首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 640 毫秒
1.
基于WNAD方法的非一致网格算法及其弹性波场模拟   总被引:3,自引:2,他引:1       下载免费PDF全文
加权近似解析离散化(WNAD) 方法是近年发展的一种在粗网格步长条件下能有效压制数值频散的数值模拟技术. 在地震勘探的实际应用中, 不是所有情况都适合使用空间大网格步长. 为适应波场模拟的实际需要, 本文给出了求解波动方程的非一致网格上的WNAD算法. 这种方法在低速区、介质复杂区域使用细网格, 在其他区域采用粗网格计算. 在网格过渡区域, 根据近似解析离散化方法的特点, 采用了新的插值公式, 使用较少的网格点得到较高的插值精度. 数值算例表明, 非一致网格上的WNAD方法能够有效压制数值频散, 显著减少计算内存需求量和计算时间, 进一步提高了地震波场的数值模拟效率.  相似文献   

2.
本文利用第二代小波多尺度分解和快速变换的特点,构造自适应计算网格.对初始计算网格上的数值解进行第二代小波变换,得到数值解对应的小波系数空间.小波系数的大小表示相邻网格上数值变化率,小波系数大的区域网格点上的数值解变化梯度大.当小波系数大于等于预设的阈值时,在小波系数对应的网格点周围插入新的计算网格点,通过阈值可以实现网格的细化,得到多尺度下层层嵌套的细化自适应网格;由有限差分法得到相应网格点的空间导数.比较数值算例得到的波场快照和计算时间,验证了该方法的有效性.  相似文献   

3.
基于L-S热弹性理论,采用旋转交错网格伪谱法,实现了均匀各向同性介质的一阶速度-应力-温度微分方程组的数值求解和波场模拟.其中,用时间分裂法解决方程组的刚性问题,用旋转交错伪谱算子计算空间一阶导数,用中心伪谱算子计算空间二阶导数;对于热导率变化比较大的双层介质模型和参考温度随深度按梯度分布的模型,用Crank-Nicolson显式方法取代旋转交错网格伪谱法进行计算;讨论了热耦合波场性质和传播规律,对比了常规伪谱法、交错网格伪谱法和旋转交错网格伪谱法热耦合波场模拟效果.数值模拟结果表明:基于L-S热弹性理论,用时间分裂法结合旋转交错网格伪谱法对均匀各向同性介质的波场计算,能够得到稳定的、高精度的模拟结果,但是在热导率变化剧烈的情况下不能用大时间步长进行求解,而且在参考温度不均匀分布的情况下算法不稳定.本文在网格剖分方式与数值算法的优化组合应用方面进行了探索,为将这些方法推广到孔隙热弹性、热黏弹性和各向异性研究奠定了基础.  相似文献   

4.
TTI介质的交错网格伪P波正演方法   总被引:2,自引:2,他引:0       下载免费PDF全文
研究了三维弱各向异性近似下,利用伪P波(伪纵波)模拟弹性波场P分量在倾斜对称轴的横向各向同性(TTI)介质中的传播过程,并对比了分别基于弹性Hooke定律、弹性波投影和运动学色散方程所建立的三种二阶差分伪P波方程的正演特点.目前这些伪P波方程数值计算主要采用规则网格差分,但是规则网格在TTI模拟中有低效率、低精度以及不稳定的缺点.为了提高计算的精度,本文构建出相应方程的交错网格有限差分格式.通过对比伪P波方程在三维TTI介质中不同的数值模拟的表达形式,本文认为基于色散方程所建立的伪P波方程在模拟弹性波中P波传播的过程中具有最小的噪声.本文分析不同的各向同性对称轴空间角度的频散特征,并引入适当的横波速度维持计算的稳定.二维模型算例表明,本文提出的交错网格正演算法可以得到稳定光滑的伪P波正演波场.使用本文交错网格算法对二维BP TTI模型的逆时偏移也具有较稳定的偏移结果.  相似文献   

