首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We report multi-instrument observations during an isolated substorm on 17 October 1989. The EISCAT radar operated in the SP-UK-POLI mode measuring ionospheric convection at latitudes 71°-78°. SAMNET and the EISCAT Magnetometer Cross provide information on the timing of substorm expansion phase onset and subsequent intensifications, as well as the location of the field aligned and ionospheric currents associated with the substorm current wedge. IMP-8 magnetic field data are also included. Evidence of a substorm growth phase is provided by the equatorward motion of a flow reversal boundary across the EISCAT radar field of view at 2130 MLT, following a southward turning of the interplanetary magnetic field (IMF). We infer that the polar cap expanded as a result of the addition of open magnetic flux to the tail lobes during this interval. The flow reversal boundary, which is a lower limit to the polar cap boundary, reached an invariant latitude equatorward of 71° by the time of the expansion phase onset. A westward electrojet, centred at 65.4°, occurred at the onset of the expansion phase. This electrojet subsequently moved poleward to a maximum of 68.1° at 2000 UT and also widened. During the expansion phase, there is evidence of bursts of plasma flow which are spatially localised at longitudes within the substorm current wedge and which occurred well poleward of the westward electrojet. We conclude that the substorm onset region in the ionosphere, defined by the westward electrojet, mapped to a part of the tail radially earthward of the boundary between open and closed magnetic flux, the “distant” neutral line. Thus the substorm was not initiated at the distant neutral line, although there is evidence that it remained active during the expansion phase. It is not obvious whether the electrojet mapped to a near-Earth neutral line, but at its most poleward, the expanded electrojet does not reach the estimated latitude of the polar cap boundary.  相似文献   

2.
We report on the response of high-latitude ionospheric convection during the magnetic storm of March 20–21 1990. IMP-8 measurements of solar wind plasma and interplanetary magnetic field (IMF), ionospheric convection flow measurements from the Wick and Goose Bay coherent radars, EISCAT, Millstone Hill and Sondrestrom incoherent radars and three digisondes at Millstone Hill, Goose Bay and Qaanaaq are presented. Two intervals of particular interest have been identified. The first starts with a storm sudden commencement at 2243 UT on March 20 and includes the ionospheric activity in the following 7 h. The response time of the ionospheric convection to the southward turning of the IMF in the dusk to midnight local times is found to be approximately half that measured in a similar study at comparable local times during more normal solar wind conditions. Furthermore, this response time is the same as those previously measured on the dayside. An investigation of the expansion of the polar cap during a substorm growth phase based on Faraday’s law suggests that the expansion of the polar cap was nonuniform. A subsequent reconfiguration of the nightside convection pattern was also observed, although it was not possible to distinguish between effects due to possible changes in By and effects due to substorm activity. The second interval, 1200–2100 UT 21 March 1990, included a southward turning of the IMF which resulted in the Bz component becoming -10 nT. The response time on the dayside to this change in the IMF at the magnetopause was approximately 15 min to 30 min which is a factor of \sim2 greater than those previously measured at higher latitudes. A movement of the nightside flow reversal, possibly driven by current systems associated with the substorm expansion phases, was observed, implying that the nightside convection pattern can be dominated by substorm activity.  相似文献   

3.
综合分析EISCAT雷达与卫星当地测量数据,并利用磁层磁场模式对磁力线进行追踪,研究了发生在极光椭圆朝极盖边界附近电离层中,一例反常的背离太阳流动的强等离子体对流事件,及相关的太阳风-磁层-电离层耦合过程.结果表明,磁暴期间IMFBz指向南时观测到这一反常高速对流,及其相应的等离子体性态特征,很可能是向阳侧磁层顶磁重联过程在电离层中的印记.  相似文献   

