首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
This paper introduces briefly the basic principles of various seismic prospecting techniques and working methods according to nationwide practices of seismic prospecting of active faults beneath big cities in recent years.Furthermore,it analyzes the application range of different seismic prospecting methods,main achievements and solved problems,and discusses the best combination of seismic exploration methods for detecting crustal structures and locating the faults used in the present stage,that is,to trace faults which are at depths of hundred of meters underground using shallow seismic investigation,to detect the faults which are above basement(at a depth of kilometers) using high resolution refraction sounding,and the deep crustal faults using combined seismic prospecting methods of reflection seismic sounding and wide-angle reflection/refraction sounding,and furthermore,to use the 3-D deep seismic sounding method to obtain 3-D velocity structures beneath urban areas.Thus,we can get information about fault attitude and distribution at different depths and a complete image of faults from their shallow part to deep part using the combined seismic exploration method.Some application examples are presented in the article.  相似文献   

2.
to the practice of urban active fault exploration and associated fault activity assessment conducted in recent years, this paper summarizes the problems encountered in geological, geomorphological, geochemical and geophysical surveys, and proposes the following means and suggestions to solve these problems. To determine the most recent faults or fault zones, emphasis should be placed on identifying the youngest active faults and offset geomorphology. To understand the history of faulting and to discover the latest offset event, it is suggested that geophysical prospecting, drilling and trenching be conducted on one pro/de. Because of significant uncertainties in late Quaternary dating, we advise systematic sampling and the use of multiple dating methods. Shallow seismic reflection has been proven to be the most useful method in urban active fault exploration. However, there is a pressing need to increase the quality of data acquisition and processing to obtain high resolution images so as to enhance our ability to identify active faults. The combination of seismic P-wave reflection and S-wave reflection methods is proved to be a powerful means to investigate the tectonic environments of the deep crust.  相似文献   

3.
We have studied the characteristics of the active faults and seismicity in the vicinity of Urumqi city, the capital of Xinjiang Autonomous Region, China, and have proposed a seismogenic model for the assessment of earthquake hazard in this area. Our work is based on an integrated analysis of data from investigations of active faults at the surface, deep seismic reflection soundings,seismic profiles from petroleum exploration, observations of temporal seismic stations, and the precise location of small earthquakes. We have made a comparative study of typical seismogenic structures in the frontal area of the North Tianshan Mountains, where Urumqi city is situated,and have revealed the primary features of the thrust-foldnappe structure there. We suggest that Urumqi city is comprised two zones of seismotectonics which are interpreted as thrust-nappe structures. The first is the thrust nappe of the North Tianshan Mountains in the west, consisting of the lower(root) thrust fault, middle detachment,and upper fold-uplift at the front. Faults active in the Pleistocene are present in the lower and upper parts of this structure, and the detachment in the middle spreads toward the north. In the future, M7 earthquakes may occur at the root thrust fault, while the seismic risk of frontal fold-uplift at the front will not exceed M6.5. The second structure is the western flank of the arc-like Bogda nappe in the east,which is also comprised a root thrust fault, middle detachment, and upper fold-uplift at the front, of which the nappe stretches toward the north; several active faults are also developed in it. The fault active in the Holocene is called the South Fukang fault. It is not in the urban area of Urumqi city. The other three faults are located in the urban area and were active in the late Pleistocene. In these cases,this section of the nappe structure near the city has an earthquake risk of M6.5–7. An earthquake M_S6.6, 60 km east to Urumqi city occurred along the structure in 1965.  相似文献   

4.
天山东北部地震的重新定位和一维地壳速度模型的改善   总被引:1,自引:1,他引:0  
We apply three methods to relocate 599 earthquake events that occurred from August 2004 to August 2005 in the northeastern Tianshan Mountains area ( 85°30’ ~ 88°30’E,43°00’ ~ 44°40’ N ) by using travel times recorded by regional seismic network and 10 portable seismic stations deployed around the Urumqi city. By comparing the reliability of different results,we determined a suitable location method,and an improved 1-D crustal velocity model of the study area. The uncertainty of earthquake location is significantly reduced with combined data of seismic network and portable stations. The relocated events are clearly associated with regional tectonics of the northeastern Tianshan Mountains area, and are also in agreement with the existence of active faults imaged by deep seismic reflection profile. The relocated seismicity discovers some potential traces of buried active faults,which need to be validated further.  相似文献   

