首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 505 毫秒
1.
The paper describes a sequence of Pliocene(? ) to Quaternary age calcretes developed within alluvial fan and fluvial gravels in the Tabernas Basin, Almería Province, southeast Spain. Calcrete profiles are described from sites adjacent to major tributaries of the Rambla de Tabernas. Six distinct calcrete units are identified within the basin. These have variable distributions but have developed in an identifiable evolutionary sequence. Two pairs of calcrete units are widely present across the basin preserving two former land surfaces. Each of the former land surfaces has been planated and subsequently buried by alluvial fan or fluvial gravels. A massive calcrete unit is present at the base of each gravel sequence, immediately in contact with the underlying bedrock, with a less well developed calcrete unit situated at the top of the gravel sequence. The lowest two calcrete units within the basin are more spatially restricted and are confined to the floors and flanks of incised drainage lines. The geochemistry, macro- and micromorphological properties and geomorphological positions of the calcrete units are outlined and, on the basis of this information, their mode of origin identified. Two main modes of calcrete genesis appear to be present: massive calcretes situated in direct contact with bedrock are suggested to have formed by groundwater processes, whilst calcretes situated at the top of gravel sequences are likely to have developed by pedogenic processes. Calcrete genesis is subsequently considered in the context of the reconstruction of the early phases of landscape development, and is suggested to have been controlled by phases of uplift and stability within the Tabernas Basin. © 1998 John Wiley & Sons, Ltd.  相似文献   

2.
Quaternary sedimentation in the Moshaweng dry valley of southeastern Botswana is evaluated on the basis of geomorphological evolution and sedimentological analyses. Stratigraphic evidence reveals an upper surface (1095 m) containing abundant sil‐calcrete, an intermediate surface (1085 m) in which sil‐calcrete underlies nodular calcrete and lower (1075 m) surface in which sil‐calcrete and nodular calcrete are interbedded. This subdivision is reflected in the geochemical composition of the sediments which show an overall trend of decreasing SiO2 content (and increasing CaCO3 content) with depth from the highest to the lowest surface levels. The calcretes and sil‐calcretes represent modifications of pre‐existing detrital Kalahari Group sand and basal Kalahari pebbles which thinned over a Karoo bedrock high. Modification took place during wet periods when abundant Ca++‐rich groundwater flowed along the structurally aligned valley system. With the onset of drier conditions, water table fluctuations led to the precipitation of nodular calcretes in the phreatic layer to a depth of about 20 m. A major geochemical change resulted in the preferential silicification of the nodular calcrete deposits. Conditions for silica mobilization may be related to drying‐induced salinity and in situ geochemical differentiation brought about by pebble dissociation towards the top of the sediment pile. As calcretization and valley formation progressed to lower levels, silica release took place on a diminishing scale. Thermoluminescence dating infers a mid‐Pleistocene age for sil‐calcrete formation suggesting that valley evolution and original calcrete precipitation are much older. Late stage dissolution of CaCO3 from pre‐existing surface calcretes or sil‐calcretes led to the formation of pedogenic case‐hardened deposits during a time of reduced flow through the Moshaweng system possibly during the upper or late Pleistocene. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

