首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Algal growth potential is defined as the maximum algal mass (dry weight) that can be produced in a natural water sample under standardized laboratory conditions. Algal growth potential measurements are designed to establish baseline data, growth limiting factors (nutrients), and the influence and source of various growth promoting nutrients and toxicants so as to provide improved means for predicting and controlling excessive algal growth in aquatic habitats. Data can be compared only when the variables which control algal growth are standardized. Algal growth potentials derived in the laboratory may not reflect natural conditions because of insufficient light or temperature, grazing by invertebrates or fish, or the presence of any toxic materials. An understanding of the principle of the test and the factors that affect the expression of algal growth potentials is critical to proper data interpretation.  相似文献   

2.
A method, utilising overlaid graphs for nutrients vs salinity, was developed in order to determine which nutrient is limiting for plant growth in estuarine waters-at any salinity. Dissolved inorganic nitrogen (DIN=NO(3)(-)+NO(2)(-)+NH(4)(+)) and o-phosphate (PO(4)(-)) are the main forms of N and P that are readily bio-available for plant growth in waters and these have a Redfield atomic ratio of N:P=16:1 (i.e. aquatic plants absorb N and P in the average ratio of 16 atoms of N to 1 atom of P). Graphs are prepared for (i) DIN vs salinity and (ii) o-phosphate vs salinity with the vertical scales for DIN and o-phosphate set at a ratio of N:P=16:1; when these graphs are overlaid on each other then the lowermost trendline denotes the limiting nutrient for plant/algal growth-at any salinity. The graphs also indicate the extent by which one or other of the nutrients is limiting--at any salinity. Furthermore, if there is a transition from P to N limitation somewhere along the salinity gradient, then this occurs at the salinity where the trendlines intersect. The concept was applied to three estuaries in the southeast of Ireland and the results show that, in all of these circumstances, P is the limiting nutrient throughout--except for the higher salinities (i.e. salinities 30 per thousand), where either (i) N and P may become equally limiting at salinity approximately 35 per thousand or (ii) N may become limiting at salinity 30 per thousand. Overlaid nutrients vs salinity graphs were also used to demonstrate that, in the estuaries in southeast Ireland, carbon (as dissolved inorganic carbon, DIC=CO(2)+H(2)CO(3)+HCO(3)(-)+CO(3)(2-)) is not the limiting nutrient--at any salinity.  相似文献   

3.
《Marine pollution bulletin》2012,65(12):2671-2680
Microalgal blooms can result from anthropogenic nutrient loadings in coastal ecosystems. However, differentiating sources of nutrients remains a challenge. The response of phytoplankton and benthic microalgae (BMA) to nutrient loads was compared across tropical tidal creeks with and without secondary treated sewage. Primary productivity in the water column was limited by nitrogen availability in absence of sewage, with nitrogen saturation in the presence of sewage. Phytoplankton primary productivity rates and chlorophyll a concentrations increased in response to sewage, and there was a greater response than for BMA. There was no change in algal pigment proportions within the phytoplankton or BMA communities. Concentrations of the sewage marker, coprostanol, were higher near sewage discharge points decreasing downstream, correlating with a decline in nutrient concentrations. This suggests that sewage was the main source of nitrogen and phosphorus. This study highlights the scale and type of response of algal communities to sewage nutrients.  相似文献   

4.
The trophic status classification of coastal waters at the European scale requires the availability of harmonised indicators and procedures. The composite trophic status index (TRIX) provides useful metrics for the assessment of the trophic status of coastal waters. It was originally developed for Italian coastal waters and then applied in many European seas (Adriatic, Tyrrhenian, Baltic, Black and Northern seas). The TRIX index does not fulfil the classification procedure suggested by the WFD for two reasons: (a) it is based on an absolute trophic scale without any normalization to type-specific reference conditions; (b) it makes an ex ante aggregation of biological (Chl-a) and physico-chemical (oxygen, nutrients) quality elements, instead of an ex post integration of separate evaluations of biological and subsequent chemical quality elements. A revisitation of the TRIX index in the light of the European Water Framework Directive (WFD, 2000/60/EC) and new TRIX derived tools are presented in this paper. A number of Italian coastal sites were grouped into different types based on a thorough analysis of their hydro-morphological conditions, and type-specific reference sites were selected. Unscaled TRIX values (UNTRIX) for reference and impacted sites have been calculated and two alternative UNTRIX-based classification procedures are discussed. The proposed procedures, to be validated on a broader scale, provide users with simple tools that give an integrated view of nutrient enrichment and its effects on algal biomass (Chl-a) and on oxygen levels. This trophic evaluation along with phytoplankton indicator species and algal blooms contribute to the comprehensive assessment of phytoplankton, one of the biological quality elements in coastal waters.  相似文献   

