首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Buried Quaternary valleys in Denmark are complex structures filled with various deposits consisting primarily of glacio-lacustrine clay, till and meltwater sand, and gravel. The valleys are important geophysical targets, because they often contain significant volumes of groundwater used for public water supply. About 700 km of buried valley structures have been imaged in the western part of Denmark by the transient electromagnetic (TEM) method. The ability to map the valleys depends primarily on valley geometry, infill architecture and the resistivity of the fill sediments as well as the substratum. One-dimensional (1-D) inversion models of the TEM soundings have been used to construct contour maps of 20 m average resistivities and depth to a good conductor, which provide images for geological interpretation. Images of buried valley morphology, fill properties, infill architecture, such as cut-and-fill structures, valley distribution and valley generations, are characterized for case studies from Hornsyld, Holstebro and the Vonsild/Agtrup areas of Denmark.  相似文献   

2.
For about three decades helicopter-borne electromagnetic (HEM) measurements have been used to reveal the resistivity distribution of the upper one hundred metres of the earth's subsurface. HEM systems record secondary fields, which are 3–6 orders of magnitude smaller than the transmitted primary fields. As both the primary fields and the secondary fields are present at the receivers, well-designed bucking coils are often used to reduce the primary fields at the receivers to a minimum. Remaining parts of the primary fields, the zero levels, are generally corrected by subtracting field values recorded at high altitudes (standard zero levelling) or estimated from resistivities of neighbouring lines or from resistivity maps (advanced zero levelling). These zero-levelling techniques enable the correction for long-term, quasi-linear instrumental drift. Short-term variations caused by temperature changes due to altitude variations, however, cannot be completely corrected by this procedure resulting in stripe patterns on thematic maps.Statistical methods and/or 2-D filter techniques called statistical levelling (tie-line levelling) and empirical levelling (microlevelling), respectively, used to correct stripe patterns in airborne geophysical data sets are, in general, not directly applicable to HEM data. Because HEM data levelling faces the problem that the parameter affected by zero-level errors, the secondary field, differs from the parameter generally levelled, the apparent resistivity. Furthermore, the dependency of the secondary field on both the resistivity of the subsurface and the sensor altitude is strongly nonlinear.A reasonable compromise is to microlevel both half-space parameters: apparent resistivity and apparent depth, followed by a recalculation of the secondary field components based on the half-space parameters levelled. Advantages and disadvantages of the diverse levelling techniques are discussed using a HEM data set obtained in a hilly region along the Saale River between the cities of Saalfeld and Jena in central Germany. It turns out from a comparison of apparent resistivity and apparent depth maps derived from levelled HEM data that manually advanced zero levelling of major level errors and automatic microlevelling of remaining minor level errors yield the best results.  相似文献   

3.
The interpretation of airborne VLF data represents an important aspect of geophysical mapping of the upper few hundred meters of the Earth's crust, especially in areas with crystalline rocks. We have examined the ability of the single frequency VLF method to provide quantitative subsurface resistivity information using two generic models and standard airborne parameters with a flight altitude of 70 m and a frequency of 16 kHz. The models are long thin conductor (10 m thick, 10 Ω m resistivity and 1 km long) and a wider buried conductive dike (100 Ω m resistivity and 500 m wide). Using standard regularized inversion it turned out that for both models the conductivity of the conductors are underestimated and the vertical resolution is rather poor. The lateral positions of the minimum of the resistivity distributions coincide well with the true positions of the shallow conductors. For deeper conductors the position of the minimum resistivity moves from the edges of the conductor into the conductor. The depth to the minimum of the resistivity anomalies correlates well with the true depth to the top of the conductors although the latter is always smaller than the former.Interpretation of field airborne data collected at 70 m flight height resolved both small scale and large scale near surface conductors (conductance ∼1 S). Deeper conductors show up in the VLF data as very long wavelength anomalies that are particularly powerful in delineating the lateral boundaries of the conductors. Many of the VLF anomalies in the Stockholm area are dominated by these deep conductor responses with some near surface conductors superimposed. The deep conductors often follow topographic lows coinciding with metasediments. We interpret the frequent absence of near surface responses at 70 m flight height as a result of weak coupling between the primary VLF wave and the small scale (in all three dimensions) near-surface conductors.Radio magnetotelluric (RMT) ground measurements were carried out along a short profile coinciding with part of an airborne profile. Using data at 9 frequencies (14–250 kHz) small scale conductors in the upper few tens of meters, not identified from the airborne data, could be well resolved. Large scale deeper conductors could be identified by both methods at nearly the same positions.  相似文献   