3.
Abstract Mostly siliciclastic lacustrine deposits from five stratigraphically different formations (Jinju Formation, Jindong Formation, Geoncheonri and correlative Hwasan Formations and Dadaepo Formation, in ascending order) in the Cretaceous Gyeongsang Basin, Korea, were examined for aspects of lithofacies and pedogenesis to evaluate the relative influence of geological controls on the development of palustrine calcretes (calcretes formed from palustrine deposits). The pedogenic carbonate development of palustrine deposits in the Gyeongsang Supergroup varies from formation to formation. The highest development is in the Dadaepo Formation and the second is in the Jindong Formation. The lowest development of palustrine calcretes is in the Geoncheonri and Hwasan Formations and the Jinju Formation shows intermediate development. The more negative d13C values and the less negative d18O values of the Dadaepo palustrine calcretes confirm greater pedogenic development in the Dadaepo Formation. That the highest development was in the Dadaepo Formation was attributed to it having the smallest lake size, indicating that lake size is critical to palustrine calcrete development in non‐carbonate lakes under semi‐arid climate. In spite of having the largest lake size, the higher development in the Jindong Formation could have resulted from its lowest lake gradient and most arid paleoclimate. The higher development of palustrine calcretes in the Late Cretaceous deposits (Jindong Formation) than the Early Cretaceous deposits (Jinju Formation) reflect overall increase in aridity throughout the period during the deposition of the Gyeongsang Supergroup. Consequently, the diverse development of the palustrine calcretes in the Gyeongsang Supergroup indicates that the lacustrine settings varied in time and space throughout the evolution of the Cretaceous Gyeongsang Basin. Such variation in palustrine calcrete development according to the change in paleoenvironments may provide a basis to interpret the relative paleoenvironmental condition of lacustrine deposits including paleoclimate, lake size and gradient.  相似文献   

4.
Calcrete‐coated remnants of landslide debris and alluvial deposits are exposed along the presently stable hillslopes of the Soreq drainage, Judea Hills, Israel. These remnants indicate that a transition from landslide‐dominated terrain to dissolution‐controlled hillslope erosion had occurred. This transition possibly occurred due to the significant decrease in tectonic uplift during the late Cenozoic. The study area is characterized by sub‐humid Mediterranean climate. The drainage hillslopes are typically mantled by thick calcrete crusts overlying Upper Cretaceous marine carbonate rocks. Using TT‐OSL dating of aeolian quartz grains incorporated in the calcrete which cements an ancient landslide deposit, we conclude that incision of ~100 m occurred from 1056 ± 262 to 688 ± 86 ka due to ~0·3° westward tilt of the region; such incision invoked high frequency of landslide activity in the drainage. The ages of a younger landslide remnant, alluvial terrace, and alluvial fan, all situated only a few meters above the present level of the active streambed, range between 688 ± 86 ka and 244 ± 25 ka and indicate that since 688 ± 86 the Soreq base level had stabilized and that landslide activity decreased significantly by the middle Pleistocene. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
We present laboratory and field evidence that in mountainous catchment‐fan systems persistent alluvial fanhead aggradation and trenching may result from infrequent, large sediment inputs. We suggest that the river‐fan systems along the fault‐bounded range front of the western Southern Alps, New Zealand, are likely to be in a dynamic equilibrium on ≥103‐yr timescales, superimposed on which their fanheads undergo long‐term cumulative episodic aggradation. These fanheads are active only in rare events, do not take part in the usual behaviour of the catchment‐fan system and require much longer to exhibit dynamic equilibrium than the rest of the fan. These findings (1) increase our knowledge of the effects of extreme events on alluvial fan morphodynamics in humid climates, (2) question the general applicability of inferring past climatic or tectonic regimes from alluvial‐fan morphology and stratigraphy and (3) provide a conceptual basis for hazard zonation on alluvial fans. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
Mountain ranges are frequently subjected to mass wasting events triggered by storms or earthquakes and supply large volumes of sediment into river networks. Besides altering river dynamics, large sediment deliveries to alluvial fans are known to cause hydro‐sedimentary hazards such as flooding and river avulsion. Here we explore how the sediment supply history affects hydro‐sedimentary river and fan hazards, and how well can it be predicted given the uncertainties on boundary conditions. We use the 2D morphodynamic model Eros with a new 2D hydrodynamic model driven by a sequence of flood, a sediment entrainment/transport/deposition model and a bank erosion law. We first evaluate the model against a natural case: the 1999 Mount Adams rock avalanche and subsequent avulsion on the Poerua river fan (West Coast, New Zealand). By adjusting for the unknown sediment supply history, Eros predicts the evolution of the alluvial riverbed during the first post‐landslide stages within 30 cm. The model is subsequently used to infer how the sediment supply volume and rate control the fan aggradation patterns and associated hazards. Our results show that the total injected volume controls the overall levels of aggradation, but supply rates have a major control on the location of preferential deposition, avulsion and increased flooding risk. Fan re‐incision following exhaustion of the landslide‐derived sediment supply leads to sediment transfer and deposition downstream and poses similar, but delayed, hydro‐sedimentary hazards. Our results demonstrate that 2D morphodynamics models are able to capture the full range of hazards occurring in alluvial fans including river avulsion aggradation and floods. However, only ensemble simulations accounting for uncertainties in boundary conditions (e.g., discharge history, initial topography, grain size) as well as model realization (e.g., non‐linearities in hydro‐sedimentary processes) can be used to produce probabilistic hazards maps relevant for decision making. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

