首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The hydrological, hydrophysical, and hydrochemical aspects of the interaction between marine waters and groundwater in the adjacent land territory as a manifestation of the general process of interaction between surface and subsurface waters. Most attention is concentrated on the marine water intrusion into aquifers. Recent achievements in the field of modeling seawater intrusion into coastal aquifers are reviewed.  相似文献   

2.
Subsurface K‐rich brines are important mineral resources for fertilizer production while the evolution of such brines is poorly documented. In the Sichuan Basin in southwest China, they are found mainly in the Middle and Lower Triassic marine carbonate aquifers. Total dissolved solids of the brines range from 176 to 378 g/L and K concentrations, from 1.9 to 53.3 g/L. We found that the brines are mainly of Cl‐Na type, while Ba is absent in the brines. Comparison of the brine samples with both the trajectories of ions and the newly proposed trajectories of ion ratios of evaporated seawater suggests that the brines are enriched in Ca, Sr, Li, and I, depleted in SO4 and Mg, and neither enriched nor depleted in Cl and Na. These brines underwent four evolutionary periods: (1) deposition of marine rocks, (2) deposition of continental clastics, (3) tectonic deformation, and (4) rock erosion. Precipitation of salt minerals, dolomitization, sulfate reduction, and recrystallization during the first two periods are responsible for the enrichment and depletion of the chemical constituents of the brines. Extremely high K concentrations in two wells, both tapping the Middle Triassic Leikoupo carbonate aquifers, are attributed to the subsurface dissolution of potash salts during the migration of the brines to the anticlines formed during the third period in the Paleogene age. Saline and salty springs emanate from the outcropping carbonates in the river valleys in some anticlines in the eastern basin due to incongruent dissolution of the salt‐bearing carbonates during the fourth period.  相似文献   

3.
The occurrence of submarine groundwater discharge (SGD) as well as its supply of many nutrients and metals to coastal seawaters is now generally known. However, previous studies have focused on the chemical and radiological analysis of groundwater, surface seawater, shallow marine sediments and their pore waters, as well as the measurement of upward flow through the marine sediments, as end members of the discharge process. In this study, chemical and isotopic analysis results of marine subsurface waters are reported. These were obtained from deep boreholes of an undersea liquefied petroleum gas (LPG) storage cavern, located about 8 km off the western coast of Korea. The cavern is about 130–150 m below the sea bottom, which is covered by a 4.8–19.5 m silty clay stratum. An isotopic composition (δ2H and δ18O) of the marine subsurface waters falls on a mixing line between terrestrial groundwater and seawater. Vertical EC profiling at the cavern boreholes revealed the existence of a fresh water zone. An increase in the contents of ferrous iron and manganese and a decrease in levels of nitrate, bicarbonate and cavern seepage were recorded in August 2006, indicating a decreased submarine groundwater flux originating from land, mainly caused by an elevated cavern gas pressure. It is suggested in this study that the main source of fresh waters in the man-made undersea cavern is the submarine groundwater discharge mainly originating from the land.  相似文献   

4.
Lithium isotope geochemistry and origin of Canadian shield brines   总被引:3,自引:0,他引:3  
Hypersaline calcium/chloride shield brines are ubiquitous in Canada and areas of northern Europe. The major questions relating to these fluids are the origin of the solutes and the concentration mechanism that led to their extreme salinity. Many chemical and isotopic tracers are used to solve these questions. For example, lithium isotope systematics have been used recently to support a marine origin for the Yellowknife shield brine (Northwest Territories). While having important chemical similarities to the Yellowknife brine, shield brines from the Sudbury/Elliot Lake (Ontario) and Thompson/Snow Lake (Manitoba) regions, which are the focus of this study, exhibit contrasting lithium behavior. Brine from the Sudbury Victor mine has lithium concentrations that closely follow the sea water lithium-bromine concentration trajectory, as well as delta6Li values of approximately -28/1000. This indicates that the lithium in this brine is predominantly marine in origin with a relatively minor component of crustal lithium leached from the host rocks. In contrast, the Thompson/Snow Lake brine has anomalously low lithium concentrations, indicating that it has largely been removed from solution by alteration minerals. Furthermore, brine and nonbrine mine waters at the Thompson mine have large delta6Li variations of approximately 30/1000, which primarily reflects mixing between deep brine with delta6Li of -35 +/- 2/1000 and near surface mine water that has derived higher delta6Li values through interactions with their host rocks. The contrary behavior of lithium in these two brines shows that, in systems where it has behaved conservatively, lithium isotopes can distinguish brines derived from marine sources.  相似文献   