4.
A set of geophysical data collected in an area in Iran are analyzed to check the validity of a geological map that was prepared in connection to a mineral prospecting project and also to image the spatial electrical resistivity distribution. The data set includes helicopter electromagnetic (HEM), airborne magnetic and ground electrical resistivity measurement. Occam approach was used to invert the HEM data to model the resistivity using a layered earth model with fixed thicknesses. The algorithm is based on a nonlinear inverse problem in a least-squares sense.The algorithm was tested on a part of an HEM dataset acquired with a DIGHEM helicopter EM system at Kalat-e-Reshm, Semnan in Iran. The area contains a resistive porphyry andesite that is covered by Eocene sedimentary units. The results are shown as resistivity sections and maps confirming the existence of an arc like resistive structure in the survey area. The resistive andesite seems to be thicker than it is indicated in the geological maps. The results are compared with the reduced to the pole (RTP) airborne magnetic anomaly field data as well as with two ground resistivity profiles. We found reasonable correlations between the HEM 1D resistivity models and 2D models from electrical resistivity tomography (ERT) inversions. A 3D visualization of the 1D models along all flight lines provided a useful tool for the study of spatial variations of the resistivity structure in the investigation area.  相似文献   

5.
Helicopter-borne frequency-domain electromagnetic (HEM) surveys are used for fast high-resolution, three-dimensional resistivity mapping. Standard interpretation tools are often based on layered earth inversion procedures which, in general, explain the HEM data sufficiently. As a HEM system is moved while measuring, noise on the data is a common problem. Generally, noisy data will be smoothed prior to inversion using appropriate low-pass filters and consequently information may be lost.For the first time the laterally constrained inversion (LCI) technique has been applied to HEM data combined with the automatic generation of dynamic starting models. The latter is important because it takes the penetration depth of the electromagnetic fields, which can heavily vary in survey areas with different geological settings, into account. The LCI technique, which has been applied to diverse airborne and ground geophysical data sets, has proven to be able to improve the HEM inversion results of layered earth structures. Although single-site 1-D inversion is generally faster and — in case of strong lateral resistivity variations — more flexible, LCI produces resistivity — depth sections which are nearly identical to those derived from noise-free data.The LCI results are compared with standard single-site Marquardt–Levenberg inversion procedures on the basis of synthetic data as well as field data. The model chosen for the generation of synthetic data represents a layered earth structure having an inhomogeneous top layer in order to study the influence of shallow resistivity variations on the resolution of deep horizontal conductors in one-dimensional inversion results. The field data example comprises a wide resistivity range in a sedimentary as well as hard-rock environment.If a sufficient resistivity contrast between air and subsurface exists, the LCI technique is also very useful in correcting for incorrect system altitude measurements by using the altitude as a constrained inversion parameter.  相似文献   

6.
Previous studies using commercial airborne electromagnetic equipment that is not optimized for marine surveying have demonstrated the use of airborne electromagnetic methods for measuring water depth and estimating sediment thickness. A new prototype helicopter time-domain airborne electromagnetic system, SeaTEM(0), is now under development for bathymetric surveying. The first sea trial of the SeaTEM(0) system took place over Broken Bay, New South Wales, Australia, in shallow water up to ∼30 m in depth. Broken Bay was chosen because the separate paleodrainage systems for the Hawkesbury River, Brisbane Water and Pittwater, which join in Broken Bay give rise to paleovalleys infilled with unconsolidated sediments, ranging in thickness between 0 m (bedrock outcrop) and ∼200 m. The survey area also included a tombolo with a beach either side, which provided the opportunity to measure water depth through a surf zone. Sediment thickness and water depth is predicted from stitched layered-earth inversion of data based on a simplified two-layer model that represents seawater and sediment overlying a resistive half-space basement (bedrock). The resulting bathymetric profiles show agreement typically to within ∼±1 m and ∼±0.5 m with known water depths in areas less than 20 and 6 m deep respectively. The inverted depth profile of the second (sediment) layer is noisy; however, the profiles reveal coarse topographic features of paleovalleys to depth limits of ∼60 to 80 m below sea level in 20 to 30 m water depth, as well as resolving bedrock ridges and exposed reefs in shallow waters.  相似文献   