7.
Relationships between the surface area and age of alluvial deposits were used to estimate the residence time of alluvium in the 2205 km2 Waipaoa River basin, New Zealand. The contemporary Waipaoa River is an efficient transporter of sediment to the continental shelf, but the basin has been characterized by rapid channel and valley aggradation in the historic period, and by extensive mid‐ to late Holocene alluvial storage in the lower reaches. The area‐weighted mean age of alluvial deposits in the lower part of the river basin is ~4400 yr. These deposits comprise terrace remnants isolated by downcutting, and Holocene to Recent sediments that are potentially remobilizable by the modern river. Even though the amount of storage is small relative to downstream transport, the majority of the potentially remobilizable alluvium is likely to remain in storage for >100 yr, and its half‐life (time for 50 per cent removal) is >2000 yr. Within the confines of the flfloodplain, the apparent ‘loss’ of older deposits is due primarily to burial, but losses of the most recent deposits are due almost entirely to remobilization (30–40 per cent), with the remainder preserved in the alluvial record for at least 104 yr. Most of this sediment is likely to remain in storage until there is a shift to a degradational state. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

8.
Long‐term aggradation of the Waiho River, South Westland, New Zealand, has now raised the head of its alluvial fan to unprecedented elevations. In its natural state the river would, like all other major rivers in the area, be somewhat incised into its fanhead. The only relevant factor able to account for the aggradation is the presence of control banks (‘stopbanks’ in local parlance) that restrict the ability of the river to move over the whole of its natural fanhead. A 1 : 3333 scale physical hydraulic model (a ‘microscale’ model) was used to study this situation. An alluvial fan was generated in the model and allowed to develop to equilibrium with steady inputs of water and sediment within boundaries geometrically similar to those of the natural unrestricted Waiho River. The boundaries were then altered to represent the presence of the stopbanks, and the fan allowed to continue evolving under the same water and sediment inputs. The model fanhead aggraded in a spatial pattern similar to that recorded on the Waiho. Taking into consideration the limitations of microscale modelling, these results indicate that the aggradation in the Waiho is a result of the lateral restriction of the river by stopbanks. This poses fundamental questions about the variables that control the behaviour of alluvial fans. The results also suggest that microscale modelling can be used to make reliable quantitative predictions of the effects of engineering works on rivers, in spite of the low level of dynamic similarity with the prototype compared to that in larger‐scale models. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

9.
Micromorphology of calcic accumulations(calcite,whewellite and gypsum) and geochemical indices were considered as indicators of genesis and evolution of pedogenic accumulations in soils and paleosediments of the Argentinean Pampa.Two groups of separate and independent calcic accumulations were studied using scanning electron microscopy:(i) in situ Argiudolls,reflecting the current soil formation;(ii) in the layers of calcrete(locally named tosca).reflecting the past environments and conditions of these layers sedimentation.New pedogenic gypsum accumulations in Argiudolls were described and possible ways of their formation were suggested.Combined analyses of morphology of carbonate accumulations and geochemical indices in different horizons of Argiudolls and layers of tosca showed that the tosca is paleopedocomplex with complicated formation history.Influence of current environment on tosca morphology is absent,so it is possible to use these pedofeatures for paleoreconstructions in further studying.  相似文献   