5.
6.
The depth of upper fault point is the key data for ascertaining the active age of a buried fault on a plain. The difference of depth obtained from same fault may be dozens to several hundred meters when using different geophysical methods. It can result in the absolutely opposite conclusions when judging fault activity. Because of a lack of an artificial earthquake source with wide band and high central-frequency, many kinds of methods have to be used together. The higher the frequency of the artificial earthquake wave, electromagnetic wave and sonic wave, the higher the resolution. However the attenuation is also very fast and the exploration depth is very shallow. The reverse is also true. The frequency of artificial seismic waves is in the tens of Hz. Its exploration depth is big and the resolution is poor. The frequency of radar electromagnetic waves is about a million Hz, indicating that the resolving power is better, but the exploration depth is very shallow. However, the acoustic frequency is thousands of Hz, its resolving power is better than that of the artificial earthquake method and the exploration depth is larger than that of the radar method. So it is suitable for extra-shallow exploration in the thick deposit strata of the Quaternary. The preliminary results detected using the high frequency acoustic method in extra-shallow layers indicates that previous inferences about some fault activity in the eastern part of the North China plain may need to be greatly corrected.  相似文献   

7.
Based on the seismic station data sets from Sichuan and Yunnan provinces, we employed a multi-step seismic location method (Hypo2000 + Velest + HypoDD) to precisely locate the 7,787 earthquakes that occurred during 2010-2015 along the eastern boundaries of the Sichuan-Yunnan rhombic block, namely from southern Dawu to the Qiaojia segment. The final results show that location precision is greatly advanced and epicenter distribution exhibits good consistency with the linear distribution of the seismic faults. Earthquake distribution is quite intensive at the intersection region in the southern segment of the Xianshuihe fault, the Anninghe fault zone, the Xiaojinhe fault zone and the Daliangshan fault zone to the east. The depth profile of seismicity shows a clear stepwise activity along the active seismic fault zones. The profile crossing the faults of the Xianshuihe, Anninghe, and Daliangshan presents a complex interaction among faults near the multiple faults intersection region, Shimian, where the earthquakes are obviously divided into two groups in depth. Earthquakes are very rare at the depth of 15km-20km, which is consistent with the region of the plastic rheology between 14km-19km calculated by Zhu Ailan et al.,(2005).  相似文献   

8.
The results of seismic deep reflection,high resolution refraction and shallow artificial seismic exploration indicate that the fault on the northern bank of the Weihe river is composed of two faults,one is the Yaodian-Zhangjiawan fault and the other is the Chuanzhang-Zuitou fault.The 22 km long Yaodian-Zhangjiawan fault of EW-striking starts from Chenjiagou via Yaodian town,Qianpai village,Bili village,Wujia town and Zhangjiawan to Jiajiatan.The 15 km long Chuanzhang-Zuitou fault striking near EW starts from Chuanzhang via Mabei to Zuitou.The Weihe fault offset the basement and upper crust,the reflecting layers of TQ,TN,TE and Tg are ruptured at depth of about 15 km.In the deep part,the Weihe fault and the secondary fault form a Y-shaped structure or a synthetic low angle intersection.The Weihe fault is a listric normal fault.The fault has obvious structural characteristics of a reversed-drag normal fault and a normal drag normal fault with the depth of 1 000 m,and also has the characteris-tics of syngenetic sediment.The Weihe fault is one of the faults which control the basin sediment,and it is the boundary fault of Xi’an depression and Xianyang salient.The depth of the fault decreases from the west to east gradually,the deep part intersects with the Lintong-Chang’an fault at the intersection part of Weihe River,Jinghe River and Bahe River and the shallow part connects with the Weinan-Jingyang fault.The seismic exploration re-sults indicate that no fault exists on southern bank of the Weihe River.  相似文献   

9.
Five mobile digital seismic stations were set up by the Earthquake Administration of Yunnan Province near the epicenter of the main shock after the Ning’er M6.4 earthquake on June 3, 2007. In this paper, the aftershock sequence of the Ning’er M6.4 earthquake is relocated by using the double difference earthquake location method. The data is from the 5 mobile digital seismic stations and the permanent Simao seismic station. The results show that the length of the aftershock sequence is 40km and the width is 30km, concentrated obviously at the lateral displacement area between the Pu’er fault and the NNE-trending faults, with the majority occurring on the Pu’er fault around the main shock. The depths of aftershocks are from 2km to 12km, and the predominant distribution is in the depth of 8~10km. The mean depth is 7.9km. The seismic fault dips to the northwest revealed from the profile parallel to this aftershock sequence, which is identical to the dip of the secondary fault of the NE-trending Menglian-Mojiang fault in the earthquake area. There are more earthquakes concentrated in the northwest segment than in the southeast segment, which is perhaps related to the underground medium and faults. The depth profile of the earthquake sequence shows that the relocated earthquakes are mainly located near the Pu’er fault and the seismic faults dip to the southwest, consistent with the dip of the west branch of the Pu’er fault. In all, the fault strike revealed by earthquake relocations matches well with the strike in the focal mechanism solutions. The main shock is in the top of the aftershock sequence and the aftershocks are symmetrically distributed, showing that faulting was complete in both the NE and SW directions.  相似文献   