7.
Very early times in the order of 2–3 μs from the end of the turn‐off ramp for time‐domain electromagnetic systems are crucial for obtaining a detailed resolution of the near‐surface geology in the depth interval 0–20 m. For transient electromagnetic systems working in the off time, an electric current is abruptly turned off in a large transmitter loop causing a secondary electromagnetic field to be generated by the eddy currents induced in the ground. Often, however, there is still a residual primary field generated by remaining slowly decaying currents in the transmitter loop. The decay disturbs or biases the earth response data at the very early times. These biased data must be culled, or some specific processing must be applied in order to compensate or remove the residual primary field. As the bias response can be attributed to decaying currents with its time constantly controlled by the geometry of the transmitter loop, we denote it the ‘Coil Response’. The modelling of a helicopter‐borne time‐domain system by an equivalent electronic circuit shows that the time decay of the coil response remains identical whatever the position of the receiver loop, which is confirmed by field measurements. The modelling also shows that the coil response has a theoretical zero location and positioning the receiver coil at the zero location eliminates the coil response completely. However, spatial variations of the coil response around the zero location are not insignificant and even a few cm deformation of the carrier frame will introduce a small coil response. Here we present an approach for subtracting the coil response from the data by measuring it at high altitudes and then including an extra shift factor into the inversion scheme. The scheme is successfully applied to data from the SkyTEM system and enables the use of very early time gates, as early as 2–3 μs from the end of the ramp, or 5–6 μs from the beginning of the ramp. Applied to a large‐scale airborne electromagnetic survey, the coil response compensation provides airborne electromagnetic methods with a hitherto unseen good resolution of shallow geological layers in the depth interval 0–20 m. This is proved by comparing results from the airborne electromagnetic survey to more than 100 km of Electrical Resistivity Tomography measured with 5 m electrode spacing.  相似文献   

8.
The increased application of airborne electromagnetic surveys to hydrogeological studies is driving a demand for data that can consistently be inverted for accurate subsurface resistivity structure from the near surface to depths of several hundred metres. We present an evaluation of three commercial airborne electromagnetic systems over two test blocks in western Nebraska, USA. The selected test blocks are representative of shallow and deep alluvial aquifer systems with low groundwater salinity and an electrically conductive base of aquifer. The aquifer units show significant lithologic heterogeneity and include both modern and ancient river systems. We compared the various data sets to one another and inverted resistivity models to borehole lithology and to ground geophysical models. We find distinct differences among the airborne electromagnetic systems as regards the spatial resolution of models, the depth of investigation, and the ability to recover near‐surface resistivity variations. We further identify systematic biases in some data sets, which we attribute to incomplete or inexact calibration or compensation procedures.  相似文献   

9.
为研究地层电性变化时不同区域对电磁波测井响应的贡献分布,从响应信号对地层参数求偏导的角度,给出一种新的电阻率敏感性函数定义,引入模式匹配法对纵向成层、径向非均匀介质敏感性分布进行快速模拟;通过对敏感性函数纵、横向积分给出了单发双收线圈系纵、横向探测范围,研究了井眼、频率、背景地层电阻率等对探测特性的影响.结果表明:敏感性函数能够定量表征响应对地层纵向与径向微观与宏观敏感性,幅度比与相位差敏感性分布形态类似,幅度比较广较深,而相位差分辨率高,敏感范围小;敏感性函数进行径向积分后可表征仪器的探测深度,与伪几何因子对比达到了同样的效果;背景地层电阻率在1~100Ωm变化时,工作频率2 MHz下幅度比探测深度约为0.6~2.3m,相位差为0.3~0.8m,幅度比50%纵向积分敏感性层厚约为0.3~1.6m,相位差约为0.2~0.6m;异常体与背景地层电阻率对比度在1~50变化时,引起的探测深度与敏感性层厚差异约为0.1~0.2m,远小于地层电阻率的影响.  相似文献   