10.
The dynamics of sediment transport capacity in gravel‐bed rivers is critical to understanding the formation and preservation of fluvial landforms and formulating sediment‐routing models in drainage systems. We examine transport‐storage relations during cycles of aggradation and degradation by augmenting observations of three events of channel aggradation and degradation in Cuneo Creek, a steep (3%) gravel‐bed channel in northern California, with measurements from a series of flume runs modeling those events. An armored, single‐thread channel was formed before feed rates were increased in each aggradation run. Output rates increased as the channel became finer and later widened, steepened, and braided. After feed rates were cut, output rates remained high or increased in early stages of degradation as the incising channel remained fine‐grained, and later decreased as armoring intensified. If equilibrium was not reached before sediment feed rate was cut, then a rapid transition from a braided channel to a single‐thread channel caused output rates for a given storage volume to be higher during degradation than during aggradation. Variations in channel morphology, and surface bed texture during runs that modeled the three cycles of aggradation and degradation were similar to those observed in Cuneo Creek and provide confidence in interpretations of the history of change: Cuneo Creek aggraded rapidly as it widened, shallowed, and braided, then degraded rapidly before armoring stabilized the channel. Such morphology‐driven changes in transport capacity may explain the formation of flood terraces in proximal channels. Transport‐storage relations can be expected to vary between aggradation and degradation and be influenced by channel conditions at the onset of changes in sediment supply. Published in 2011. This article is a US Government work and is in the public domain in the USA.  相似文献   

11.
A mathematical model which estimates the scale-independent sediment surface profile of alluvial fans has been developed. This model utilizes a diffusive sediment transport model and an unsteady, radial flow, conservation relationship. These equations are approximately solved assuming a quasi-steady-state closure with appropriate modelling assumptions for two end member fan types: (1) fans where most of the fan surface is depositionally active (denoted here as ‘homogeneous’) and (2) fans characterized by channelling and sediment sorting processes. The fundamental result for these two fan types is a dimensionless sediment profile relationship which approximates most fan surfaces. The model suggests that the overall dimensionless morphology of alluvial fans is governed more by fundamental diffusion principles in sediment deposition than by individual environmental or basin characteristics. Additionally, this work potentially can be extended to model temporal variation in fan development. Preliminary comparison with alluvial fan profiles is reasonable, indicating that this model provides useful qualitative and quantitative information relating to alluvial fan process and morphology. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