10.
A detailed investigation permitted us to obtain quantitative data concerning fine geometric structures of 4 faults of the active Maxianshan-Xinglongshan fault system and the latest movement along them. Of them the northern Maxianshan border fault is a large-scale, strongly active Holocene reverse sinistral strike-slip fault, the other 3 faults, the southern Maxianshan border fault and the southern Xinglongshan border and the northern Xinglongshan border faults are the accompanying active late-Pleistocene thrust faults, which are incorporated into the main strike-slip fault, the northern Maxianshan border fault at depth. It is the most important earthquake-controlling fault in the Lanzhou area, the fault influences and constrains the seismic activity in the area.  相似文献   

11.
目前国内外对目标层埋深仅有几十米(甚至十几米)的超浅层地震勘探经验不多,理论研究也不够深入。本文从城市活断层探测的角度出发,利用地质学、地球物理学及数学等学科中的相关理论和方法,探讨超浅层地震勘探在青岛复杂地质构造背景下取得有效探测结果的前提条件,并对青岛市主要活断层的典型剖面进行重点研究,力求在城市活断层超浅层地震勘探数据采集技术、数据处理等方面有所进展,为青岛及类似地质构造背景的地区开展活动断层超浅层地震探测提供参考。研究表明超浅层地震反射波法可以获取深度仅有十几米的地层反射信号,且大部分反射剖面都可较清楚地揭示出超浅部断层位置和断层特征。  相似文献   

12.
浅层地震勘探方法在城市活动断层探测中发挥着重要作用,实践表明,浅层地震反射波法可以获取深度十米至几十米的浅层地层反射信号,且大部分反射剖面均可较清楚地揭示出浅部断层位置和断层特征,地震数据处理是准确识别近地表活动断层的重要环节,也是提高资料分辨率和信噪比的有效途径。本文应用邯郸市活动断层浅层地震资料,运用多途径、分步骤的去噪技术和方法,压制干扰,极大地提高了资料的分辨率和信噪比,并对活动断层的典型剖面进行重点研究和验证。  相似文献   

13.
碗窑沟断层是乌鲁木齐市主要的晚更新世中期活动断层,在市区与郊区被厚约数十米的第四系所覆盖。本文介绍了在乌鲁木齐市东北郊干扰背景较小地段对碗窑沟断层进行的超浅层纵波反射探测情况。在选取小道间距、适当偏移距、短排列、多次覆盖、高频检波器接收的工作方法和合理数据处理方法基础上,获取了3条典型纵波反射剖面,都可较清楚地分辨出第四系底界和断层位置。表明在探测环境比较好的条件下,采用合适的观测系统,在断层两盘介质存在明显差异的地区可以采用纵波反射方法探测出埋深小于50 m的断层。  相似文献   

14.
以跨谢通门—青都断裂的两条高密度电阻率法探测资料为基础, 对高密度电阻率法在青藏高原日喀则地区隐伏断裂探测中的首次应用进行了详细介绍. 所获取的高密度电法剖面显示, 该断层的电阻率异常特征清晰, 其上断点埋深可达20—30 m, 较浅层人工地震探测所揭示的断层上断点埋深(50 m)更浅, 结合地层年代资料推测该断裂的最新活动时期为早—中更新世. 探测结果表明: 高密度电法剖面清晰地显示了断层在浅部松散层的延伸, 适用于日喀则地区的隐伏断层探测; 相较于浅层人工地震探测, 该方法对浅部松散层的探测具有明显优势, 一定条件下能够更好地揭示断层上断点埋深, 可与浅层人工地震探测形成互补. 需要指出的是, 在应用中需重视测区水文地质及地层发育情况对探测的影响.   相似文献   