5.
Allen DM 《Ground water》2004,42(1):17-31
Stable isotopes of 18O and 2H in water, and 34S and 18O in dissolved SO4, are used to verify the interpretation of the chemical evolution and proposed sources of salinity for two islands that have undergone postglacial rebound. Results for delta18O and delta34S in dissolved SO4 on the Gulf Islands, southwest British Columbia, Canada, suggest a three-component mixing between (1) atmospheric SO4 derived largely from recharge of meteoric origin, (2) modern marine SO4 associated with either modern-day salt water intrusion or Pleistocene age sea water, and (3) terrestrial SO4. The age of the marine SO4 is uncertain based on the geochemistry and SO4 isotopes alone. Two options for mixing of saline ground waters are proposed--either between current-day marine SO4 and atmospheric SO4, or between older (Pleistocene age) marine SO4 and atmospheric SO4, delta18O and delta2H compositions are relatively consistent between both islands, with a few samples showing evidence of mixing with water that is a hybrid mixture of Fraser River water and ocean water. The isotopic composition of this hybrid water is approximately delta18O = 10 per thousand. delta18O and delta2H values for many saline ground waters plot close to the global meteoric water line, which is distinctly different from the local meteoric water line. This suggests a meteoric origin for ground waters that is different from the current isotopic composition of meteoric waters. It is proposed these waters may be late Pleistocene in age and were recharged when the island was submerged below sea level and prior to rebound at the end of the last glaciation.  相似文献   

6.
New Sr and C isotopic data, both obtained on the same samples of marine carbonates, provide a relatively detailed record of isotopic variation in seawater through the latest Proterozoic and allow, for the first time, direct correlation of these isotopic changes in the Vendian ( 540–610 Ma). The strong isotope variations determined in this study record significant environmental and tectonic changes. Together with a fairly poorly constrained Nd isotopic record, the Sr and C isotopic records can be used to constrain rates of erosion, hydrothermal alteration and organic C burial. Further, comparison of these records with those of the Cenozoic permit investigation of the general relationship between global tectonics and continental glaciation. In particular, results of this study show a very large change in the 87Sr/86Sr of marine carbonates from low pre-Vendian ( > 610 Ma) values ( 0.7066) to high Middle Cambrian values ( 0.7090). This change is greater in magnitude than the significant increase in seawater 87Sr/86Sr through the Cenozoic. Both changes are attributed to high erosion rates associated with continent-continent collisions (Pan-African and Himalayan-Tibetan). In the latest Proterozoic these high erosion rates, probably coupled with high organic productivity and anoxic bottom-water conditions, contributed to a significant increase in the burial rate of organic C. Ice ages mark both the Neoproterozoic and Cenozoic, but different stratigraphic relationships between the Sr isotopic increase and continental glaciation indicate that uplift-driven models proposed to explain Cenozoic climatic change cannot account for the latest Proterozoic ice ages.  相似文献   

7.
Abstract

In the temperate and semiarid environment the salinity of both surface and subsurface (meteoric) waters is dominated by the weathering products of soil and aquifer minerals, since even surface waters have a history of subsurface flow. In the desert environment, in contrast, surface flows are more superficial and their chemistry dominated by the aeolian salinity. This has both a marine input and a contribution from recycled salinity from surface accumulation of evaporitic minerals. Both these sources have chloride (and to a lesser extent sulphate) as the dominant anion.  相似文献   

8.
Controversy exists over the extent of glaciation in Eastern Asia at the Last Glacial Maximum: complete ice sheet cover vs. restricted mountain icefields (an area discrepancy equivalent to 3.7 Greenland Ice Sheets). Current arguments favour the latter. However, significant last glacial ice-rafted debris (IRD) exists in NW Pacific ocean cores, which must have been sourced from a major ice sheet somewhere bordering the North Pacific. The origin of this IRD is addressed through a combination of marine core analysis, iceberg trajectory modelling and remote sensing of glacial geomorphology. We find compelling evidence for two stages of glaciation centred on the Kamchatka area of maritime southeast Russia during the last glacial, with ice extent intermediate in size between previous maximum and minimum reconstructions. Furthermore, a significant increase in iceberg flux precedes, and accompanies, a substantial marine core ash deposit at around 40 ka BP. We speculate that rapid decay of the first stage of the ice sheet may have triggered substantial volcanic activity.  相似文献   

