首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Trace elements were determined in two well-documented Chinese Permian-Triassic (P/Tr) boundary sections (Meishan and Shangsi) and in a new section (Liangfenya). Iridium concentrations range from 3 to 87 pg/g, at or below levels in common sedimentary rocks. The results contrast with previous reports of high Ir concentration in the Meishan and Shangsi sections and offer no support to suggestions of a major meteoroid impact at the end of the Permian. A notable feature in each of these widely separated P/Tr sections (500–1500 km) is the existence of 2–5 light-colored clay layers at and near the boundary. These clay layers are strongly enriched in Cs, Zr, Hf, Ta, and Th and depleted in Cr, Co, and Ir, indicating that they are altered ash, apparently from the same massive silicic volcanic eruptions. We estimate the magnitude of these eruptions to be a few thousand km3 of magma, a volume comparable to the great Toba eruption.  相似文献   

2.
3.
Most of the studied Early Phanerozoic rocks of West Mongolia have undergone repeated remagnetization. Secondary magnetization components with normal and reversed polarity are isolated. The magnetization components with normal polarity are associated with the Mesozoic remagnetization of the rocks. The components with reversed polarity were probably formed during the Carboniferous–Permian superchron of reversed polarity. The analysis of the distribution of the reversed-polarity magnetization component in the structure of Mongolia permits some zonation. Within Mongolia, the regions with insignificant post- Permian deformations and complicated post-Permian deformations are identified; also the area of rotations of large geological blocks about the horizontal axis (Khan-Khukhei Ridge) is distinguished. It is hypothesized that in the Ordovician rocks of West Mongolia, the magnetization component that is close to primary was identified. If this is the case, the paleolatitude calculated from this magnetization direction corresponds to the interval 14°–17°–20° (minimal–mean–maximal) of probably northern latitude  相似文献   

4.
The results of detailed paleomagnetic studies in seven Upper Permian and Lower Triassic reference sections of East Europe (Middle Volga and Orenburg region) and Central Germany are presented. For each section, the coefficient of inclination shallowing f (King, 1955) is estimated by the Elongation–Inclination (E–I) method (Tauxe and Kent, 2004) and is found to vary from 0.4 to 0.9. The paleomagnetic directions, corrected for the inclination shallowing, are used to calculate the new Late Permian–Early Triassic paleomagnetic pole for the East European Platform (N = 7, PLat = 52.1°, PLong = 155.8°, A95 = 6.6°). Based on this pole, the geocentric axial dipole hypothesis close to the Paleozoic/Mesozoic boundary is tested by the single plate method. The absence of the statistically significant distinction between the obtained pole and the average Permian–Triassic (P–Tr) paleomagnetic pole of the Siberian Platform and the coeval pole of the North American Platform corrected for the opening of the Atlantic (Shatsillo et al., 2006) is interpreted by us as evidence that ~250 Ma the configuration of the magnetic field of the Earth was predominantly dipolar; i.e., the contribution of nondipole components was at most 10% of the main magnetic field. In our opinion, the hypothesis of the nondipolity of the geomagnetic field at the P–Tr boundary, which has been repeatedly discussed in recent decades (Van der Voo and Torsvik, 2001; Bazhenov and Shatsillo, 2010; Veselovskiy and Pavlov, 2006), resulted from disregarding the effect of inclination shallowing in the paleomagnetic determinations from sedimentary rocks of “stable” Europe (the East European platform and West European plate).  相似文献   

5.
Two coeval sections of red to white ammonite-rich pelagic limestones spanning the complete Kimmeridgian and most of the Tithonian were sampled in detail. All samples were treated by progressive thermal demagnetization to remove a present field overprint. Characteristic magnetization is carried primarily by magnetite. Polarity intervals are easily identified and correlate well between the two sections. The Tithonian polarity sequence can also be correlated to sections in northern Italy. The similarity between the polarity sequence and the M-sequence of marine magnetic anomalies, coupled with the precise biostratigraphic control, allows assignment of the following ages to the M-sequence: the Late/Early Tithonian boundary is correlated to the end of M-20, the Tithonian/Kimmeridgian boundary to the end of M-23, the Late/Early Kimmeridgian boundary to the latter part of M-24, and the Kimmeridgian/Oxfordian boundary within or slightly after M-25.The mean directions of characteristic magnetization have α95's less than 3° and demonstrate extensive differential block rotation within the Subbetic province. Paleolatitudes during the Kimmeridgian/Tithonian are in the range of 16–24°N.  相似文献   