12.
Factors influencing sediment transport and storage within the 156·6 km2 drainage basin of Pancho Rico Creek (PRC), and sediment transport from the PRC drainage basin to its c. 11 000 km2 mainstem drainage (Salinas River) are investigated. Numeric age estimates are determined by optically stimulated luminescence (OSL) dating on quartz grains from three sediment samples collected from a ‘quaternary terrace a (Qta)’ PRC terrace/PRC‐tributary fan sequence, which consists dominantly of debris flow deposits overlying fluvial sediments. OSL dating results, morphometric analyses of topography, and field results indicate that the stormy climate of the Pleistocene‐Holocene transition caused intense debris‐flow erosion of PRC‐tributary valleys. However, during that time, the PRC channel was backfilled by Qta sediment, which indicates that there was insufficient discharge in PRC to transport the sediment load produced by tributary‐valley denudation. Locally, Salinas Valley alluvial stratigraphy lacks any record of hillslope erosion occurring during the Pleistocene‐Holocene transition, in that the alluvial fan formed where PRC enters the Salinas Valley lacks lobes correlative to Qta. This indicates that sediment stripped from PRC tributaries was mostly trapped in Pancho Rico Valley despite the relatively moist climate of the Pleistocene‐Holocene transition. Incision into Qta did not occur until PRC enlarged its drainage basin by c. 50% through capture of the upper part of San Lorenzo Creek, which occurred some time after the Pleistocene‐Holocene transition. During the relatively dry Holocene, PRC incision through Qta and into bedrock, as well as delivery of sediment to the San Ardo Fan, were facilitated by the discharge increase associated with stream‐capture. The influence of multiple mechanisms on sediment storage and transport in the Pancho Rico Valley‐Salinas Valley system exemplifies the complexity that (in some instances) must be recognized in order to correctly interpret terrestrial sedimentary sequences in tectonically active areas. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
Three groups of alluvial terraces together with the modern floodplain mark the Postglacial development of the middle part of the Dane Valley, Cheshire. These are a High terrace group of late Pleistocene age, a Middle terrace group of late Pleistocene to early Holocene age, a Low terrace of mid–late Holocene age, and a modern (post ca. 1840 AD) floodplain. A chronology of erosion, deposition, and landform development since mid-Holocene times is established in this paper on the basis of terrace morphology, stratigraphy, sedimentology, soil analysis, magnetic mineral analysis, and four radiocarbon dates. After dissection of the Middle terrace during the early to mid-Holocene, a long period of lateral activity by the river was followed by a major aggradation phase, which formed the Low terrace surface. This was followed by dissection during the last ca. 300 years and the development of the modern floodplain since ca. 1840 AD. Various explanations for the changes during the Holocene are considered; the Low terrace aggradation appears to be related to a major phase of mediaeval soil erosion.  相似文献   

14.
Deformation structures, within some Quaternary calcretes of Botswana and South Africa, have been classified into five types. Type 1 folds are small-scale (< 2 m wavelength) anticlines in shale or sheet calcrete, separated by wedges of calcrete, polygonal in plan. The anticlines have resulted from horizontal expansion and buckling caused by the disruptive growth of the calcrete wedges. Type 2(a) folds are medium-scale, strongly convoluted features in sheet calcrete and bedrock and are attributed to the introduction of calcrete along major vertical joint planes. Type 2(b) folds are large wavelength (> 20 m), but low amplitude (< 1 m), anticlines in hardpan calcrete; structural evidence suggests dominantly horizontal compression within the hardpan due either to an overall increase in volume of the calcrete, or to the disruptive formation of calcrete in joints in the synclinal areas. The mineralogy of the calcretes is dominated by low-Mg calcite which may have inverted from a high-Mg form; the deformation in type 1 and 2 folds was probably caused by the disruptive and displacive growth of calcite during calcretization. Type 3 folds are saucer-shaped depressions in hardpan calcrete and may be due to the removal of soluble salts below the folded layer during or after calcretization. Finally, type 4 folds are small, diapiric anticlines resulting from the upward injection of swelling clays into calcrete or calcretized shale.  相似文献   