9.
Isotopic fractionation of 10B/11B provides a sound tool for identifying hydrogeochemical processes in complex areas, owing to its ability to discriminate between various scenarios. In addition, the occurrence of boron as a minor element in areas of active volcanism allows its use in comparison with concentrations of other conservative or non‐conservative ions. This allows the detection of water mixtures of diverse origin and temperature, deep or shallow, including fresh water, seawater and even brines. This tool was applied in studies of the volcanic islands of Ischia and São Miguel, across widely differing geographical and climatic contexts. Five groups of waters have been identified in Ischia Island: marine, transition, hot carbonated, cold carbonated and fresh waters. For São Miguel Island the identified groups are cold carbonic, hot carbonic, boiling and acidic boiling waters. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
Microplastics have been recently identified as marine pollutants of significant concern due to their persistence, ubiquity and potential to act as vectors for the transfer and exposure of persistent organic pollutants to marine organisms. This study documents, for the first time, the presence and abundance of microplastics (>1.6 microm) in Singapore's coastal environment. An optimized sampling protocol for the collection and analysis of microplastics was developed, and beach sediments and seawater (surface microlayer and subsurface layer) samples were collected from nine different locations around the coastline. Low density microplastics were separated from sediments by flotation and polymer types were identified using Fourier transform infrared (FTIR) spectrometry. Synthetic polymer microplastics identified in beach sediments included polyethylene, polypropylene, polystyrene, nylon, polyvinyl alcohol and acrylonitrile butadiene styrene. Microplastics were detected in samples from four out of seven beach environments, with the greatest quantity found in sediments from two popular beaches in the eastern part of Singapore. Polyethylene, polypropylene and polystyrene microplastics were also found in the surface microlayer (50-60 microm) and subsurface layer (1m) of coastal waters. The presence of microplastics in sediments and seawater is likely due to on-going waste disposal practices from industries and recreational activities, and discharge from shipping.  相似文献   

11.
Marine biodiversity in almost all oceans is being threatened at the genetic, species, and ecosystem levels. The marine ecosystem is being degraded and the extinction rate of marine organisms has accelerated. In this paper, the potential causes of fishery resource exhaustion in the East China Sea are analyzed, including the change in the stoichiometric composition of seawater with regard to the concentrations of N and P, toxic effects of marine pollution, marine habitat destruction, increased seawater temperatures caused by climate warming, ocean acidification, pressure from overfishing, and the spread of marine pathogenic bacteria. It is believed that the factors mentioned above have significant impact on the exhaustion of fishery resources in the East China Sea. However, considering the cumulative, synergistic, and superimposed effects as well as the amplification effects resulting from their interactions, the actual risk of ecological extinction of marine organisms might be even more severe than that previously estimated. Hence, ecosystem management and research focused on a single risk factor or influencing factor is not enough to prevent marine ecosystem degradation and fishery resource exhaustion. A comprehensive, systematic, effective, and ecosystem-based management policy is imperative for healthy and sustainable fishery development in the East China Sea.  相似文献   

12.
Groundwater flow and chemical transport in subterranean estuaries are poorly understood despite their potentially important implications for chemical fluxes from aquifers to coastal waters. Here, a numerical study of the dynamics in a subterranean estuary subject to tidal forcing is presented. Simulations show that salt transport associated with tidally driven seawater recirculation leads to the formation of an upper saline plume in the intertidal region. Computed transit times and flow velocities indicate that this plume represents a more active zone for mixing and reaction than the dispersion zone of the lower, classical salt wedge. Proper conceptualisation of this surficial mixing zone extends our understanding of processes within the subterranean estuary. Numerical tracer simulations reveal that tidal forcing may reduce the threat of a land-derived contaminant discharging to the marine environment by modifying the subsurface transport pathway and local geochemical conditions. Mixing and stratification in the subterranean estuary are strongly affected by both inland and tidal forcing. Based on the estuarine analogy we present a systematic classification of subterranean estuaries.  相似文献   

13.
~~Salinity variation of formation water and diagenesis reaction in abnormal pressure environments@解习农 @焦赳赳 @李思田 @成建梅~~~~  相似文献   