5.
弹性波逆时偏移不受倾角和偏移孔径的限制,能够实现任意复杂构造的高精度多波成像,是目前最精确的多分量资料偏移成像方法之一.逆时偏移算法的核心是波场延拓,传统波场延拓以水平基准面为边界条件,基于固定采样步长进行规则网格剖分,采用阶梯近似法处理起伏地表和复杂构造界面时会产生台阶散射,严重影响起伏地表复杂构造的成像精度.基于无网格节点模型,定量分析了弹性波模拟中径向基函数有限差分法的频散关系和稳定性条件.基于此,提出一种基于QR径向基函数的高精度有限差分方法,并提出一种优化的起伏地表自适应节点剖分方法,推导了精确的无网格自由边界条件和弹性波无网格混合吸收边界条件,形成了新的基于无网格的起伏地表弹性波数值模拟方法.此外,本文将此无网格径向基函数有限差分方法应用于精确的纵横波场矢量分解公式,实现了起伏地表弹性波逆时偏移成像.通过对高斯山丘模型,起伏凹陷模型和起伏地表Marmousi-2模型进行数值试算,验证了本文方法的有效性和可行性.  相似文献   

6.
弹性波场数值模拟的隐式差分多重网格算法   总被引:7,自引:1,他引:6       下载免费PDF全文
为了得到稳定的弹 性波数值模拟,而不得不选择隐式差分方程;为了提高解的精度,又不得不增加节点数目, 但同时也降低了隐式迭代求解的收敛速度. 为此,本文使用隐式差分的多重网格算法进行弹 性波数值模拟,多重网格算法通过粗网格收敛较快的迭代过程求出近似解,以近似解为初值 使用细网格进行精确的迭代求解,从而加速了隐式迭代求解的过程,能够以较高计算速度、 精度、稳定性完成弹性波传播过程的数值模拟.  相似文献   

7.
时间域的波场延拓方法在本质上都可以归结为对一个空间-波数域算子的近似.本文基于一阶波数-空间混合域象征,提出一种新的方法求解解耦的二阶位移弹性波方程.该方法采用交错网格,连续使用两次一阶前向和后向拟微分算子,推导得到了解耦的二阶位移弹性波方程的波场延拓算子.由于该混合域象征在伪谱算子的基础上增加了一个依赖于速度模型的补偿项,可以补偿由于采用二阶中心差分计算时间微分项带来的误差,有效地减少模拟结果的数值频散,提高模拟精度.然而,在非均匀介质中,直接计算该二阶的波场延拓算子,每一个时间步上需要做N次快速傅里叶逆变换,其中N是总的网格点数.为了减少计算量,提出了交错网格低秩分解方法;针对常规有限差分数值频散问题,本文将交错网格低秩方法与有限差分法结合,提出了交错网格低秩有限差分法.数值结果表明,交错网格低秩方法和交错网格低秩有限差分法具有较高的精度,对于复杂介质的地震波数值模拟和偏移成像具有重要的价值.  相似文献   

8.
坐标变换法通过将物理空间的曲网格映射为计算空间的矩形网格,将起伏地表转化为水平地表,同时将物理空间的波动方程转化为计算空间的波动方程,在计算空间完成数值模拟,坐标变换的方法对处理起伏自由边界具有较好的适应性和应用效果。本文在传统坐标变换方法的基础上,根据计算区域速度差异采用不同的网格大小和采样时间步长,提出了一种基于时空双变网格的起伏地表坐标变换正演模拟方法。在编程实现算法的基础上,通过典型模型波场模拟试算结果分析可知:(1)变网格方法与常规方法波场模拟误差在0.5%左右;(2)变网格方法计算效率视不同的变网格区域面积及变网格大小可提高几倍量级,在本文模型和计算参数下提高约5倍。(3)在满足模拟精度及频散条件要求下,变网格方法较全局细网格算法能显著节约计算内存。为此,针对起伏地表数值模拟,本文方法具有较高的模拟计算精度和一定的适应性。  相似文献   

9.
准确模拟TTI介质中弹性波的传播是研究地震各向异性、AVO反演的基础. 在二维加权近似解析离散化(WNAD)算法的基础上, 本文发展的并行WNAD算法是一种研究三维横向各向同性(TI)介质中弹性波传播的、快速高效的数值模拟方法. 我们首先介绍三维WNAD方法的构造过程, 然后与经典的差分格式--交错网格(SG)算法进行了比较. 理论分析和数值算例表明, WNAD算法比交错网格算法更适合在高性能计算机上进行大规模弹性波场模拟. 同时, 本文利用并行的WNAD方法研究了弹性波在TTI介质中的传播规律, 观测了TI介质中弹性波传播的重要特征:横波分离、体波耦合和速度各向异性等. 在TTI介质分界面处, 弹性波产生更加复杂的折射、反射和波型转化, 使得波场非常复杂, 研究和辨别不同类型的波能够加深我们对由裂隙诱导的各向异性介质的认识.  相似文献   