6.
We present new magnetostratigraphic results obtained from a well-dated Ordovician key section located along the Angara River, near the terminus of the Rozhkova River (southern Siberian platform). More than 220 samples were thermally demagnetized up to 670°C in order to isolate their characteristic ancient magnetization. Samples from the Arenig, the Llanvirn and the Llandeilo stages are all (but two) of reversed magnetic polarity. In contrast, samples dated of the Caradoc yield a sequence of several magnetic polarity intervals. These new data therefore confirm the occurrence of a long reversed magnetic polarity interval during the Ordovician, the so-called Moyero superchron, which ended during the middle or late Llandeilo.  相似文献   

7.
A method is proposed for quantified structuring of a magnetochronological scale of the Phanerozoic, i.e., the construction of a magnetostratigraphic timescale on the basis of a cumulative function of geomagnetic field asymmetry with regard for the polarity sign. Analysis of the cumulative curve reveals basic characteristic patterns of the field evolution in the Phanerozoic: the reversed polarity being predominant in this epoch, three megachrons of variable polarity are identified against this background: Paleozoic R13 (468-315 Ma), Mesozoic N6 (258-123 Ma), and Cenozoic R10 (83-0 Ma). The megachrons are subdivided into hyper-and superchrons and are separated by single polarity hyperchrons. Most important are changes in the general trend of the polarity bias in the Middle Triassic and at the Paleogene/Cretaceous boundary. Data of fractal and wavelet analyses suggest the presence of two regimes of geomagnetic field generation: chaotically distributed frequent reversals (geodynamo) and a stable polarity.  相似文献   

8.
羌北地块中-晚侏罗世雁石坪群古地磁新结果   总被引:4,自引:0,他引:4       下载免费PDF全文
本文报道青藏高原羌北地区中-晚侏罗世雁石坪群古地磁新结果.对采自青海省格尔木市唐古拉山乡雁石坪剖面(33.6°N, 92.1°E)11个灰岩采点(118块)和10个碎屑岩采点(99块)定向样品系统古地磁学研究表明,大部分样品的退磁曲线具有双分量特征.低温分量方向在地理坐标系下较为集中,应该为地层褶皱之后的黏滞剩磁.高温特征剩磁分量方向可分为两类:(1)索瓦组(J3s)和布曲组(J2b)灰岩,以磁铁矿为主要载磁矿物,高温特征剩磁分量(Ds=355.7°,Is=42.1°,k=58.2,α95=6°)可通过99%置信度的褶皱检验.(2)雪山组(J2x)和雀莫错组(J2q)碎屑岩,以赤铁矿、磁铁矿为主要载磁矿物,高温特征剩磁分量(Ds=3.3°,Is=28.9°,k=30.7,α95=8.9°)可通过95%置信度的倒转检验和99%置信度的褶皱检验.两组分量都应该是岩石形成时的原生剩磁信息.碎屑岩组的磁倾角比灰岩组偏低13°左右,其剩磁方向很可能存在着与压实作用相关的剩磁倾角变浅的状况.本文取灰岩组平均磁化方向作为雁石坪群的原生剩磁分量,获得羌北地区雁石坪群古磁极位置:80.0°N,295.2°E(dp/dm=7.4/4.5).古地磁结果表明,羌北-昌都地区晚石炭-晚二叠世期间位于南纬中低纬度地区,早三叠世以后开始大规模北向漂移,至中-晚侏罗世已到达24.3°N.其快速北向运动主要发生在早三叠至早侏罗世期间(3500 km左右),与现今位置相比中晚侏罗世之后的北向迁移总量为900 km左右.  相似文献   

9.
Superposition of paleomagnetic polarity logs of seven chronologically overlapping piston cores from the central equatorial Pacific, using the established tropical radiolarian zonation as a stratigraphic reference, produced a nearly continuous correlation of magnetic and radiolarian events ranging from late Pleistocene to earliest Miocene. Twenty magnetic polarity epochs, and possibly as many as 30 polarity events, occur during this time span. Epoch 16 (reversed polarity) appears to be the longest interval ( 14.8–17.6m.y. B.P.) among these Neogene magnetostratigraphic units. The middle/late Miocene boundary is shown to fall within latest Epoch 11 (normal) and its approximate age is between 10.5 and 11 m.y. B.P. The early/middle Miocene boundary occurs within the top of Epoch 16 at a suggested age of about 15 m.y. B.P.  相似文献   