10.
Buried Pleistocene subglacial valleys are extensively used as groundwater reservoirs by waterworks in northern Germany, although little is known about the locations and size of these valleys and the internal structure of the sediment fill. This lack of knowledge about important groundwater reservoirs is a challenge for geophysics.This paper summarizes the geophysical investigation of two buried Pleistocene subglacial valleys in northern Germany—the Ellerbeker Rinne and the Bremerhaven–Cuxhavener Rinne—including seismic, gravity, and airborne electromagnetic (AEM) surveys. Seismic sections show the detailed structure of the paleovalleys. The reliability of interpretation is enhanced by vertical seismic profiles in wells. The maximum depths of the Ellerbeker Rinne and the Bremerhaven–Cuxhavener Rinne were found to be 360 and about 400 m, respectively. Gravity survey revealed Bouguer anomalies above the sediment fill of both buried valleys. The Ellerbeker Rinne produces a negative residual anomaly of −0.5 mGal, whereas the sediments of the Bremerhaven–Cuxhavener Rinne produce a positive anomaly. The latter one is superimposed by negative gravity anomalies due to near-surface structures. The Bremerhaven–Cuxhavener Rinne can be mapped by airborne electromagnetics at locations without saltwater intrusion, which would affect the measurements. The electrical conductivity of the clay layer at the top of the valley fill differs significantly from that of the surrounding sand. The combined use of these three geophysical methods, which measure different physical parameters, leads to a better understanding of the subsurface geology and the hydrogeology of the Pleistocene subglacial valleys.  相似文献   

11.
Z‐axis tipper electromagnetic and broadband magnetotelluric data were used to determine three‐dimensional electrical resistivity models of the Morrison porphyry Cu–Au–Mo deposit in British Columbia. Z‐axis tipper electromagnetic data are collected with a helicopter, thus allowing rapid surveys with uniform spatial sampling. Ground‐based magnetotelluric surveys can achieve a greater exploration depth than Z‐axis tipper electromagnetic surveys, but data collection is slower and can be limited by difficult terrain. The airborne Z‐axis tipper electromagnetic tipper data and the ground magnetotelluric tipper data show good agreement at the Morrison deposit despite differences in the data collection method, spatial sampling, and collection date. Resistivity models derived from individual inversions of the Z‐axis tipper electromagnetic tipper data and magnetotelluric impedance data contain some similar features, but the Z‐axis tipper electromagnetic model appears to lack resolution below a depth of 1 km, and the magnetotelluric model suffers from non‐uniform and relatively sparse spatial sampling. The joint Z‐axis tipper electromagnetic inversion solves these issues by combining the dense spatial sampling of the airborne Z‐axis tipper electromagnetic technique and the deeper penetration of the lower frequency magnetotelluric data. The resulting joint resistivity model correlates well with the known geology and distribution of alteration at the Morrison deposit. Higher resistivity is associated with the potassic alteration zone and volcanic country rocks, whereas areas of lower resistivity agree with known faults and sedimentary units. The pyrite halo and ≥0.3% Cu zone have the moderate resistivity that is expected of disseminated sulphides. The joint Z‐axis tipper electromagnetic inversion provides an improved resistivity model by enhancing the lateral and depth resolution of resistivity features compared with the individual Z‐axis tipper electromagnetic and magnetotelluric inversions. This case study shows that a joint Z‐axis tipper electromagnetic–magnetotelluric approach effectively images the interpreted mineralised zone at the Morrison deposit and could be beneficial in exploration for disseminated sulphides at other porphyry deposits.  相似文献   

12.
We investigate a novel way to introduce resistivity models deriving from airborne electromagnetic surveys into regional geological modelling. Standard geometrical geological modelling can be strengthened using geophysical data. Here, we propose to extract information contained in a resistivity model in the form of local slopes that constrain the modelling of geological interfaces. The proposed method is illustrated on an airborne electromagnetic survey conducted in the region of Courtenay in France. First, a resistivity contrast corresponding to the clay/chalk interface was interpreted confronting the electromagnetic soundings to boreholes. Slopes were then sampled on this geophysical model and jointly interpolated with the clay/chalk interface documented in boreholes using an implicit 3D potential‐field method. In order to evaluate this new joint geophysical–geological model, its accuracy was compared with that of both pure geological and pure geophysical models for various borehole configurations. The proposed joint modelling yields the most accurate clay/chalk interface whatever the number and location of boreholes taken into account for modelling and validation. Compared with standard geological modelling, the approach introduces in between boreholes geometrical information derived from geophysical results. Compared with conventional resistivity interpretation of the geophysical model, it reduces drift effects and honours the boreholes. The method therefore improves what is commonly obtained with geological or geophysical data separately, making it very attractive for robust 3D geological modelling of the subsurface.  相似文献   