4.
The dynamic behaviour of the northern polar cap area is studied employing Northern Hemisphere electric potential patterns derived by the Assimilative Mapping of Ionospheric Electrodynamics (AMIE) procedure. The rate of change in area of the polar cap, which can be defined as the region of magnetospheric field lines open to the interplanetary magnetic field (IMF), has been calculated during two intervals when the IMF had an approximately constant southward component (1100- 2200 UT, 20 March 1990 and 1300–2100 UT, 21 March 1990). The estimates of the polar cap area are based on the approximation of the polar cap boundary by the flow reversal boundary. The change in the polar cap area is then compared to the predicted expansion rate based on a simple application of Faraday’s Law. Furthermore, timings of magnetospheric substorms are also related to changes in the polar cap area. Once the convection electric field reconfigures following a southward turning of the IMF, the growth rate of the observed polar cap boundary is consistent with that predicted by Faraday’s Law. A delay of typically 20 min to 50 min is observed between a substorm expansion phase onset and a reduction in the polar cap area. Such a delay is consistent with a synthesis between the near Earth neutral line and current disruption models of magnetospheric substorms in which the dipolarisation in the magnetotail may act as a trigger for reconnection. These delays may represent a propagation time between near geosynchronous orbit dipolarisation and subsequent reconnection further down tail. We estimate, from these delays, that the neutral X line occurs between \sim35RE and \sim75RE downstream in the tail.  相似文献   

5.
Central polar cap convection changes associated with southward turnings of the Interplanetary Magnetic Field (IMF) are studied using a chain of Canadian Advanced Digital Ionosondes (CADI) in the northern polar cap. A study of 32 short duration (1 h) southward IMF transition events found a three stage response: (1) initial response to a southward transition is near simultaneous for the entire polar cap; (2) the peak of the convection speed (attributed to the maximum merging electric field) propagates poleward from the ionospheric footprint of the merging region; and (3) if the change in IMF is rapid enough, then a step in convection appears to start at the cusp and then propagates antisunward over the polar cap with the velocity of the maximum convection. On the nightside, a substorm onset is observed at about the time when the step increase in convection (associated with the rapid transition of IMF) arrives at the polar cap boundary.  相似文献   

6.
Radar observations of auroral zone flows during a multiple-onset substorm   总被引:1,自引:0,他引:1  
We present an analysis of ground magnetic field, ionospheric flow, geosynchronous particle, and interplanetary data during a multiple-onset substorm on 12 April 1988. Our principal results concern the modulations of the ionospheric flow which occur during the impulsive electrojet activations associated with each onset. During the first hour of the disturbance these take place every \sim12.5 min and involve the formation of a new intense westward current filament in the premidnight sector, just poleward of the preexisting extended current system driven by the large-scale flow. These filaments are \sim1 h MLT wide (\sim600 km), and initially expand poleward to a width of \sim300 km before contracting equatorward and coalescing with the preexisting current, generally leaving the latter enhanced in magnitude and/or expanded in latitude. Within the impulsive electrojets the flow is found to be suppressed to values 50–100 m s−1 or less during the first few minutes, before surging equatorward at 0.5-1.0 km s−1 during the phase of rapid coalescence. The implication is that the precipitation-induced Hall conductivity within the impulsive electrojet initially rises to exceed \sim100 mho, before decaying over a few minutes. This value compares with Hall conductivities of \sim20 mho in the quasi-steady current regions, and a few mho or less in the regions poleward of the electrojets and in the preonset ionosphere. Preliminary evidence has also been found that the flow surges propagate from midnight to the morning sector where they are associated with arrested equatorward motion or poleward contractions of the current system. These observations are discussed in terms of present theoretical paradigms of the global behaviour of fields and flows which occur during substorms.  相似文献   

7.
From data of the European incoherent scatter radar EISCAT, and mainly from its tristatic capabilities, statistical models of steady convection in the auroral ionosphere were achieved for various levels of magnetic activity. We propose here to consistently extend these models to the polar cap, by avoiding the use of a predefined convection pattern. Basically, we solve the second-order differential equation governing the polar cap convection potential with the boundary conditions provided by these models. The results display the classical twin-vortex convection pattern, with the cell centres around 17 MLT for the evening cell and largely shifted towards midnight (3–3.5 MLT) for the morning cell, both slightly moving equatorward with activity. For moderate magnetic activities, the convection now appears approximately oriented along the meridian from 10:00 MLT to 22:00 MLT, while in more active situations, it enters the polar cap at prenoon times following the antisunward direction, and then turns to exit around 21:00 MLT. Finally, from these polar cap patterns combined with the auroral statistical models, we build analytical models of the auroral and polar convection expected in steady magnetic conditions.  相似文献   

