首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Based on the Anapa (ANN) seismic station records of ~40 earthquakes (MW > 3.9) that occurred within ~300 km of the station since 2002 up to the present time, the source parameters and quality factor of the Earth’s crust (Q(f)) and upper mantle are estimated for the S-waves in the 1–8 Hz frequency band. The regional coda analysis techniques which allow separating the effects associated with seismic source (source effects) and with the propagation path of seismic waves (path effects) are employed. The Q-factor estimates are obtained in the form Q(f) = 90 × f 0.7 for the epicentral distances r < 120 km and in the form Q(f) = 90 × f1.0 for r > 120 km. The established Q(f) and source parameters are close to the estimates for Central Japan, which is probably due to the similar tectonic structure of the regions. The shapes of the source parameters are found to be independent of the magnitude of the earthquakes in the magnitude range 3.9–5.6; however, the radiation of the high-frequency components (f > 4–5 Hz) is enhanced with the depth of the source (down to h ~ 60 km). The estimates Q(f) of the quality factor determined from the records by the Sochi, Anapa, and Kislovodsk seismic stations allowed a more accurate determination of the seismic moments and magnitudes of the Caucasian earthquakes. The studies will be continued for obtaining the Q(f) estimates, geometrical spreading functions, and frequency-dependent amplification of seismic waves in the Earth’s crust in the other regions of the Northern Caucasus.  相似文献   

2.
The effect of baric variations of different origins on characteristics of seismic noise is analyzed in the frequency range 0.03–20 Hz. Long period variations in atmospheric pressure caused by cyclones, whose period T ranges from half a day to a few days, are shown to increase the microseismic background amplitude by two to four times in the frequency range 0.03–1 Hz (the coefficient of linear correlation between time variations in the amplitude and atmospheric pressure is K = 0.65 at a significance level of r = 0.95). Short-period baric variations with T ~ 5–30 min associated with the passage of cold fronts lead to a tenfold increase in the microseismic background amplitude in the frequency range 4–8 Hz (K = 0.67 at r = 0.95). In this case, disturbances of seismic background are recorded for 20–60 min after the passage of an atmospheric front and display an exponential drop in the amplitude. In distinction to cyclones, an atmospheric front increases the number of impulsive microseismic events of the resonance type.  相似文献   

3.
The Q-factor estimates of the Earth’s crust and upper mantle as the functions of frequency (Q(f)) are obtained for the seismic S-waves at frequencies up to ~35 Hz. The estimates are based on the data for ~40 earthquakes recorded by the Kislovodsk seismic station since 2000. The magnitudes of these events are MW > 3.8, the sources are located in the depth interval from 1 to 165 km, and the epicentral distances range from ~100 to 300 km. The Q-factor estimates are obtained by the methods developed by Aki and Rautian et al., which employ the suppression of the effects of the source radiation spectrum and local site responses in the S-wave spectra by the coda waves measured at a fixed lapse time (time from the first arrival). The radiation pattern effects are cancelled by averaging over many events whose sources are distributed in a wide azimuthal sector centered at the receiving site. The geometrical spreading was specified in the form of a piecewise-continuous function of distance which behaves as 1/R at the distances from 1 to 50 km from the source, has a plateau at 1/50 in the interval from 50–70 km to 130–150 km, and decays as \({\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 {\sqrt R }}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{${\sqrt R }$}}\) beyond 130–150 km. For this geometrical spreading model and some of its modifications, the following Q-factor estimates are obtained: Q(f) ~ 85f0.9 at the frequencies ranging from ~1 to 20 Hz and Q(f) ~ 75f1.0 at the frequencies ranging from ~1 to 35 Hz.  相似文献   

4.
Conventional f?x empirical mode decomposition (EMD) is an effective random noise attenuation method for use with seismic profiles mainly containing horizontal events. However, when a seismic event is not horizontal, the use of f?x EMD is harmful to most useful signals. Based on the framework of f?x EMD, this study proposes an improved denoising approach that retrieves lost useful signals by detecting effective signal points in a noise section using local similarity and then designing a weighting operator for retrieving signals. Compared with conventional f?x EMD, f?x predictive filtering, and f?x empirical mode decomposition predictive filtering, the new approach can preserve more useful signals and obtain a relatively cleaner denoised image. Synthetic and field data examples are shown as test performances of the proposed approach, thereby verifying the effectiveness of this method.  相似文献   