5.
Despite marked gradients in nutrient availability that control the abundance and species composition of seagrasses in south Florida, and the importance of nutrient availability in controlling abundance and composition of epiphytes on seagrasses in other locations, we did not find that epiphyte load on the dominant seagrass, Thalassia testudinum, or that the relative contribution of algal epiphytes to the epiphyte community, was positively correlated with nutrient availability in the water column or the sediment in oligotrophic seagrass beds. Further, the abundance of microphytobenthos, as indicated by Chlorophyll-a concentration in the sediments, was not directly correlated with concentrations of nutrients in the sediments. Our results suggest that epiphyte and microphytobenthos abundance are not unambiguous indicators of nutrient availability in relatively pristine seagrass environments, and therefore would make poor candidates for indicators of the status and trends of seagrass ecosystems in relatively low-nutrient environments like the Florida Keys.  相似文献   

6.
7.
Possible nitrogen and phosphorus limitation of algal growth in two tropical impoundments was investigated using pure culture bioassays. The test organism was Selenastrum capricornutum. Phosphorus was indicated as a primary growth limiting nutrient in Mazoe Dam while in Lake McIlwaine nitrogen was generally indicated as limiting. These differences were probably related to the different major sources of nutrients in these two reservoirs.  相似文献   

8.
The review focuses on the use of primary producers as a biological tool for evaluating the impact of damage by human activity (eutrophication, toxicity) on the aquatic environment. Studies are discussed following a reductionist approach by using algal bioassays (Selenastrum capricornutum). Variations of algal growth potential (AGP) within watersheds show the impact of human activities such as agriculture and urbanization, on water quality. The study of variation of the AGP in time allowed the investigation of the effect of abiotic (temperature, flow rate) and biotic factors (indigenous primary production) on the concentration of nutrients potentially available to phytoplankton. Seasonal changes of the AGP have further shown the impact of non-point (runoff) or point sources (sewage effluents) on the aquatic system. A staggered relationship was observed between AGP values and chlorophyll a content of indigenous phytoplankton. Values obtained in the laboratory by means of this type of approach would therefore appear to be transferably to natural systems. S. capricornutum was also used to identify toxic characteristics of substances (in pure form or used in formulations) and effluents released into the environment. It was shown that the user of bioassays should use care when evaluating results from tests requiring pretreatment such as storage, autoclaving and filtration. Cautious interpretation is also recommended in order to distinguish between effects of growth-limiting essential elements and the presence of toxic substances. In general it appears from this review that the AGP provides helpful information for a sound management of the aquatic environment.  相似文献   

9.
太湖水华成因及控制途径初探   总被引:45,自引:12,他引:45  
杨清心 《湖泊科学》1996,8(1):67-74
1990年8~12月对太湖水华9次调查表明,水华主要由漂浮性蓝藻—微囊藻组成,夏季SE风时其漂移集聚是西北湖区形成严重水华的主要原因。这种漂移使得藻类所含营养物逆吞吐流方向传输,形成了一种“生物营养滤器”,加速了太湖尤其是西北湖区的富营养化进程。太湖外源N、P负荷量分别为12.0和0.85g/(m~2·a),足以引起富营养化;表层5cm底泥中含丰富的N、P,其释放也成为湖水中部分营养的来源。因2~8月藻类总生物量的增长基本遵守Logistic方程dN/dt=N·r(1—N/K),故对藻类控制可从N、r入手,即通过收获藻类达到控制藻类总量和营养输出的双重功效;提高水位增加非光合层厚度,有效地降低水柱中藻类生产力;建立有水生植被的水质保护区也是一种局部藻类控制方法。  相似文献   