10.
有限差分方法是波场数值模拟的一个重要方法,交错网格差分格式比规则网格差分格式稳定性更好,但方法本身都存在因网格化而形成的数值频散效应,这会降低波场模拟的精度与分辨率.为了缓解有限差分算子的数值频散效应,精确求解空间偏导数,本文把求解波动方程的线性化方法推广到用于求解弹性波方程交错网格有限差分系数;同时应用最大最小准则作为模拟退火(SA)优化算法求解差分系数的数值频散误差判定标准来求解有限差分系数.通过上述两种方法,分别利用均匀各向同性介质和复杂构造模型进行了数值正演模拟和数值频散分析,并与传统泰勒展开算法、最小二乘算法进行比较,验证了线性化方法和模拟退火方法都能有效压制数值频散,并比较了各个算法的特点.  相似文献   

11.
提出一种新的三维空间不规则网格有限差分方法,模拟具有地形构造的非均匀各向异性介质中弹性波传播过程. 该方法通过具有二阶时间精度和四阶空间精度的不规则交错网格差分算子来近似一阶弹性波动方程,与多重网格不同,无需在精细网格和粗糙网格间进行插值,所有网格点上的计算在同一次空间迭代中完成. 针对具有复杂物性参数和复杂几何特征的地层结构,使用精细不规则网格处理粗糙界面、断层和空间界面等复杂几何构造, 理论分析和数值算例表明,该方法不但节省了大量计算机内存和计算时间,而且具有令人满意的稳定性和精度.  相似文献   

12.
In the present work, the multiscale finite volume (MsFV) method is implemented on a new coarse grids arrangement. Like grids used in the MsFV methods, the new grid arrangement consists of both coarse and dual coarse grids but here each coarse block in the MsFV method is a dual coarse block and vice versa. Due to using the altered coarse grids, implementation, computational cost, and the reconstruction step differ from the original version of MsFV method. Two reconstruction procedures are proposed and their performances are compared with each other. For a wide range of 2-D and 3-D problem sizes and coarsening ratios, the computational costs of the MsFV methods are investigated. Furthermore, a matrix (operator) formulation is presented. Several 2-D test cases, including homogeneous and heterogeneous permeability fields extracted from different layers of the tenth SPE comparative study problem are solved. The results are compared with the fine-scale reference and basic MsFV solutions.  相似文献   

13.
Genetic algorithms have been shown to be powerful tools for solving a wide variety of water resources optimization problems. Applying these approaches to complex, large-scale water resources applications can be difficult due to computational limitations, especially when a numerical model is needed to evaluate different solutions. This problem is particularly acute for solving field-scale groundwater remediation design problems, where fine spatial grids are often needed for accuracy. Finer grids usually improve the accuracy of the solutions, but they are also computationally expensive. In this paper we present multiscale island injection genetic algorithms (IIGAs), in which the optimization algorithms have different multiscale populations working on different islands (groups of processors) and periodically exchanging information. This new approach is tested using a field-scale pump-and-treat design problem at the Umatilla Army Depot in Oregon, USA. The performance of several variations of this approach is compared with the results of a simple genetic algorithm. The new approach found the same solution as much as 81% faster than the simple genetic algorithm and 9–53% faster than other previously formulated multiscale strategies. These findings indicate substantial promise for multiscale IIGA approaches to improve solution of complex water resources applications at the field scale.  相似文献   

14.
A mesh grading approach based on investigated lump method has been presented for simulating wave propagation in high velocity-contrast media. Unstructured fine grids are used to discretize the low wave-velocity medium in order to ensure the accuracy of numerical computation, and unstructured coarse grids are used for the high wave-velocity medium in order to substantially reduce the computational cost. On the interface, one coarse grid can match the fine grids of arbitrary odd number. The key feature of the proposed method is the constructions of investigated lumps on the interfaces of media. The transition zone, which is commonly used in the discontinuous grid scheme based on the staggered-grid finite-difference method, will not be used any more. Moreover, the computational instability that the discontinuous grid schemes frequently encountered does not arise in the proposed method. The comparisons with the analytical solutions and the application in studying the effects of sedimentary basin demonstrated that the mesh grading approach is a valid, accurate, convenient and flexible algorithm in simulating wave propagations in high velocity-contrast media with irregular interfaces.  相似文献   