13.
A 3D frequency-domain EM modelling code has been implemented for helicopter electromagnetic (HEM) simulations. A vector Helmholtz equation for the electric fields is employed to avoid convergence problems associated with the first-order Maxwell's equations when air is present. Additional stability is introduced by formulating the problem in terms of the scattered electric fields. With this formulation the impressed dipole source is replaced with an equivalent source, which for the airborne configuration possesses a smoother spatial dependence and is easier to model. In order to compute this equivalent source, a primary field arising from dipole sources of either a whole space or a layered half-space must be calculated at locations where the conductivity is different from that of the background. The Helmholtz equation is approximated using finite differences on a staggered grid. After finite-differencing, a complex-symmetric matrix system of equations is assembled and preconditioned using Jacobi scaling before it is solved using the quasi-minimum residual (QMR) method. The modelling code has been compared with other 1D and 3D numerical models and is found to produce results in good agreement. We have used the solution to simulate novel HEM responses that are computationally intractable using integral equation (IE) solutions. These simulations include a 2D conductor residing at a fault contact with and without topography. Our simulations show that the quadrature response is a very good indicator of the faulted background, while the in-phase response indicates the presence of the conductor. However when interpreting the in-phase response, it is possible erroneously to infer a dipping conductor due to the contribution of the faulted background.  相似文献   

14.
三维频率域航空电磁反演研究   总被引:16,自引:13,他引:3       下载免费PDF全文
刘云鹤  殷长春 《地球物理学报》2013,56(12):4278-4287
航空电磁数据的三维解释由于数据量大需要有高效的反演算法作为支撑.本文利用两种目前主流的数值优化技术(非线性共轭梯度和有限内存的BFGS法)实现了三维频率域航空电磁反演,并进一步比较了两种方法的有效性和运算效率.在反演过程中,为了更好地反演异常体的空间位置,模型方差矩阵中的光滑系数在反演起始阶段取值较大;当数据拟合差下降趋于平缓时,再利用较小的光滑因子约束反演过程来实现聚焦和获得精确的反演结果.理论数据反演表明这两种优化策略具有相似的内存需求,但是有限内存的BFGS技术比非线性共轭梯度法在计算时间和模型反演分辨率上具有一定的优越性,因此有限内存BFGS法更适合于求解大规模三维反演问题. 模型试验进一步表明目前主流的迭代法求解技术不适合大规模航空电磁数据反演,未来移动平台多源电磁数据快速正反演可通过引入矩阵分解技术来实现.  相似文献   

15.
An airborne electromagnetic (AEM) survey using the Grounded Electrical-Source Airborne Transient Electromagnetic (GREATEM) system was conducted over the Kujukuri coastal plain in southeast Japan to assess the system's ability to accurately describe the geological structure beneath shallow seawater. To obtain high-quality data with an optimized signal-to-noise ratio, a series of data processing techniques were used to obtain the final transient response curves from the field survey data. These steps included movement correction, coordinate transformation, the removal of local noise, data stacking, and signal portion extraction.We performed numerical forward modeling to generate a three-dimensional (3D) resistivity structure model from the GREATEM data. This model was developed from an initial one-dimensional (1D) resistivity structure that was also inverted from the GREATEM field survey data. We modified a 3D electromagnetic forward-modeling scheme based on a finite-difference staggered-grid method and used it to calculate the response of the 3D resistivity model along each survey line. We verified the model by examining the fit of the magnetic-transient responses between field data and the 3D forward-model computed data, the latter of which were convolved with the measured system responses of the corresponding data set.The inverted 3D resistivity structures showed that the GREATEM system has the capability to map resistivity structures as far as 800 m offshore and as deep as 300–350 m underground in coastal areas of relatively shallow seawater depth (5–10 m).  相似文献   

16.
A tensor magnetotelluric test survey was carried out in the region of Santa Catarina, located in the Chalco sub-basin of the Mexico Basin. The objective was to define the stratification at depth with an emphasis on the geometry of the main aquifer of that region which is partially known from DC resistivity soundings and drilling. High-quality magnetotelluric soundings could be recorded in the immediate vicinity of large urban zones because the sub-surface is very conductive. Interpretation shows that the solid bedrock is located at a depth of at least 800 m to the south and 1300 m to the north; it could, however, be much deeper. Using complementary DC resistivity sounding and well-logging data, three main layers have been defined overlying the bedrock. These layers are, from surface to bottom, an unsaturated zone of sand, volcanic ash and clay about 10 m thick, followed by a very conductive (1.5 ohm·m) 200 m thick layer of sand and ash with intercalated clay, saturated with highly mineralized water, and finally a zone with resistivity increasing gradually to 60 ohm·m. The investigated deep aquifer constitutes most of this third layer. It consists of a sequence of sand, gravel, pyroclastites and mainly fractured basalts. MT resistivity soundings and magnetic transfer functions also indicate that a shallow resistive structure is dipping, from the northwest, into the lacustrine deposits of the basin. This geologic feature is likely to be highly permeable fractured basaltic flows, which provide a channel by which water contaminated by the Santa Catarina landfill may leak into the basin.  相似文献   