8.
We present combined observations made near midnight by the EISCAT radar, all-sky cameras and the combined released and radiation efects satellite (CRRES) shortly before and during a substorm. In particular, we study a discrete, equatorward-drifting auroral arc, seen several degrees poleward of the onset region. The arc passes through the field-aligned beam of the EISCAT radar and is seen to be associated with a considerable upflow of ionospheric plasma. During the substorm, the CRRES satellite observed two major injections, 17 min apart, the second of which was dominated by O+ ions. We show that the observed are was in a suitable location in both latitude and MLT to have fed O+ ions into the second injection and that the upward flux of ions associated with it was sufficient to explain the observed injection. We interpret these data as showing that arcs in the nightside plasma-sheet boundary layer could be the source of O+ ions energised by a dipolarisation of the mid- and near-Earth tail, as opposed to ions ejected from the dayside ionosphere in the cleft ion fountain.  相似文献   

9.
On 17 March 1991, five clear substorm onsets/intensifications took place within a three hour interval. During this interval ground-based data from the EISCAT incoherent scatter radar, a digital CCD all sky camera, and an extensive array of magnetometers were available, in addition to data from the CRRES and DMSP spacecraft, whose footprints passed over Scandinavia very close to most of the ground-based instrumentation. This interval of substorm activity has been interpreted as being in support of a near-Earth current disruption model of substorm onset. In the present study the ionospheric convection response, observed some four hours to the west in MLT by the Halley HF radar in Antarctica, is related to the growth, expansion and recovery phases of two of the substorm onsets/expansions observed in the Northern Hemisphere. Bursts of ionospheric flow and motion of the convection reversal boundary (CRB) are observed at Halley in response to the substorm activity and changes in the IMF. The delay between the substorm expansion phase onset and the response in the CRB location is dependent on the local time separation from, and latitude of, the initial substorm onset region. These results are interpreted in terms of a synthesis of the very near-Earth current disruption model and the near-Earth neutral line model of substorm onset.  相似文献   

10.
High time resolution data from the CUTLASS Finland radar during the interval 01:30–03:30 UT on 11 May, 1998, are employed to characterise the ionospheric electric field due to a series of omega bands extending 5° in latitude at a resolution of 45 km in the meridional direction and 50 km in the azimuthal direction. E-region observations from the STARE Norway VHF radar operating at a resolution of 15 km over a comparable region are also incorporated. These data are combined with ground magnetometer observations from several stations. This allows the study of the ionospheric equivalent current signatures and height integrated ionospheric conductances associated with omega bands as they propagate through the field-of-view of the CUTLASS and STARE radars. The high-time resolution and multi-point nature of the observations leads to a refinement of the previous models of omega band structure. The omega bands observed during this interval have scale sizes 500 km and an eastward propagation velocity 0.75 km s–1. They occur in the morning sector (05 MLT), simultaneously with the onset/intensification of a substorm to the west during the recovery phase of a previous substorm in the Scandinavian sector. A possible mechanism for omega band formation and their relationship to the substorm phase is discussed.  相似文献   

11.
Using the Equator-S spacecraft and SuperDARN HF radars an extensive survey of bursty reconnection at the magnetopause and associated flows in the polar ionosphere has been conducted. Flux transfer event (FTE) signatures were identified in the Equator-S magnetometer data during periods of magnetopause contact in January and February 1998. Assuming the effects of the FTEs propagate to the polar ionosphere as geomagnetic field-aligned-currents and associated Alfveén-waves, appropriate field mappings to the fields-of-view of SuperDARN radars were performed. The radars observed discrete ionospheric flow channel events (FCEs) of the type previously assumed to be related to pulse reconnection. Such FCEs were associated with 80% of the FTEs and the two signatures are shown to be statistically associated with greater than 99% confidence. Exemplary case studies highlight the nature of the ionospheric flows and their relation to the high latitude convection pattern, the association methodology, and the problems caused by instrument limitations.  相似文献   