10.
The stratigraphic sequence of calcimicrobialite facies at the Permian-Triassic (P/Tr) boundary has well recorded the biotic and environmental transition across the end-Permian catastrophic events. The biostratigraphy, microfacies, carbon isotopes, and fossil records across the P/Tr boundary have been studied at the Kangjiaping Section in Cili County, Hunan Province. Three biostratigraphic zones, Palaeofusulina-Colaniella Zone, Hindeodus parvus Zone, and Isarcicella staeschei Zone, are identified. The excursion of δ13Ccarb exhibits a sharp negative shift in the calcimicrobialite at the P/Tr boundary, which is roughly accordant with the abrupt bioclastic decline. In addition, five types of microfacies are recognized, including algal-foraminifer bioclastic limestone, algal-laminated calcimicrobial limestone, oolitic grainstone, vermiculate limestone, and intraclastic wackstone. The results indicate that the changeover of ecosystem from metazoan reef to calcimicrobialite in Cili is a classic case of marine ecological evolution during the Paleozoic-Mesozoic transition. Supported by National Natural Science Foundation of China (Grant Nos. 40830212, 40621002, 40730209) and National Basic Research Program of China (Grant No. 2006CB80640)  相似文献   

11.
Rock magnetic measurements of Nihewan sediments from Xujiayao section demonstrate that magnetite, hematite and maghemite are dominant remanent magnetization carriers. Monitoring the variations of magnetic susceptibility (MS) and saturating isothermal remanent magnetization (SIRM) at low temperature are the attractive ways of detecting the presence of magnetite, maghemitization and superparamagnetic grain sizes. Low-temperature MS investigations suggest that susceptibility enhancement for Xujiayao samples is mainly due to the remarkable presence of SD/MD magnetite to some degree though some magnetite grains have been partially oxidized at some depths. It is tentatively concluded that both SD/MD magnetite and hematite are of detrital origin and carry a characteristic remanent magnetization (ChRM), whereas maghemite can be attributed to be chemical origin, overprinting a reversed polarity component of Matuyama age.  相似文献   

12.
杨振宇 《地球物理学报》1996,39(Z1):173-181
泰国Khorat盆地西部的晚二叠世石灰岩的古地磁研究表明磁铁矿为稳定剩磁的主要载体多组分磁分量分离技术揭示了高温磁组分(或高矫顽力)具有呈对分布的正、反极性.但是,应用逐渐展平岩层法可以发现各采样点的平均特征磁化方向在岩层展平至30%时.磁化方向最为集中.这一发现表明二叠纪石灰岩中所揭示出的磁化方向很可能形成于褶皱(期)过程中.野外观察表明,二叠纪石灰岩在印支期发生强烈褶皱并被晚三叠世湖相石灰岩角度不整合覆盖.所以二叠纪石灰岩的重磁化很可能发生在中、晚三叠世的印支期.这些石灰岩样品切片后经显微镜、扫描电镜和电子探针分析,次生磁铁矿多数与方解石微晶和铁质碳酸钙粒共生,且多分布在方解石脉附近.重磁化很可能是由于印支期造山运动时,铁质碳酸钙受碳水化合物流体的蚀变作用所引起的。  相似文献   

13.
The study of rock samples from the Upper Permian Khei-Yaga River section revealed an r-n-r-n-r magnetic polarity succession based on the prefolding characteristic component of natural remanent magnetization. With account for stratigraphic and previous magnetostratigraphic data on Lower Triassic rocks from the Khei-Yaga River section, the examined strata of the Pechora Group (Silova Formation) may be compared with magnetic zones R1P2u and N1P3t in the magnetostratigraphic scale of European Russia. The gap in the paleomagnetic record, which corresponds in the examined section to the interval of the mid-Severodvinian Stage to basal Induan Stage, Zone N1T included, is estimated to be 10 Ma long. It is assumed that this hiatus represents one of the local signs of the global Permian-Triassic crisis.  相似文献   

14.
Several reversed polarity magnetozones occur within deep-sea sediment core CH57-8 from the Greater Antilles Outer Ridge, within sediment of latest Pleistocene/Late Brunhes age. The uppermost reversed interval spanning 31 data points coincides with the X faunal zone of the Last Interglacial Period. Radiochemical dating of cores CH57-8 and KN25-4 has shown that all the reversed polarity magnetozones are significantly younger than the Brunhes/Matuyama boundary at 0.7 m.y. B.P. A variation of the excess230Th method was used, in which210Po and238U were the actual radionuclides measured. In a third core from the Mid-Atlantic Ridge, our210Po results were similar to those which others obtained earlier by direct230Th measurements.  相似文献   