17.
Airborne electromagnetic methods have been in use for more than 30 years. The selection of the most effective airborne system for a given geological/geographical environment is difficult since there are only a limited number of theoretical comparisons and very few comparative field evaluations of the systems. Shell Canada Ltd carried out a field evaluation using several systems to provide such a comparison. For this evaluation five different airborne systems were flown over 22 conductive features. Some lines were flown at various directions to strike, some at various elevations, and some with different line spacings. The airborne systems were then evaluated target by target for navigational control, line-to-line correlation, resolution, lateral coverage, signal strength, noise etc. The paper examines the philosophy behind our field evaluation and outlines steps required for setting up this comparison. Pitfalls are discussed as well as examples which illustrate the methodology. Two field examples are given from the Bathrust mining camp in New Brunswick and the Timmins Clay belt in northern Ontario (both in Canada). Some general conclusions which help our understanding of present day airborne electromagnetic systems are discussed at the end of the paper.  相似文献   

18.
Surface coal mining has altered land cover, near‐surface geologic structure, and hydrologic processes of large areas in central Appalachia, USA. These alterations are associated with changes in water quality such as elevated total‐dissolved solids, which is usually measured via its surrogate, specific conductance (SC). The SC of valley fill effluent streams is a function of fill construction methods, materials, and age; yet hydrologic studies that relate these variables to water quality are sparse due to the difficulty of conducting traditional hydrologic studies in mined landscapes. We used electrical resistivity imaging (ERI) to visualize the subsurface geologic structure and hydrologic flow paths within a valley fill. ERI is a noninvasive geophysical technique that maps spatiotemporal changes in resistivity of the subsurface. We paired ERI with artificial rainfall experiments to track infiltrated water as it moved through the valley fill. Results indicate that ERI can be used to identify subsurface geologic structure and track advancing wetting fronts or preferential flow paths. Our results suggest that the upper portion of the fill contains significant fines, whereas the deeper profile is primarily large rocks and void spaces. Water tended to pond on the surface of compacted areas until it reached preferential flow paths, where it appeared to infiltrate quickly down to >15 m depth in 75 min. ERI applications can improve understanding of how fill construction techniques influence subsurface water movement, and in turn may aid in the development of valley fill construction methods to reduce water quality effects.  相似文献   

19.
频率域航空电磁法一维正演与探测深度   总被引:2,自引:0,他引:2       下载免费PDF全文
计算了偶极一偶极方式均匀半空间的频率域航空电磁响应及层状模型的相对异常响应,阐明了大地电导率、磁化系数,以及飞机飞行高度、探测装置、收发距对电磁响应的影响,计算结果说明了频率域航空电磁法的探测能力和探测条件.分析了三层模型的相对异常响应,给出了基于层状模型确定探测深度的方法.在水平共面方式下,收发距8m,飞行高度30m时,在3~4ppm噪声水平条件下,100Ωm大地探测深度为120m.  相似文献   

20.
瞬变电磁法的探测深度问题   总被引:9,自引:1,他引:8       下载免费PDF全文
用解析分析、时域有限差分、时-频分析的方法,以地面中心回线装置和阶跃脉冲激励源为例,分析讨论了瞬变电磁测深法的勘探深度问题,以便为野外勘探工作设计提供依据,达到预期的探测目的.解析计算证实了瞬变场在地下以有限速度传播,数值模拟表示出了准静态条件下瞬变场的反射.研究结果表明,由于时间域电磁场遵循因果律,瞬变电磁法的探测深度主要由观测时间决定. 瞬变电磁场的初始传播速度与大地电阻率无关,继后在大地色散作用下,阶跃脉冲前沿逐渐变得平缓,各频率分量的传播速度与电阻率有关,在低阻地层中探测同样的深度需要较长的观测时间. 最大探测深度是在给定时间内电磁波往返地下某一深度的单程距离,最小探测深度受仪器性能的限制,但是埋藏较浅的异常体也有可能在晚时段被观测到.从时-频密度谱中可得到瞬变电磁场信号时间与频率的关系.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号