5.
Analysis of the frequency dependence of the attenuation coefficient leads to significant changes in interpretation of seismic attenuation data. Here, several published surface-wave attenuation studies are revisited from a uniform viewpoint of the temporal attenuation coefficient, denoted by χ. Theoretically, χ( f) is expected to be linear in frequency, with a generally non-zero intercept γ?=?χ(0) related to the variations of geometrical spreading, and slope dχ/df = π/Q e caused by the effective attenuation of the medium. This phenomenological model allows a simple classification of χ( f) dependences as combinations of linear segments within several frequency bands. Such linear patterns are indeed observed for Rayleigh waves at 500–100-s and 100–10-s periods, and also for Lg from ~2 s to ~1.5 Hz. The Lg χ( f) branch overlaps with similar linear branches of body, Pn, and coda waves, which were described earlier and extend to ~100 Hz. For surface waves shorter than ~100 s, γ values recorded in areas of stable and active tectonics are separated by the levels of \(\gamma _{D} \approx 0.2 \times 10^{-3}\) s???1 (for Rayleigh waves) and 8 ×10???3 s???1 (for Lg). The recently recognized discrepancy between the values of Q measured from long-period surface waves and normal-mode oscillations could also be explained by a slight positive bias in the geometrical spreading of surface waves. Similarly to the apparent χ, the corresponding linear variation with frequency is inferred for the intrinsic attenuation coefficient, χ i , which combines the effects of geometrical spreading and dissipation within the medium. Frequency-dependent rheological or scattering Q is not required for explaining any of the attenuation observations considered in this study. The often-interpreted increase of Q with frequency may be apparent and caused by using the Q-based model of attenuation and following preferred Q( f) dependences while ignoring the true χ( f) trends within the individual frequency bands.  相似文献   

6.
Attenuation of seismic compression waves leads to the real existence of a fast P1 wave in rocks which are fully saturated with dropping fluid and a slow P2 wave in the rocks containing gas in their pores. This accounts for the seismic blanking zones below the gas horizons for the P1 waves. Oscillations of gaseous inclusions ensure the energy transfer to the dominant frequencies which are different for the cases of passive seismic (few Hz) and active source seismic (10–20 Hz). The intervals of dominant frequencies are determined from the negative attenuation of these low-frequency waves. According to the observations and the suggested equation, random noise amplifies the signal at these frequencies. Thus, the P2 waves at the dominant frequency of the active source seismics are applicable for elaborating on the details of the saturation of the production layer by hydrocarbons. The relation to the AVO method (Amplitude Variation with Offset) and dilatancy effect during the preparation of an earthquake is noted.  相似文献   

7.
In this study, we collected 1 156 broadband vertical components records at 22 digital seismic stations in Xinjiang region, Ürümqi station, and 7 stations in the adjacent regions during the period of 1999–2003. The records were firstly processed by the stacked spectral ratio method to obtain Q 0 (Q at 1 Hz) and the frequency correlation factor η corresponding to each path. Based on the results, the distribution images of Q 0 and η in 1°×1° grids for Xinjiang region were gained by the back-projection technique. The results indicate that Q 0 is high (300–450) in the Tarim platform and marginal Siberian platform, while Q 0 is low (150–250) in the southern regions as west Kunlun fold system and Songpan-Ganzi fold system. In the northern regions as Junggar fold system and Tianshan fold system, Q 0 is also low (250–300) and η varies between 0.5 and 0.9.  相似文献   

8.
This paper presents the results of simultaneous observations of narrow-band noise VLF emissions in the frequency range 4–10 kHz at Kannuslehto ground station in Northern Finland and by Van Allen Probes (previously RBSP) in the equatorial part of the magnetosphere. The event of December 25, 2015, is considered. During the event, narrow-band noise VLF emissions were detected on the Earth in two frequency ranges, f = 3.5–6 kHz and f = 8–10 kHz, between 1100 and 1300 UT. Narrow-band VLF emissions in the equatorial zone were also observed during that time by the RBSP-B satellite; their frequency was close to the electron equatorial half-gyrofrequency and gradually increased from 3 to 11 kHz during the satellite motion from L = 5.0 to L = 3.0. Analysis of the fine structure of the emissions on the ground showed that their spectral and temporal characteristics corresponded to emissions by the satellites in localized zones at different L-shells. The ground-based observations at lower frequencies correlated with the satellite observations at larger L-shells. In order to localize the regions of the generation of the VLF emissions observed at Kannuslehto auroral station at different frequencies, we calculated the ray trajectories of waves from the equator for the plasma density distributions detected by Van Allen Probes. The calculations of the trajectories showed that the VLF waves detected at Kannuslehto station could travel to the ground only if they propagated in the large-scale density ducts (700–900 km) observed by Van Allen Probes.  相似文献   