10.
Using the Taw Estuary as an example, data routinely collected by the Environment Agency for England and Wales over the period 1990-2004 were interrogated to identify the drivers of excessive algal growth. The estuary was highly productive with chlorophyll concentrations regularly exceeding 100 μg L−1, mostly during periods of low freshwater input from the River Taw when estuarine water residence times were longest. However, algal growth in mid estuary was often inhibited by ammonia inputs from the adjacent sewage treatment works. The reported approach demonstrates the value of applying conventional statistical analyses in a structured way to existing monitoring data and is recommended as a useful tool for the rapid assessment of eutrophication. However, future estuarine monitoring should include the collection of dissolved organic nutrient data and targeted high temporal resolution data because the drivers of eutrophication are complex and often very specific to a particular estuary.  相似文献   

11.
Response of aquatic plants to abiotic factors: a review   总被引:7,自引:0,他引:7  
This review aims to determine how environmental characteristics of aquatic habitats rule species occurrence, life-history traits and community dynamics among aquatic plants, and if these particular adaptations and responses fit in with general predictions relating to abiotic factors and plant communities. The way key abiotic factors in aquatic habitats affect (1) plant life (recruitment, growth, and reproduction) and dispersal, and (2) the dynamics of plant communities is discussed. Many factors related to plant nutrition are rather similar in both aquatic and terrestrial habitats (e.g. light, temperature, substrate nutrient content, CO2 availability) or differ markedly in intensity (e.g. light), variations (e.g. temperature) or in their effective importance for plant growth (e.g. nutrient content in substrate and water). Water movements (water-table fluctuations or flow velocity) have particularly drastic consequences on plants because of the density of water leading to strong mechanical strains on plant tissues, and because dewatering leads to catastrophic habitat modifications for aquatic plants devoid of cuticle and support tissues. Several abiotic factors that affect aquatic plants, such as substrate anoxia, inorganic carbon availability or temperature, may be modified by global change. This in turn may amplify competitive processes, and lead ultimately to the dominance of phytoplankton and floating species. Conserving the diversity of aquatic plants will rely on their ability to adapt to new ecological conditions or escape through migration.  相似文献   

12.
In contrast with biological processes in lacustrine environments, the physical characteristics of river waters greatly complicate the relationship between nutrient input and primary productivity. In this paper a new approach to quantify this relationship is developed, linking land use within the watershed to the bioavailability of nutrients in the receiving waters. It estimates by two different ways an enrichment index derived from N/P ratios. A load model links land-use within the watershed area to nutrient export, and allows the estimation of the potential enrichment index from the ratio of calculated annual exports of nitrogen and phosphorus. This index value correlates well with the real enrichment index representing the annual mean value of the corresponding measured ratios in running waters. The latter index can then be related to nutrient availability expressed by chl-a and the algal growth potential. This model, established from 7 sampling stations on the Yamaska-North river, allowed assessment of nutrient bioavailability in the river water as a function of hydrological (low or high water flow) as well as of seasonal (summer or winter) events.  相似文献   

13.
14.
15.
Leonov  A. V.  Stygar  O. V. 《Water Resources》2001,28(5):535-552
A mathematical model based on average long-term data on water temperature, illumination, transparency, and nutrient content is used to calculate annual variations in the concentrations of organic and inorganic fractions of nutrients (C, N, Si, and P) in ten water areas in the Caspian Sea. The eutrophication of sea environment is examined with special emphasis on the increase in the biomass of aquatic animals (in particular, phyto- and zooplankton), the rate and duration of periods of plankton blooming, and changes in the conditions of nutrient limiting of primary production processes in different parts of the sea. Relationships between the inorganic components of N and P in river runoff and sea water areas are established. The obtained Nmin/DIP ratios show P primary production to be limited in the zone of influence of the Volga runoff, P and N primary production to be limited in other northern parts of the sea, and N primary production to be mainly limited in the middle and southern parts of the sea.  相似文献   

16.
赵斌 《湖泊科学》1996,8(2):125-132
1992年11月 ̄1993年10月,在安徽太平湖水库,同时用藻类生长潜力测试法(AGP试验)和外源添加营养的黑白瓶测定初级生产力法,对陵山站的水体分季度进行了分析测试。其结果表明,这两种方法对太平湖水库的营养评价均是行之有效的,而且二者的结果也能相互比较、相互验证;太平湖水库的不同季节,其主要营养限制性因子也各异。在枯水期,磷是藻类种群和密度的第一限制性营养元素;丰水期,由于各营养元素都相对缺乏,  相似文献   