15.
The variability of Quaternary landforms preserved in the Tabernas basin of southeast (SE) Spain raises numerous questions concerning the roles of external forcing mechanisms (e.g. tectonics and/or climate) and internal landscape properties (e.g. lithological controls) in the evolution of the basin‐wide fluvial system over Late Quaternary timescales. In this study, we apply the FLUVER2 numerical model to investigate the significance of these landscape controls upon patterns of landscape evolution. We highlight the complications of generating realistic input datasets for use in the modelling of long‐term landscape evolution (e.g. discharge and runoff datasets). Model outputs are compared to extensive field mapping of fluvial terraces, their sedimentary architecture and optically stimulated luminescence dating results of the terraces. The results demonstrate the significance of non‐linear rates of flexural tectonic uplift towards the west of the Tabernas Basin which have controlled base levels throughout the Quaternary and promoted the formation of a series of diverging fluvial terraces. Our numerical model results further highlight the importance of climate cycles upon river terrace formation. Basin‐wide aggradation events were modelled during the transition from Marine Isotope Stage (MIS) 6 to 5 and the Last Glacial Maximum (LGM) as supported by field evidence. This aggradational pattern supports the regional hypothesis of terrace formation during global glacial cycles and cold‐to‐warm stage transitions and supports the use of sea surface temperature climate proxy data in the modelling exercise. The availability of sediments derived from the surrounding hillslopes and adjacent alluvial fans explains the generation of substantial terrace aggradations. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
Geomorphological analyses of the morphology, lithostratigraphy and chronology of Holocene alluvial fills in a 2·75 km long piedmont reach of the wandering gravel‐bed River South Tyne at Lambley in Northumberland, northern England, have identified spatial and temporal patterns of late Holocene channel and floodplain development and elucidated the relationship between reach‐ and subreach‐scale channel transformation and terrace formation. Five terraced alluvial fills have been dated to periods sometime between c. 1400 BC –AD 1100, AD 1100–1300, AD 1300–1700, AD 1700–1850 and from AD 1850 to the present. Palaeochannel morphology and lithofacies architecture of alluvial deposits indicate that the past 3000 years has been characterized by episodic channel and floodplain change associated with development and subsequent recovery of subreach‐scale zones of instability which have been fixed in neither time nor space. Cartographic and photographic evidence spanning the past 130 years suggests channel transformation can be accomplished in as little as 50 years. The localized and episodic nature of fluvial adjustment at Lambley points to the operation of subreach‐scale controls of coarse sediment transfers. These include downstream propagation of sediment waves, as well as internal controls imposed by differing valley floor morphology, gradient and boundary materials. However, the preservation of correlated terrace levels indicates that major phases of floodplain construction and entrenchment have been superimposed over locally complex patterns of sediment transfer. Reach‐scale lateral and vertical channel adjustments at Lambley appear to be closely related to climatically driven changes in flood frequency and magnitude, with clusters of extreme floods being particularly important for accomplishing entrenchment and reconfiguring the pattern of localized instability zones. Confinement of flood flows by valley entrenchment, and contamination of catchment river courses by metal‐rich fine sediments following recent historic mining operations, have combined to render the South Tyne at Lambley increasingly sensitive to changes in flood regimes over the past 1000 years. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