9.
Long-period geomagnetic pulsations during the SSC of July 14, 2012, are studied. The prenoon longitudinal sector (09:20–11:30) MLT, from the boundaries of which pulsations propagate azimuthally onto the dawn and dusk sides with an opposite polarization direction and increased amplitude, has been distinguished. The position of this sector relative to noon (a shift to the dawn side) depends on the front azimuthal inclination. It has been found that the polarization direction reverses in going from low (<30°) to middle/subauroral (≥50°) latitudes on the entire dayside. The geomagnetic pulsations mainly fluctuate near the f1 = 2.9 and f2 = 4.4 mHz frequencies. Fluctuations with frequency f1, which coincide with the fluctuation frequency of the IMF х component, predominate at the polar cap latitudes (the open field line region) in the form of rapidly attenuating impulses and at low latitudes with a much smaller amplitude. Fluctuations with frequency f2 are globally registered at all latitudes in the dayside sector below the magnetopause projection as a train of several fluctuations. It is assumed that fluctuations with frequency f1 penetrate from the solar wind, and fluctuations with frequency f2 are radial magnetopause oscillations.  相似文献   

10.
An earthquake withM=6.5 happened on January 15, 2000 in Yao’an of Yunnan Province. After the earthquake, a temporary digital network with 6 detectors around the epicenter area was set up. 402 aftershocks were located more precisely. According to coda short recording observed, the coda averaging quality factor has been acquired via Sato’s single scattering model analyses,Q c(f)=49f 0.95,f=1.5~20.0 Hz, which has the attenuation characteristics of high structural active region.  相似文献   

11.
Simultaneous observations of high-latitude long-period irregular pulsations at frequencies of 2.0–6.0 mHz (ipcl) and magnetic field disturbances in the solar wind plasma at low geomagnetic activity (Kp ~ 0) have been studied. The 1-s data on the magnetic field registration at Godhavn (GDH) high-latitude observatory and the 1-min data on the solar wind plasma and IMF parameters for 2011–2013 were used in an analysis. Ipcl (irregular pulsations continuous, long), which were observed against a background of the IMF Bz reorientation from northward to southward, have been analyzed. In this case other solar wind plasma and IMF parameters, such as velocity V, density n, solar wind dynamic pressure P = ρV2 (ρ is plasma density), and strength magnitude B, were relatively stable. The effect of the IMF Bz variation rate on the ipcl spectral composition and intensity has been studied. It was established that the ipcl spectral density reaches its maximum (~10–20 min) after IMF Bz sign reversal in a predominant number of cases. It was detected that the ipcl average frequency (f) is linearly related to the IMF Bz variation rate (ΔBzt). It was shown that the dependence of f on ΔBzt is controlled by the α = arctan(By/Bx) angle value responsible for the MHD discontinuity type at the front boundary of magnetosphere. The results made it possible to assume that the formation of the observed ipcl spectrum, which is related to the IMF Bz reorientation, is caused by solar wind plasma turbulence, which promotes the development of current sheet instability and surface wave amplification at the magnetopause.  相似文献   

12.
This paper aims at investigating possible regional attenuation patterns in the case of Vrancea(Romania) intermediate-depth earthquakes.Almost 500 pairs of horizontal components recorded during 13 intermediate-depth Vrancea earthquakes are employed in order to evaluate the regional attenuation patterns.The recordings are grouped according to the azimuth with regard to the Vrancea seismic source and subsequently,Q models are computed for each azimuthal zone assuming similar geometrical spreading.Moreover,the local soil amplification which was disregarded in a previous analysis performed for Vrancea intermediate-depth earthquakes is now clearly evaluated.The results show minor differences between the four regions situated in front of the Carpathian Mountains and considerable differences in attenuation of seismic waves between the forearc and backarc regions(with regard to the Carpathian Mountains).Consequently,an average Q model of the type Q(f) = 115×f~(1.25) is obtained for the four forearc regions,while a separate Q model of the type Q(f) = 70×f~(0.90) is computed for the backarc region.These results highlight the need to evaluate the seismic hazard of Romania by using ground motion models which take into account the different attenuation between the forearc/backarc regions.  相似文献   

13.
The hardware complex that was produced by OOO Polynom, Khabarovsk, for registration of the level, temperature, and electrical conductivity of ground water in wells and meteorological parameters (atmospheric pressure, air temperature) at a measurement frequency from 5 min to 1 h is described. The equipment is installed in the wells of Kamchatka and has been used for several years to register variations caused by earthquakes in the parameters of ground waters. Different variations in measured parameters of ground waters due to strong earthquakes of February 28, 2013, M W = 6.8 and May 24, 2013, M W = 8.3 are registered with this equipment in wells YuZ-5 and E-1. The registered variations and their systematization are described taking into account the mechanisms of a seismic impact on the state of the well–water-saturated rock system.  相似文献   