15.
Hroaki  Ishiga  Kotaro  Ishida  Kaori  Dozen Makoto  Musashino 《Island Arc》1996,5(2):180-180
Abstract Geochemical characteristics, mainly of major and trace elements and REE (rare earth elements) of bedded chert and shale/mudstone sequences, across the Permian/Triassic boundary in southwest Japan are examined. The boundary is characterized by the disappearance of bedded cherts, and the interval between the Upper Permian cherts and Lower Triassic (probably Smithian) cherts comprises siliceous shales and organic black mudstones. Bedded cherts are characterized by a gradual depletion of chemical elements from Middle to Upper Permian. However, overlying siliceous shales exhibit a clear enrichment in some elements, especially alkaline metals (such as K, Rb and Cs) and Ti, Th, Y, P2O5, and REE in comparison with elements of the PAAS (post Archean Australian shales). This indicates that average components of the upper continental crust were transported in the boundary interval, possibly caused by volcanic activity. Ce-negative shifting in NASC (North American Shales Composite)-normalized REE patterns is characteristic of this interval, and could be related to the deposition of siliceous rocks in Ce-depleted seawater. This was probably caused by an invasion of water mass with a Ce-negative anomaly into the previously existing water mass of the Paleo-Tethys. Weak negative Eu-anomalies in this interval are suggestive of plagioclase fractionation caused by acid volcanisms and the LREE/HREE ratios in the interval show a slightly light-REE enrichment. Organic black mudstones are characteristically intercalated in the interval. These rocks are usually regarded as a product of oceanic deterioration, but in pelagic conditions, organic materials were formed by high primary production that resulted from the active upwelling of ocean floor water currents with rich nutrients. This may have been caused by the inferred mixing of water masses of the Paleo-Tethys and of the Panthalassa in Early Triassic time which was regarded as an event synchronous with an increase in volcanic activity on highly matured island arcs and/or continents.  相似文献   

16.
The characteristic magnetization of redbed samples from the upper part of the Série d'Abadla (probably Early Permian 31°N, 2.7°W) has a mean direction derived from 13 sites of D=129°, I=11°, k=59, α95=6° and a corresponding south paleopole at 29°S, 60°E, A95=5°. All directions have reversed polarity. The paleolatitude of the northern fringe of the Saharan craton was 6°±3°S, which is in excellent agreement with that for the Moroccan Meseta. Therefore, in all probability, there has been no paleolatitudinal displacement greater than about 500 km of the Moroccan Meseta relative to Africa since Permian time. Comparison of results from sedimentary rocks shows no evidence for relative rotation of the Moroccan Meseta since Permian time. Small apparent rotations are indicated by evidence from massive trachyandesite lavas from Morocco, but we argue that these could have arisen from the incomplete averaging of secular variation and uncertainties in estimates of paleohorizontal, rather than from true tectonic rotations. The combined latest Carboniferous/Early Permian paleopole for the Saharan craton and the Meseta differs form the path of apparent polar wandering for North America when the continents are assembled in Wegener's Pangea (Pangea A, in which northwest Africa is opposite North America). It is in reasonable agreement when the continents are assembled in the Pangea B configuration (northwest Africa opposite Europe).  相似文献   

17.
Paleomagnetic records of the Gauss-Matuyama reversal were obtained from two loess sections at Baoji on the Chinese Loess Plateau. Stepwise thermal demagnetization shows two obvious magnetization components. A low-temperature component isolated between 100 and 200–250°C is close to the present geomagnetic field direction, and a high-temperature component isolated above 200–250°C reveals clearly normal, reversed, and transitional polarities. Magnetostratigraphic results of both sections indicated that the Gauss-Matuyama reversal consists of a high-frequency polarity fluctuation zone, but the characteristic remanent magnetization directions during the reversal are clearly inconsistent. Rock magnetic experiments demonstrated that for all the specimens with normal, reversed, and transitional polarities magnetite and hematite are the main magnetic carriers. Anisotropy of magnetic susceptibility indicates that the studied loess sediments have a primary sedimentary fabric. Based on virtual geomagnetic pole latitudes, the Gauss-Matuyama reversal records in the two sections are accompanied by 14 short-lived geomagnetic episodes (15 rapid polarity swings) and 12 short-lived geomagnetic episodes (13 rapid polarity swings), respectively. Our new records, together with previous ones from lacustrine, marine, and aeolian deposits, suggest that high-frequency polarity swings coexist with the Gauss-Matuyama reversal, and that the Gauss-Matuyama reversal may have taken more than 11 kyr to complete. However, we need more detailed analyses of sections across polarity swings during reversals as well as more high-resolution reversal records to understand geomagnetic behavior and inconsistent characteristic remanent magnetization directions during polarity reversals.  相似文献   

