in Central China, the south of Southwest China, the north of Xinjiang, west and north of Inner Mongolia, and parts of North China.From the 1980s to 1990s, the increasing trend of NEP occurred in the middle of Northeast China Plain and the Loess Plateau and decreasing trends mainly occurred in a greater part of Central China. In the study period, natural forests had minimal carbon uptake, while grassland and shrublands accounted for nearly three fourths of the total carbon terrestrial uptakes in China during 1981 -2000.  相似文献   

16.
We measured soil, stem and branch respiration of trees and shrubs, foliage photosynthesis and respiration in ecosystem of the needle and broad-leaved Korean pine forest in Changbai Mountain by LI-6400 CO2 analysis system. Measurement of forest microclimate was conducted simultaneously and a model was found for the relationship of soil, stem, leaf and climate factors. CO2 flux of different components in ecosystem of the broad-leaved Korean pine forest was estimated based on vegetation characteristics. The net ecosystem exchange was measured by eddy covariance technique. And we studied the effect of temperature and photosynthetic active radiation on ecosystem CO2 flux. Through analysis we found that the net ecosystem exchange was affected mainly by soil respiration and leaf photosynthesis. Annual net ecosystem exchange ranged from a minimum of about ?4.671 μmol·m?2·s?1 to a maximum of 13.80 μmol·m?2·s?1, mean net ecosystem exchange of CO2 flux was ?2.0 μmol·m?2·s?1 and 3.9 μmol·m?2·s?1 in winter and summer respectively (mean value during 24 h). Primary productivity of tree, shrub and herbage contributed about 89.7%, 3.5% and 6.8% to the gross primary productivity of the broad-leaved Korean pine forest respectively. Soil respiration contributed about 69.7% CO2 to the broad-leaved Korean pine forest ecosystem, comprising about 15.2% from tree leaves and 15.1% from branches. The net ecosystem exchange in growing season and non-growing season contributed 56.8% and 43.2% to the annual CO2 efflux respectively. The ratio of autotrophic respiration to gross primary productivity (R a:GPP) was 0.52 (NPP:GPP=0.48). Annual carbon accumulation underground accounted for 52% of the gross primary productivity, and soil respiration contributed 60% to gross primary productivity. The NPP of the needle and broad-leaved Korean pine forest was 769.3 gC·m?2·a?1. The net ecosystem exchange of this forest ecosystem (NEE) was 229.51 gC·m?2·a?1. The NEE of this forest ecosystem acquired by eddy covariance technique was lower than chamber estimates by 19.8%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号