12.
We document the detailed dynamics of the dayside aurora in the ≈1200–1600 MLT sector in response to a sharp southward turning of the interplanetary magnetic field (IMF) under negative IMF By conditions. Features not documented in previous work are elucidated by using two meridan scanning photometers (separated by 2 h) and an all-sky auroral imager in Ny Ålesund, Svalbard (75.5^MLAT) in combination with magnetograms from stations on Svalbard, covering the latitude range 71^–75^MLAT. The initial auroral response may be divided into three phases consisting of: (1) intensification of both the red (630.0 nm) and green (557.7 nm) line emissions in the cusp aurora near 1200 MLT and ≈100 km equatorward shift of its equatorward boundary, at ≈75^MLAT, (2) eastward and poleward expansions of the cusp aurora, reaching the 1430 MLT meridian after 5–6 min, and (3) east-west expansion of the higher-latitude aurora (at ≈77^–78^MLAT) in the postnoon sector. The associated magnetic disturbance is characterized by an initial positive deflection of the X-component at stations located 100–400 km south of the aurora, corresponding to enhanced Sunward return flow associated with the merging convection cell in the post-noon sector. The sequence of partly overlapping poleward moving auroral forms (PMAFs) during the first 15 min, accompanied by corresponding pulsations in the convection current, was followed by a strong westward contraction of the cusp aurora when the ground magnetograms indicated a temporary return to the pre-onset level. These observations are discussed in relation to the Cowley-Lockwood model of ionospheric response to pulsed magnetopause reconnection.  相似文献   

13.
On 7 December 1992, a moderate substorm was observed by a variety of satellites and ground-based instruments. Ionospheric flows were monitored near dusk by the Goose Bay HF radar and near midnight by the EISCAT radar. The observed flows are compared here with magnetometer observations by the IMAGE array in Scandinavia and the two Greenland chains, the auroral distribution observed by Freja and the substorm cycle observations by the SABRE radar, the SAMNET magnetometer array and LANL geosynchronous satellites. Data from Galileo Earth-encounter II are used to estimate the IMF Bz component. The data presented show that the substorm onset electrojet at midnight was confined to closed field lines equatorward of the pre-existing convection reversal boundaries observed in the dusk and midnight regions. No evidence of substantial closure of open flux was detected following this substorm onset. Indeed the convection reversal boundary on the duskside continued to expand equatorward after onset due to the continued presence of strong southward IMF, such that growth and expansion phase features were simultaneously present. Clear indications of closure of open flux were not observed until a subsequent substorm intensification 25 min after the initial onset. After this time, the substorm auroral bulge in the nightside hours propagated well poleward of the pre-existing convection reversal boundary, and strong flow perturbations were observed by the Goose Bay radar, indicative of flows driven by reconnection in the tail.  相似文献   

14.
Observations are presented of data taken during a 3-h interval in which five clear substorm onsets/intensifications took place. During this interval ground-based data from the EISCAT incoherent scatter radar, a digital CCD all sky camera, and an extensive array of magnetometers were recorded. In addition data from the CRRES and DMSP spacecraft, whose footprints passed over Scandinavia very close to most of the ground-based instrumentation, are available. The locations and movements of the substorm current system in latitude and longitude, determined from ground and spacecraft magnetic field data, have been correlated with the locations and propagation of increased particle precipitation in the E-region at EISCAT, increased particle fluxes measured by CRRES and DMSP, with auroral luminosity and with ionospheric convection velocities. The onsets and propagation of the injection of magnetospheric particle populations and auroral luminosity have been compared. CRRES was within or very close to the substorm expansion phase onset sector during the interval. The onset region was observed at low latitudes on the ground, and has been confirmed to map back to within L=7 in the magnetotail. The active region was then observed to propagate tailward and poleward. Delays between the magnetic signature of the substorm field aligned currents and field dipolarisation have been measured. The observations support a near-Earth plasma instability mechanism for substorm expansion phase onset.  相似文献   

15.
16.
Advances in our understanding of the large-scale electric and magnetic fields in the coupled magnetosphere-ionosphere system are reviewed. The literature appearing in the period January 1991–June 1993 is sorted into 8 general areas of study. The phenomenon of substorms receives the most attention in this literature, with the location of onset being the single most discussed issue. However, if the magnetic topology in substorm phases was widely debated, less attention was paid to the relationship of convection to the substorm cycle. A significantly new consensus view of substorm expansion and recovery phases emerged, which was termed the Kiruna Conjecture after the conference at which it gained widespread acceptance. The second largest area of interest was dayside transient events, both near the magnetopause and the ionosphere. It became apparent that these phenomena include at least two classes of events, probably due to transient reconnection bursts and sudden solar wind dynamic pressure changes. The contribution of both types of event to convection is controversial. The realisation that induction effects decouple electric fields in the magnetosphere and ionosphere, on time scales shorter than several substorm cycles, calls for broadening of the range of measurement techniques in both the ionosphere and at the magnetopause. Several new techniques were introduced including ionospheric observations which yield reconnection rate as a function of time. The magnetospheric and ionospheric behaviour due to various quasi-steady interplanetary conditions was studied using magnetic cloud events. For northward IMF conditions, reverse convection in the polar cap was found to be predominantly a summer hemisphere phenomenon and even for extremely rare prolonged southward IMF conditions, the magnetosphere was observed to oscillate through various substorm cycles rather than forming a steady-state convection bay.Reporter view, presented to Commission III of the International Association of Geomagnetism and Aeronomy at 7th IAGA Scientific Assembly, Buenos Aires, Argentina, August 1993.  相似文献   