18.
This study is based on both a generic and species level investigation of the individual size of the latest Permian conodont Neogondolella Pa elements collected from Meishan Section A, Changxing, Zhejiang Province. In this study, an obvious size reduction of Neogondolella Pa elements within bed 24e of the upper Changxing Limestone is recognized. The size variation of the Neogondolella occurs simultaneously with some important events including the negative shift of δ 13C, change in the ratio of the abundance of cyanobacterial biomarkers versus that of other general bacterial biomarkers and the shallowing of the sea water. Through the investigation of the paleoenvironmental changes and the analysis of the paleoecology of the conodont genus Neogondolella, the authors propose that the major factors for the size reduction of species of the conodont genus Neogondolella are food shortages caused by the mass extinction, the shallowing of the sea water as well as the increase in opacity of the sea water during the end Permian. The same phenomenon of Neogondolella size reduction is also observed in preliminary research from the same horizon at Shangsi Section, Sichuan Province. All the evidence suggests that there was a mass extinction that occurred at the horizon of bed 24e, and the evidence supports the viewpoint of a multi-phase mass extinction during the Permian and Triassic transition in South China.  相似文献   

19.
Petromagnetic and magnetostratigraphic characteristics are obtained for the Tetritskaro section. The boundary layer at the Mesozoic/Cenozoic (K/T) boundary is fixed primarily by an abrupt rise in the paramagnetic magnetization (total Fe concentration) and, to a lesser degree, by an increase in the concentration of such magnetic minerals as goethite, hemoilmenite, and magnetite. The along-section distribution of titanomagnetite of volcanic origin and metallic iron of cosmic origin does not correlate with the K/T boundary and lithologic properties of the sediments.The boundary of the Mesozoic and Cenozoic geological eras lies within the reversed polarity chron C29r and is marked by an abrupt rise in the geomagnetic field paleointensity and an instability of paleomagnetic directions, rather than by a polarity change. The accumulation time of the boundary clay layer is about 1.5–2 kyr, while abrupt changes in the paleointensity and direction of the geomagnetic field encompass 30–40 kyr. Such long occurrence intervals of the events in question cannot be related to a short-term impact phenomenon.  相似文献   

20.
Helium concentration and isotopic composition were measured in a suite of samples across the Permian-Triassic boundary at Opal Creek, Canada, to determine whether high extraterrestrial helium concentrations are associated with a possible extinction-inducing impact event at this time. No extraterrestrial 3He was detected, implying that neither fullerene-hosted nor IDP-hosted He is present at or near the boundary. This observation is consistent with similar studies of some Permian-Triassic sections, but contrasts sharply with reports of both fullerene- and IDP-hosted extraterrestrial 3He at other sections.Step-heat experiments indicate rapid diffusion of extraterrestrial helium from sediments heated to temperatures above ∼ 70 °C. Given the likelihood of burial and associated heating in Permian-Triassic age rocks, the initially unexpected absence of IDP-hosted 3He likely indicates thermally induced diffusive loss. Indeed one of the key sections (Graphite Peak, Antarctica) from which extraterrestrial 3He has been reported at and near the Permian-Triassic boundary has been sufficiently heated that the reported preservation of extraterrestrial helium, in both IDPs and fullerenes, is inexplicable. Recent contamination provides a plausible explanation for extraterrestrial 3He in these samples.While no extraterrestrial 3He was detected at Opal Creek, there is a sharp increase in nucleogenic 3He very close to or at the Permian-Triassic boundary. This presumably arises from the major lithologic change at this time, from cherts in the Permian to shales and siltstones in the Triassic. Increased nucleogenic 3He is associated with increases in both lithium and organic carbon content into the Triassic. Either the production rate or the retention of this 3He is higher in the shales and siltstones than in the cherts. Care must be taken to eliminate such artifacts before interpreting changes in 3He concentration in terms of fluctuations in the delivery of 3He from space.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号