15.
浅层人工地震勘探是探查城市隐伏活动断层最有效的手段之一,然而受近地表探测盲区和探测分辨率的限制,该方法难以获取活动断层超浅层上断点的准确埋深位置。地质雷达探测方法在一定程度上可弥补浅层人工地震勘探的不足。为探索浅层人工地震勘探和地质雷达探测的联合应用效果,分析其在城市隐伏活动断层探测中的应用潜力,选取河南省鹤壁市汤东断裂西支为研究对象,并在冯屯村和前交卸村分别开展联合探测,获取高信噪比的浅层人工地震反射剖面和地质雷达剖面。浅层人工地震勘探揭示的冯屯村处汤东断裂西支上断点埋深为60~70 m,地质雷达探测揭示的上断点埋深约为2.5 m,结合平均沉积速率推测汤东断裂西支在冯屯村的最新活动时代约为25 ka。浅层人工地震勘探揭示的前交卸村处汤东断裂西支上断点埋深为50~60 m,地质雷达探测揭示出汤东断裂西支在前交卸村处未造成近地表约10 m以内的地层断错。研究结果表明,在城市隐伏活动断层探测中,采用浅层人工地震勘探和地质雷达探测相结合的方法,不但可有效确定活动断层的位置,且可进一步约束活动断层上断点的准确埋深,有利于指导后期地震地质勘探中的探槽和钻孔布设。  相似文献   

16.
应用于城市活断层调查的地震方法技术   总被引:22,自引:3,他引:22  
用地震方法探测城市直下型活动断裂是一种不可替代的勘探技术。地震方法能够准确确定断层的位置,但对于断层的地质年代问题,地震方法本身难以解决,然而结合钻孔资料和测区标准地质剖面,根据地震深度剖面,可以定性地(或半定量地)确定反射波组的地质年代。确定城市直下型活动断裂的上断点需要采用高分辨率的地震反射技术,为有效地确定深部断裂的几何特征,特别是确定深浅断裂构造之间的关系,反射地震方法优于折射地震方法。  相似文献   

17.
为了对昆明市活断层构造的深浅关系有更深入的了解,在浅层地震反射勘探的基础上,布设了一条东西向、横跨昆明盆地的中深层探测剖面KM4测线,通过对测线参数的试验与分析,确定了适合昆明盆地反射地震勘探的施工参数,采用该施工参数,开展了有效勘探深度为2~3 km的中深层反射地震勘探,确定了目标区隐伏活断层在盆地深部与盆地基底展布的异同及空间关系,探测到了昆明盆地深部断层的基本位置,确定了浅部断层与盆地基底断裂间的关系.对该测线的设计和参数采集试验分析,为城市和山区的活断层探测提供了宝贵的经验.  相似文献   

18.
已有地质和地球物理研究结果表明,北京平原区存在有多条第四纪隐伏活动断裂和隐伏盆地.为了研究该区的地壳浅部结构、断裂的空间展布、断裂活动性以及深浅构造关系,2006年,在北京平原的西北部地区完成了1条60次覆盖的中深层地震反射剖面和跨断裂的浅层地震反射剖面.结果表明,沿剖面结晶基底埋深约为3~6 km在结晶基底以上,地震反射剖面揭示了一套连续性较好的强反射震相,应是新生代、中生代和古生代的沉积岩系;在结晶基底之下,为一系列横向连续性较差、能量较弱的短小反射事件,可能代表了变质程度较高的结晶变质岩系或不成层的其他岩体.中深层和浅层地震剖面揭示的断裂具有上下一致的对应关系和明显的第四纪活动,对本区地堑-地垒状盆岭构造和新生代地层厚度具有重要的控制作用.本项研究不仅可进一步提高对北京地区新构造活动的认识,而且研究中所采用的方法技术对其他地区的深浅构造探测研究也有借鉴意义  相似文献   

19.
银川盆地深地震断层的三维透射成像   总被引:7,自引:2,他引:5       下载免费PDF全文
为了获得三维地震透射成像技术在活断层探测中的有效性和应用价值的评价,在银川盆地中北部布设了一个三维地震透射台阵,利用该台阵获得的基底初至折射波和莫霍界面反射波资料,采用有限差分反演、时间项反演和连续速度模型反演方法,对台阵区域基底及上地壳结构进行了分析.结果表明:研究区基底呈东西浅、中部深的界面形态,且西陡东缓,最深处大致位于芦花台至西大滩一带,埋深达7 km.芦花台断层、银川—平罗断层、黄河断层在研究区内均表现为北北东走向的速度差异条带,且断层两侧基底及沉积界面埋深存在显著变化.芦花台断层东倾,倾角较陡,延伸至研究区基底之下;银川—平罗断层倾向西,是一条超基底的隐伏断层;黄河断层西倾,延伸深度超过研究区基底.本探测结果证明,初至折射波与莫霍面反射波探测相结合的三维地震透射台阵技术能够给出研究区上地壳三维细结构图像,不仅可以揭示主要断裂的展布位置、浅部空间形态和特征,而且可以揭示断裂向基底之下的延伸状况.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号