15.
Multiscale solution methods are currently under active investigation for the simulation of subsurface flow in heterogeneous formations. These procedures capture the effects of fine scale permeability variations through the calculation of specialized coarse scale basis functions. Most of the multiscale techniques presented to date employ localization approximations in the calculation of these basis functions. For some highly correlated (e.g., channelized) formations, however, global effects are important and these may need to be incorporated into the multiscale basis functions. This can be accomplished using global fine scale simulations, but this may be computationally expensive. In this paper an adaptive local–global technique, originally developed within the context of upscaling, is applied for the computation of multiscale basis functions. The procedure enables the efficient incorporation of approximate global information, determined via coarse scale simulations, into the multiscale basis functions. The resulting procedure is formulated as a finite volume element method and is applied for a number of single- and two-phase flow simulations of channelized two-dimensional systems. Both conforming and nonconforming procedures are considered. The level of accuracy of the resulting method is shown to be consistently higher than that of the standard finite volume element multiscale technique based on localized basis functions determined using linear pressure boundary conditions.  相似文献   

16.
A finite volume upwind numerical scheme for the solution of the linear advection equation in multiple dimensions on Cartesian grids is presented. The small-stencil, Modified Discontinuous Profile Method (MDPM) uses a sub-cell piecewise constant reconstruction and additional information at the cell interfaces, rather than a spatial extension of the stencil as in usual methods. This paper presents the MDPM profile reconstruction method in one dimension and its generalization and algorithm to two- and three-dimensional problems. The method is extended to the advection–diffusion equation in multiple dimensions. The MDPM is tested against the MUSCL scheme on two- and three-dimensional test cases. It is shown to give high-quality results for sharp gradients problems, although some scattering appears. For smooth gradients, extreme values are best preserved with the MDPM than with the MUSCL scheme, while the MDPM does not maintain the smoothness of the original shape as well as the MUSCL scheme. However the MDPM is proved to be more efficient on coarse grids in terms of error and CPU time, while on fine grids the MUSCL scheme provides a better accuracy at a lower CPU.  相似文献   

17.
Seismoelectric coupling in an electric isotropic and elastic anisotropic medium is developed using a primary–secondary formulation. The anisotropy is of vertical transverse isotropic type and concerns only the poroelastic parameters. Based on our finite difference time domain algorithm, we solve the seismoelectric response to an explosive source. The seismic wavefields are computed as the primary field. The electric field is then obtained as a secondary field by solving the Poisson equation for the electric potential. To test our numerical algorithm, we compared our seismoelectric numerical results with analytical results obtained from Pride's equation. The comparison shows that the numerical solution gives a good approximation to the analytical solution. We then simulate the seismoelectric wavefields in different models. Simulated results show that four types of seismic waves are generated in anisotropic poroelastic medium. These are the fast and slow longitudinal waves and two separable transverse waves. All of these seismic waves generate coseismic electric fields in a homogenous anisotropic poroelastic medium. The tortuosity has an effect on the propagation of the slow longitudinal wave. The snapshot of the slow longitudinal wave has an oval shape when the tortuosity is anisotropic, whereas it has a circular shape when the tortuosity is isotropic. In terms of the Thomsen parameters, the radiation anisotropy of the fast longitudinal wave is more sensitive to the value of ε, while the radiation anisotropy of the transverse wave is more sensitive to the value of δ.  相似文献   

18.
The coupling upscaling finite element method is developed for solving the coupling problems of deformation and consolidation of heterogeneous saturated porous media under external loading conditions. The method couples two kinds of fully developed methodologies together, i.e., the numerical techniques developed for calculating the apparent and effective physical properties of the heterogeneous media and the upscaling techniques developed for simulating the fluid flow and mass transport properties in heterogeneous porous media. Equivalent permeability tensors and equivalent elastic modulus tensors are calculated for every coarse grid block in the coarse-scale model of the heterogeneous saturated porous media. Moreover, an oversampling technique is introduced to improve the calculation accuracy of the equivalent elastic modulus tensors. A numerical integration process is performed over the fine mesh within every coarse grid element to capture the small scale information induced by non-uniform scalar field properties such as density, compressibility, etc. Numerical experiments are carried out to examine the accuracy of the developed method. It shows that the numerical results obtained by the coupling upscaling finite element method on the coarse-scale models fit fairly well with the reference solutions obtained by traditional finite element method on the fine-scale models. Moreover, this method gets more accurate coarse-scale results than the previously developed coupling multiscale finite element method for solving this kind of coupling problems though it cannot recover the fine-scale solutions. At the same time, the method developed reduces dramatically the computing effort in both CPU time and memory for solving the transient problems, and therefore more large and computational-demanding coupling problems can be solved by computers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号