17.
Although the importance of ENSO on hydrological anomalies has been recognized, variations in sediment fluxes caused by these extreme events are poorly documented. The effect of ENSO is not limited to changes in sediment mobilization. Since ENSO events can affect terrestrial ecosystems, they may have important effects on sediment production and transport in river basins over time spans that are longer than the duration of the event itself. The Catamayo‐Chira basin is an interesting casestudy for investigating these geomorphic implications. The objectives were: (i) to study the effect of ENSO on stream flow and sediment yields in the basin, (ii) to investigate if ENSO events affect sediment yields in the post‐ENSO period and (iii) to understand which factors control the ENSO and post‐ENSO basin response. During strong negative ENSO periods, mean annual stream flow discharge at the inlet of the Poechos reservoir in the lower basin was 5.4 times higher than normal annual discharges, while average sediment fluxes exceeded those of normal years by a factor of about 11. In two heavily affected periods, 45.9% of the total sediment yield in the 29 years observation period was generated. Sediment fluxes in the post‐ENSO period are lower than expected, which proves post‐ENSO event dynamics are significantly different from pre‐event dynamics. Our analysis indicates the increase of vegetation growth in the lower basin is not the main reason explaining considerable sediment flux decrease in post‐ENSO periods. During strong ENSO events, sediment in alluvial stores in the lower part of the basin is removed due to enlarging and deepening of channels. In post‐ENSO periods, normal discharges and persisting sediment supplies from the middle/upper basin lead to river aggradation and storage of large amounts of sediment in alluvial plains. The decrease in sediment export will last for several years until the equilibrium is re‐established. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
Numerical models have not yet systematically been used to predict properties of fluvial terrace records in order to guide fieldwork and sampling. This paper explores the potential of the longitudinal profile model FLUVER2 to predict testable field properties of the relatively well‐studied, Late Quaternary Allier system in France. For the Allier terraces an overlapping 14C and U‐series chronology as well as a record of 10Be erosion rates exist. The FLUVER2 modelling exercise is focused on the last 50 ka of the upper Allier reach because for this location and period the constraints of the available dating techniques are tightest. A systematic calibration based on terrace occurrence and thicknesses was done using three internal parameters related to (1) the sediment erodibility; (2) the sediment transport distance; and (3) the sediment supply derived from the surrounding landscape. As external model inputs, the best available, reconstructed, tectonic, climatic and base‐level data were used. Calibrated model outputs demonstrate a plausible match with the existing fluvial record. Validation of model output was done by comparing the modelled and measured timing of aggradation and incision phases for the three locations. The modelled range of landscape erosion rates showed a reasonably good match with existing erosion rate estimates derived from 10Be measurements of fluvial sands. The quasi‐validated model simulation was subsequently used to make new testable predictions about the timing and location of aggradation and erosion phases for three locations along the Allier river. The validated simulations predict that along the Allier, reach‐specific dynamics of incision and aggradation, related to the variations in sediment supply by major tributaries, cause relevant differences in the local fluvial terrace stratigraphy. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
Walker Creek in Marin County, California is a coastal stream draining to Tomales Bay, which lies in the San Andreas Rift Zone. Its valley contains an alluvial fill with a basal gravel dated at 5000 years BP. In upstream parts of the watershed, channels are incised arroyo-like in the fill leaving the valley floor standing as a high terrace averaging 5·5 m (18 ft) high. Below this terrace is an inner terrace of historic age that stands 2·4 m (8 ft) above the streambed. The stratigraphy and morphology of this valley are seen in others nearby, and indicate that in the last half of Holocene time in this region a single episode of valley alluviation was followed by two episodes of valley cutting. The second episode of valley cutting is occurring in the present time. During the last 60 years the flow has become seasonal, the stream has incised 1·5 m (5 ft) below the inner terrace in upstream reaches, aggraded 1·2 m (4 ft) in downstream reaches, and extended its estuary. Incision upstream has begun to re-expose the bedrock valley floor and is associated with aggradation downstream that has caused the flood plain to overtop both terraces. This has decreased the stream's gradient. Using a stream that is currently effecting major changes in its valley and channel morphology, two aspects of hydraulic adjustment in fluvial systems are examined. The changes in the average slope of the longitudinal profile are small but measureable. Profile concavity has not changed measurably. The various profiles that have existed in Holocene time show that stream gradient can be, but is not necessarily, slightly adjusted during valley filling and cutting. Flow measurements at a high discharge show that the channel has begun to assume the hydraulic geometry of an ephemeral channel. Adjustments of depth, velocity, and roughness appear to be hydraulic adjustments in response to changing watershed conditions.  相似文献   

20.
Suspended sediment dynamics during the period 1964–1985 are examined along the mainstem of Changjiang (Yangtze River). The period represents a basin condition prior to major changes in land management policy and dam building on the river's mainstem. The downstream sediment dynamics reflect basin geology and topography and channel morphology. Sediment exchange within the mainstem was calculated by the development of reach sediment balances that reveal complex temporal and spatial patterns. There is relatively little sediment exchange in the upper, bedrock‐controlled reaches, with systematic increases in the downstream alluvial reaches. Degrading, transfer, and aggrading reaches were identified. Relations between input and output in all reaches were significant but no relation was found between sediment exchange and input/output. Comparison between ‘short‐term’ (22 years) and ‘long‐term’ (52 years) records demonstrates the importance of the record length in studying the suspended sediment dynamics in a large fluvial system. The longer record yielded better correlation and different trends than the shorter record. Sediment transfer (output/input ratio) changes downstream: the dominance of the upstream contributing area in sustaining the appearance of net degradation through most of the river system highlights the importance of reach length on characterisation of suspended sediment dynamics in large fluvial systems. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号