14.
The coastal plain bordering the southern Venice Lagoon is a reclaimed lowland characterized by high subsidence rate, and ground level and water-table depth below sea level. In this agricultural region, where the surface hydrologic network is entirely artificially controlled by irrigation/drainage canals, salinization problems have long been encountered in soils and groundwaters. Here we use isotopic and geochemical tracers to improve our understanding of the origin of salinization and mineralization of the semi-confined aquifer (0–40 m), and the freshwater inputs to this hydrological system. Water samples have been collected at different seasons in the coastal Adriatic Sea, lagoon, rivers and irrigation canals, as well as in the semi-confined aquifer at depths between 12 and 35 m (14 boreholes), and in the first confined aquifer (three boreholes drilled between 40 and 80 m depth). Stable isotopes (δ18O and δD) and conductivity profiles show that direct saline intrusion from the sea or the lagoon is observed only in a restricted coastal strip, while brackish groundwaters are found over the entire topographic and piezometric depression in the centre of the study area. Fresh groundwaters are found only in the most western zone. The sharp isotopic contrast between the western and central regions suggests disconnected hydrological circulations between these two parts of the shallow aquifer. The border between these two regions also corresponds to the limits of the most strongly subsiding zone.Our results can be interpreted in terms of a four end-member mixing scheme, involving (1) marine water from the lagoon or the open sea, (2) alpine and pre-alpine regional recharge waters carried either by the main rivers Adige, Bacchiglione and Brenta (irrigation waters) or by the regional groundwater circulation, (3) local precipitation, and (4) evaporated waters infiltrated from the surface. Infiltration from the surface is also revealed by the stratification of the electrical conductivity profiles, showing that the brackish groundwaters are overlain by a shallow layer of less saline water all over the central depression. In the first confined aquifer, the groundwaters have isotopic compositions similar to the deep groundwaters of the Venetian confined aquifers (40–400 m depth). The isotopic data and the Br/Cl ratio show that the origin of the salinization of the phreatic aquifer can be ascribed to seawater intrusion alone, with no indication of the involvement of deep brines (identified at 450 m depth) in the process.The chemical composition of the saline and brackish groundwaters is characterized by an excess of sodium and a deficit of calcium compared to conservative mixing between fresh groundwaters and seawater. This suggests that the phreatic aquifer is progressively freshening, as a consequence of the beneficial influence of the extensive irrigation/drainage network, including raised canals acting as a hydraulic barrier along the coast. This freshening tendency may have been lasting since the reclamation in the mid-twentieth century, and has probably been accelerated by the ban on groundwater abstraction since the 1970s.  相似文献   

15.
The Valles caldera in New Mexico hosts a high-temperature geothermal system, which is manifested in a number of hot springs discharging in and around the caldera. In order to determine the fluid pathways and the origin of chloride in this system, we measured 36Cl/Cl ratios in waters from high-temperature drill holes and from surface springs in this region. The waters fall into two general categories: recent meteoric water samples with low Cl concentrations (< 10 mg/L) and relatively high 36Cl/Cl ratios [(300–1000) × 10−15]; and geothermal brines with high Cl concentrations (800–9400 mg/L) but low 36Cl/Cl ratios [(11–26) × 10−15]. The 36Cl/Cl ratios for meteoric waters are slightly higher than expected for this region, suggesting a small addition of anthropogenic 36Cl. Because of low 36Cl/Cl ratios and high Cl concentrations in the brines, chloride in these waters must be derived from subsurface sources. A comparison between the observed 36Cl/Cl ratios in the brines and those calculated for potential source formations in this region indicates that the present host formations, mainly volcanic tuffs, cannot be major sources of chloride, and that formations at greater depth, such as the Paleozoic and Precambrian formations are more likely to be sources of chloride in the brines. The results suggest that brines are meteoric waters which penetrated into the basement where they derive chloride from leaching of basement rocks and/or from saline pore fluids trapped there, along with likely addition of chloride from Paleozoic strata. Although these fluids have since come to reside in the intracaldera volcanic sequence after convective upwelling, they do not derive much Cl from the volcanic strata; and residence times of fluids in the volcanics are < 100,000 years.  相似文献   