17.
The CE-Qual-ICM model computes phytoplankton biomass and production as a function of temperature, light, and nutrients. Biomass is computed as carbon while inorganic nitrogen, phosphorus, and silica are considered as nutrients. Model formulations for production, metabolism, predation, nutrient limitation, and light limitation are detailed. Methods of parameter determination and parameter values are presented. Results of model application to a ten-year period in Chesapeake Bay indicate the model provides reasonable representations of observed biomass, nutrient concentrations, and limiting factors. Computed primary production agrees with observed under light-limited conditions. Under strongly nutrient-limited conditions, computed product is less than observed. The production characteristics of the model are similar to behavior reported for several similar models. Process omitted from the model that may account for production shortfalls include variable algal stoichiometry, use of urea as nutrient, and vertical migration by phytoplankton.  相似文献   

18.
In a coral reef environment, a slight increase in dissolved inorganic nitrogen (DIN;> or =1.0 micro M) can alter the ecosystem via macroalgal blooms. We collected seagrass leaves from the tropical and subtropical Pacific Ocean in five countries and examined the interactions between nutrient concentrations (C, N, P), molar ratios of nutrients, and delta15N to find a possible indicator of the DIN conditions. Within most sites, the concentrations of nutrients and their molar ratios showed large variations owing to species-specific values. On the other hand, almost identical delta15N values were found in seagrass leaves of several species at each site. The correlations between delta15N and nutrient concentrations and between delta15N and molar ratios of nutrients suggested that nutrient availability did not affect the delta15N value of seagrass leaves by altering the physiological condition of the plants. Increases in delta15N of seagrass leaves mostly matched increases in DIN concentrations in the bottom water. We suggest that delta15N in seagrass leaves can be a good tool to monitor time-integrated decrease/increase of DIN concentrations at a site, both in the water column and the interstitial water.  相似文献   

19.
Municipal wastewater (MWW) or urban wastewater (UWW) is generated by the domestic consumption of freshwater, which contains a huge amount of nutrients. The release of unprocessed wastewater causes eutrophication and harms aquatic life. Moreover, ingestion of polluted MWW causes a severe negative impact on human health. Microalgae are unicellular, eukaryotic photosynthetic organisms and have the capability of nutrient assimilation in the presence of light. Moreover, the produced biomass can be used for the generation of value-added bioproducts such as bioenergy. However, conventional microalgae-based MWW treatment is not as sustainable on a commercial scale. Therefore, more advanced approaches using microalgae need to be integrated in wastewater cultivation systems to improve nutrient removal efficiency. Thus, the present review explores the use of microalgae for the removal of nutrients from MWW, provides an outlook of direct and indirect methods of nutrient uptake from wastewater and the effects of the influencing factors in biomass growth. Moreover, the review also gives insight into recent approaches used for MWW treatment and the applications of algal biomass resulting from treated wastewater. It is predicted that microalgae-based MWW treatment systems will be a significant green approach to help eliminate nutrient loads and implement circular economy.  相似文献   

20.
祝国荣  张萌  王芳侠  高阳  曹特  倪乐意 《湖泊科学》2017,29(5):1029-1042
水体富营养化诱发的水生植物衰退机理已成为近年来水域生态学领域的研究热点.本文系统阐明了目前有关水生植物生物力学性能及其对水体富营养化的响应和其在该进程中水生植物衰退过程中的作用等研究进展.现有研究表明水生植物生物力学性能主要包括茎/叶/叶柄的抗拉性能(挺水植物为茎/叶柄的抗弯性能)和根的锚定性能;受水体富营养化主要环境变量(富营养底泥、水体高浓度氮磷和可利用光缺乏)的显著影响且具种间差异;还与生长、形态、生物量分配、组织结构、代谢等其他受水体富营养化显著影响的指标密切相关,且在应对水体富营养化时与生物力学间具有一定的协同作用;此外,生物力学性能受损不仅阻断植株的"生命进程",还严重削弱断枝后植株的资源获取能力和断枝的扩散定植能力,极大降低其适合度.根据野外调查和现有研究结果,生物力学性能的改变的确在富营养化水体水生植物衰退进程中起到关键作用.生态系统是多因子共同作用的综合系统,但目前的水生植物生物力学性能研究主要集中在水体富营养化的3大特征因子,亟需进一步深入系统开展随水体富营养化而改变的溶解氧、藻毒素、食草动物等其他因子的影响研究,以便更加全面真实地诠释水体富营养化造成水生植被衰退的生物力学机理.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号