14.
A spectral analysis of simultaneous diurnal variations in the E z component of the quasi-static electric field in the near-Earth atmosphere, VLF radio noise, and the horizontal component of the geomagnetic field, observed at Kamchatka in September 1999, has been performed. These geophysical parameters are indirectly used to study wave processes in the near-Earth atmosphere and in the ionospheric D and dynamo regions within the band of periods of internal gravity waves (T = 0.5?3.5 h). The correlation method in the frequency region is used to analyze the interrelation between the wave processes in these atmospheric regions. The power cross-spectra of various pairs of geophysical parameters have been studied depending on meteorological, seismic, and geomagnetic activities. It is shown that the oscillations in the power spectra in the T ~ 1–1.5 h band of periods are caused by the sources of internal gravity waves in the near-Earth atmosphere and by the remote sources above the dynamo region of the ionosphere within the T ~ 1.5–3 h band of periods.  相似文献   

15.
Attenuation characteristics in the New Madrid Seismic Zone (NMSZ) are estimated from 157 local seismograph recordings out of 46 earthquakes of 2.6?≤?M?≤?4.1 with hypocentral distances up to 60 km and focal depths down to 25 km. Digital waveform seismograms were obtained from local earthquakes in the NMSZ recorded by the Center for Earthquake Research and Information (CERI) at the University of Memphis. Using the coda normalization method, we tried to determine Q values and geometrical spreading exponents at 13 center frequencies. The scatter of the data and trade-off between the geometrical spreading and the quality factor did not allow us to simultaneously derive both these parameters from inversion. Assuming 1/R 1.0 as the geometrical spreading function in the NMSZ, the Q P and Q S estimates increase with increasing frequency from 354 and 426 at 4 Hz to 729 and 1091 at 24 Hz, respectively. Fitting a power law equation to the Q estimates, we found the attenuation models for the P waves and S waves in the frequency range of 4 to 24 Hz as Q P?=?(115.80?±?1.36) f (0.495?±?0.129) and Q S?=?(161.34?±?1.73) f (0.613?±?0.067), respectively. We did not consider Q estimates from the coda normalization method for frequencies less than 4 Hz in the regression analysis since the decay of coda amplitude was not observed at most bandpass filtered seismograms for these frequencies. Q S/Q P?>?1, for 4?≤?f?≤?24 Hz as well as strong intrinsic attenuation, suggest that the crust beneath the NMSZ is partially fluid-saturated. Further, high scattering attenuation indicates the presence of a high level of small-scale heterogeneities inside the crust in this region.  相似文献   

16.
In this contribution, new relationship between the fundamental site frequency and the thickness of soft sediments is obtained for many sites in Egypt. The Horizontal-to-Vertical Spectral Ratio (“H/V”) technique (known as Nakamura technique) can be used as a robust tool to determine the thickness of soft sediments layers overlaying bedrock from observations and measurements of seismic ambient noise data. In Egypt, numerous seismic ambient noise measurements have been conducted in several areas to determine the dynamic properties of soft soil for engineering purposes. At each site in each studied area, the fundamental site frequency was accurately estimated from the main peak in the spectral ratio between the horizontal and vertical component. Consequently, an extensive database of microtremor measurements, well logging data, and shallow seismic refraction data have been configured and assembled for the studied areas. New formula between fundamental site frequency (f0) and thickness of soft sediments (h) is established. The new formula has been validated and compared with other formulas of earlier scientists, and the results indicate that the calculated depth and geometry of the bedrock surface using new formula are in a good agreement with well logs data and previously published seismic refraction surveys in the investigated sites.  相似文献   