17.
18.
During the 6th August 1995, the CUTLASS Finland HF radar ran in a high time resolution mode, allowing measurements of line-of-sight convection velocities along a single beam with a temporal resolution of 14 s. Data from such scans, during the substorm expansion phase, revealed pulses of equatorward flow exceeding 600 m s–1 with a duration of 5 min and a repetition period of 8 min. Each pulse of enhanced equatorward flow was preceded by an interval of suppressed flow and enhanced ionospheric Hall conductance. These transient features, which propagate eastwards away from local midnight, have been interpreted as ionospheric current vortices associated with fieldaligned current pairs. The present study reveals that these ionospheric convection features appear to have an accompanying signature in the magnetosphere, comprising a dawnward perturbation and dipolarisation of the magnetic field and dawnward plasma flow, measured in the geomagnetic tail by the Geotail spacecraft, located at L = 10 and some four hours to the east, in the postmidnight sector. These signatures are suggested to be the consequence of the observation of the same field aligned currents in the magnetosphere. Their possible relationship with bursty Earthward plasma flow and magnetotail reconnection is discussed.  相似文献   

19.
Numerical calculations of the thermospheric and ionospheric parameters above EISCAT are presented for quiet geomagnetic conditions in summer. The Global Self-consistent Model of the Thermosphere, Ionosphere and Protonosphere (GSM TIP) was used. The numerical results were obtained both with a self-consistent calculation of the electric fields of magnetospheric and dynamo-action origin and with the magnetospheric electric fields only. It was found that the dynamo-electric field has some effect on the ionospheric convection pattern during quiet geomagnetic conditions. It has a marked effect mainly on the zonal neutral wind component above EISCAT (±20m/s at 140 km altitude). We have studied the effects of various field-aligned current (FAC) distributions on thermosphere/ionosphere parameters and we show that a qualitative agreement can be obtained with region-I and -II FAC zones at 75° and 65° geomagnetic latitude, respectively. The maximum FAC intensities have been assumed at 03–21 MLT for both regions with peak values of 2.5 × 10–7 Am–2 (region I) and 1.25 × 10–7 A m–2 (region II). These results are in agreement with statistical potential distribution and FAC models constructed by use of EISCAT data. The lack of decreased electron density in the night-time sector as observed by the EISCAT radar was found to be due to the spatial distribution of ionospheric convection resulting from electric fields of magnetospheric origin.  相似文献   

20.
The CUTLASS Finland HF radar has been operational since February 1995. The radar frequently observes backscatter during the midnight sector from a latitude range 70–75° geographic, latitudes often associated with the polar cap. These intervals of backscatter occur during intervals of substorm activity, predominantly in periods of relatively quiet magnetospheric activity, with Kp during the interval under study being 2-and KP for the day being only 8-. During August 1995 the radar ran in a high time resolution mode, allowing measurements of line-of-sight convection velocities along a single beam with a temporal resolution of 14s, and measurement of a full spatial scan of line-of-sight convection velocities every four minutes. Data from such scans reveal the radar to be measuring return flow convection during the interval of substorm activity. For three intervals during the period under study, a reduction in the spatial extent of radar backscatter occurred. This is a consequence of D region HF absorption and its limited extent in the present study is probably a consequence of the high latitude of the substorm activity, with the electrojet centre lying between 67° and 71° geomagnetic latitude. The high time resolution beam of the radar additionally demonstrates that the convection is highly time dependent. Pulses of equatorward flow exceeding 600 m s–1 are observed with a duration of 5 min and a repetition period of 8 min. Their spatial extent in the CUTLASS field of view was 400–500 km in longitude, and 300–400 km in latitude. Each pulse of enhanced equatorward flow was preceded by an interval of suppressed flow and enhanced ionospheric Hall conductance. The transient features are interpreted as being due to ionospheric current vortices associated with field aligned current pairs. The relationship between these observations and substorm phenomena in the magnetotail is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号