16.
The occurrence of thermal/spa waters on Lesvos Island is related to the presence of a major faulting system. Thermal waters are the result of mixing of meteoric and infiltrating seawater at great depth, and their total salinity depends on the percentage of seawater in their composition. According to the diagrams of main elements, trace elements and environmental isotopes, most of the components that determine the chemical composition of thermal waters such as sodium, chloride and sulphates originate from seawaters. On the other hand, the concentration of calcium, magnesium, boron, lithium, etc., was affected by water–rock interaction under high temperature conditions. Moving towards the surface, thermal waters may become polluted by influx of recent seawater, allowing their chemical composition to become similar to that of seawater. The thermal waters of Lesvos Island present relatively high concentrations of ammonia and redox sensitive metals because they are hosted in a reducing environment. They also exhibit low nitrate concentrations due to their mixture with recent fresh water. Finally, they show increased radon concentrations, ranging from 20 to 60 kBq m?3 in the eastern and southern parts of the island, and about 230 kBq m?3 in the north, in the area of Eftalou–Argenos. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
Understanding the history of Antarctic glaciation is important for interpreting paleoclimatic changes and estimating the changes in climate, sea level, and ice volume in the future. Ice core studies of the East Antarctic Ice Sheet (EAIS) and marine sediment cores from the entire Ross Sea have employed numerous proxies to reconstruct the glacial history of the Antarctic region. However, the ice and marine core records can be biased because of their specific locations, such as the uppermost accumulation zone or the terminus of the ablation zone, thereby introducing significant uncertainties in ice modeling. In this study, we analyzed 34 new 10Be and 26Al samples from four benches that were glaciated in the past by David glacier and incorporate the present ice-free flat surfaces. We suggest that the David glacier experienced monotonic and stepwise vertical lowering along the flanks of Mt. Priestley since the early Pleistocene. The uppermost bedrock benches on Mt. Priestley were exposed at 1.77 ± 0.32 Ma, with no evidence of subsequent overriding by readvancing ice. At Mt. Priestley, the David glacier has been characterized by a cold-based regime since 1.77 Ma, with a denudation rate of only ∼16 cm/Ma, corresponding to the regional transition from warm to cold-based glaciation at 3.5 Ma. Simple exposure ages from two lower benches date to Marine Isotope Stage (MIS) 7 (234.1 ± 13.1 ka; 545 m asl) and MIS 4 (64.8 ± 13.7 ka; 222 m asl), suggesting that, since MIS 8, the overall lowering of glaciers has remained monotonic. The upper bench marks the lower limit of the MIS 8 glacial period and the upper limit of Penultimate Glacial Maximum (MIS 6), while the lower landform defines the upper limit of the last glacial period (MIS 4–2). The magnitude of Quaternary ice thinning at the David glacier was the highest (∼990 m) in the present terminal area (i.e., the most sensitive ablation zone), in contrast to the other outlet glaciers draining into the Terra Nova Bay, which experienced less ice lowering. The combination of the terrestrial (in situ 10Be and 26Al) and previous marine (authigenic 10Be) cosmogenic data used in our study document the history of lowering of the David glacier driven by climatic changes during the Pleistocene. Both deglaciation and glaciation were limited during the mid-Pleistocene transition (MPT) and prior to the mid-Bruhnes event (MBE), due to the prevailing cold and arid climate, whereas deglaciation was dominant during other warm periods.  相似文献   

18.
Approaches to schematization used in the models of interacting water flows in different media are considered. Studies of the interaction between subsurface and surface waters are analyzed. Specific features of water flow-out from watercourses (channels), pipelines, etc. are discussed. Some steady-state problems are formulated, and their solutions are given. Dynamic effects of pressure changes in water flows are shown based on these solutions. The effects that appear in such cases are explained theoretically and correlated with experiments.  相似文献   

19.
The spatial distribution and movement of the sewage plume from McMurdo Station, Antarctica, was investigated in the ocean under the early summer ice. Samples of seawater were obtained via holes drilled through the ice and analysed for coliform bacteria. Ocean currents were also examined to determine their effect on the movement of the plume. High densities of coliform bacteria were found along the ca. 1 km shoreline of McMurdo Station and the plume extended 200–300 m seaward. The relocation of the outfall from a surface configuration to the subsurface (11 m deep) had little influence on the distribution of the plume that sometimes reached the seawater intake station, 400 m to the south. Ocean current measurements in the study area confirmed that, while the prevailing advection was to the north and away from the intake area, episodic reversals of flow at some current meter stations coincided with pulses of sewage that moved into the intake. These findings support the use of bacterial indicators as one means to map the distribution and movement of recent sewage contamination in cold (−1.8°C) seawater and provides evidence that the disposal and movement of domestic wastes in coastal polar environments deserves attention.  相似文献   

20.
Survivorship of ballast-entrained marine heterotrophic protists was examined following freshwater flushing. The recovered taxa, including typical marine rhizopods such as Platyamoeba murchelanoi, Labyrinthula spp, Pontifex maximus, Thecamoeba orbis, and the ciliate Condylostoma arenarium, were reared in waters of various salinities. After 2 months, the original salinity subsample retained five protist taxa, the freshwater six, including the amoeba Cochliopodium bilimbosum, the brackish water 22 taxa, and the seawater 19 taxa. Since protists form a major component of marine microbial food webs, their survival may be instrumental in supporting complex ballast-entrained food webs. Our study raises questions as to the reliability of open-ocean exchange (OOE) or freshwater flushing as effective control measures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号