17.
The relationship between the characteristics of seismic waves in the Western Caucasus and the geological-tectonic structure of the region is studied for identifying the specificity of seismic propagation in the mountainous regions with a complicated geological structure and forecasting the characteristics of the propagation from the geological and tectonic data. The interpretation is presented for the estimates of the Q-factor of the medium (Q(f) ~ 55f0.9 in the region of Sochi and Q(f) ~ 90f0.7 in the region of Anapa), seismic wave enhancement in the upper crustal layers (A(f) ~ 1), and peak ground acceleration residuals, which were previously determined from the records of the local earthquakes and show the distributions of local variations in the parameters of seismic wave radiation and propagation. The obtained characteristics are interpreted in the context of the up-to-date information about the tectonic, geological, and deep structure of the epicentral zones in the Western Caucasus and neighboring territory of the Black Sea. The discrepancies revealed in the low-frequency behavior of the Q-factor in the vicinities of Sochi and Anapa is accounted for by the spatial scale and character of tectonic dislocations of the rocks in these regions. The local variations in the parameters of seismic radiation and propagation are probably related to the geological features of the region such as the fault structures, including the thrusts, shatter zones, oblique seismic boundaries, variations in the thickness and consolidation of the sedimentary cover, as well as the peculiarities in the structure and material composition of the basement.  相似文献   

18.
The Sakarya prefecture is an interesting area with various seismicity types. This activity comes from earthquakes occurring at the North Anatolian Fault Zone and from a few quarry blast areas in the region. These quarry blast recordings produce errors in the determination of active faults and mapping of the microearthquake activity. Therefore, to recognize the tectonic activity in the region, we need to be able to discriminate between earthquakes and quarry blasts in the catalogues. In this study, a statistical analysis method (linear discriminant function) has been applied to classify seismic events occurring in the Sakarya region. We used 110 seismic events that were recorded by Sakarya University Seismic Station between 2012 and 2014. Time and frequency variant parameters, maximum S wave and maximum P wave amplitude ratio (S/P), the spectral ratio (Sr), maximum frequency (fmax), and total signal duration of the waveform were used for discrimination analyses. The maximum frequency (fmax) versus time duration of the seismic signal gives a higher classification percentage (94%) than the other discriminants. At the end of this study, 41 out of 110 events (44%) are determined as quarry blasts, and 62 (56%) are considered as earthquakes.  相似文献   

19.
Fine structured multiple-harmonic electromagnetic emissions at frequencies around the equatorial oxygen cyclotron harmonics are observed by Van Allen Probe A outside the core plasmasphere(L~5) off the magnetic equator(MLAT~.7.5°)during a geomagnetic storm. We find that the multiple-harmonic emissions have power spectrum density(PSD) peaks during 2–8equatorial oxygen gyroharmonics( f ~ n fO+, n=2–8), while the fundamental mode(n=1) is absent, implying that the harmonic waves are generated near the equator and propagate into the observation region. Additionally, these electromagnetic emissions are linearly polarized. Different from the equatorial noise emission that propagates considerably obliquely, these emissions have moderate wave normal angles(approximately 40°–60°), which predominately increase as the harmonic number increases.Considering their frequency and wave normal angle characteristics, it is suggested that these multiple-harmonic emissions play an important role in the dynamic variation of radiation belt electrons.  相似文献   

20.
This study analyzes and compares the P- and S-wave displacement spectra from local earthquakes and explosions of similar magnitudes. We propose a new approach to discrimination between low-magnitude shallow earthquakes and explosions by using ratios of P- to S-wave corner frequencies as a criterion. We have explored 2430 digital records of the Israeli Seismic Network (ISN) from 456 local events (226 earthquakes, 230 quarry blasts, and a few underwater explosions) of magnitudes Md?=?1.4–3.4, which occurred at distances up to 250 km during 2001–2013 years. P-wave and S-wave displacement spectra were computed for all events following Brune’s source model of earthquakes (1970, 1971) and applying the distance correction coefficients (Shapira and Hofstetter, Teconophysics 217:217–226, 1993; Ataeva G, Shapira A, Hofstetter A, J Seismol 19:389-401, 2015), The corner frequencies and moment magnitudes were determined using multiple stations for each event, and then the comparative analysis was performed.The analysis showed that both P-wave and especially S-wave displacement spectra of quarry blasts demonstrate the corner frequencies lower than those obtained from earthquakes of similar magnitudes. A clear separation between earthquake and explosion populations was obtained for ratios of P- to S-wave corner frequency f 0(P)/f 0(S). The ratios were computed for each event with corner frequencies f 0 of P- and S-wave, which were obtained from the measured f 0 I at individual stations, then corrected for distance and finally averaged. We obtained empirically the average estimation of f 0(P)/f 0(S)?=?1.23 for all used earthquakes, and 1.86 for all explosions. We found that the difference in the ratios can be an effective discrimination parameter which does not depend on estimated moment magnitude M w .The new multi-station Corner Frequency Discriminant (CFD) for earthquakes and explosions in Israel was developed based on ratios P- to S-wave corner frequencies f 0(P)/f 0(S), with the empirical threshold value of the ratio for Israel as 1.48.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号