首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 46 毫秒
1.
本文将大地电磁场分解为一次场和二次场,应用交错网格有限差分法模拟计算大地电磁二次场,并引入各向异性最佳匹配层(PML)吸收边界条件作为二次场边界条件,实现了耦合PML吸收边界条件的三维大地电磁二次场有限差分正演模拟.为了确保正演的稳定性和效率,QMR求解器和磁感应矢量散度校正技术被用于PML吸收边界条件下系数矩阵的快速求解.三维模型正演响应表明,基于二次场的三维大地电磁有限差分算法具有较高的计算精度和可靠性.通过计算分析不同PML吸收因子条件的大地电磁正演结果,显示在适当的吸收因子下,PML吸收边界条件可较大幅度的减小外边界距离,从而有效的压缩模型求解空间,最终提高三维大地电磁正演模拟的效率.  相似文献   

2.
复杂二维/三维大地电磁的有限单元法正演模拟策略   总被引:1,自引:0,他引:1  
复杂二维和三维大地电磁模型的正演数值模拟具有一定的挑战性。对于复杂的二维和三维大地电磁正演问题,我们采用有限单元法进行求解。有限单元法最后形成一个线性方程组,系数矩阵是大型稀疏的带状对称复系数矩阵,并且其条件数远大于1,为严重病态矩阵,求解其对应方程组会遇到很多困难。不完全LU分解处理的Bi-CGSTAB迭代方法可用于该线性方程组的求解,并且具有速度快、精度高和稳定性好等优点;为了模拟无穷远边界及满足计算机的内存需求,在保证计算精度的情况下设计了非均匀网格剖分;在程序编制中,只存储有限元系数矩阵的非零元素,大大减少了正演计算的时间。通过对二维和三维模型电磁响应的计算,验证了算法的正确性。  相似文献   

3.
为了计算带任意地形的各向异性介质中二维大地电磁响应,本文在非结构化网格的基础上,采用有限体积法,开发了二维大地电磁各向异性正演模拟的新算法.首先,从Maxwell方程出发,推导二维各向异性介质中大地电磁场的边值问题;然后,采用三角网格自动生成技术对求解区域进行非结构化网格剖分,进而构建节点中心控制体积单元,利用有限体积方法,得到求解边值问题的大型稀疏线性方程组;最后,利用Pardiso精确地计算了大地电磁响应值.三个各向异性模型的计算结果表明,本文开发的有限体积算法,不仅能够高精度求解带任意地形的大地电磁电导率各向异性问题,而且对于同一模型,该方法的计算消耗和精度都与有限单元法相当.因此,有限体积法是处理电磁法各向异性问题的一种有效方法.  相似文献   

4.
可控源音频大地电磁三维共轭梯度反演研究   总被引:9,自引:5,他引:4       下载免费PDF全文
可控源音频大地电磁法在资源勘探等领域中发挥着重要的作用.我们把有限差分数值模拟方法用于可控源音频大地电磁三维正演,结合正则化反演方案和共轭梯度反演的思路,将反演中的雅可比矩阵计算问题转为求解两次"拟正演"问题,得到模型参数的更新步长,形成反演迭代,实现了可控源音频大地电磁三维共轭梯度反演算法.该反演算法可用于对有限长度电偶源激发下采集到的可控源音频大地电磁全区(近区、过渡区和远区)视电阻率和相位资料进行三维反演定量解释,获得地下三维模型的电阻率结构.理论模型合成数据的反演算例验证了所实现的可控源音频大地电磁三维共轭梯度反演算法的有效性和稳定性.  相似文献   

5.
一种新的三维大地电磁积分方程正演方法   总被引:4,自引:4,他引:0       下载免费PDF全文
采用规则六面体单元和并矢Green函数奇异积分等效积分技术,已有的大地电磁积分正演方法具有不能有效模拟地下复杂地质体和计算精度偏低的缺点.本文提出了一种新的三维大地电磁积分方程正演技术,即采用四面体单元、解析的并矢Green函数奇异积分表达式,达到既能模拟地下复杂异常体,又能有效提高已有积分方程法计算精度的目的.首先,采用四面体网格技术离散地下复杂异常体,获得四面体单元上的大地电磁积分方程.然后,利用针对四面体单元开发的新的奇异值积分的解析表达式,准确计算线性方程中的并矢Green函数的奇异积分,从而获得精确的线性方程.借助于PARDISO高性能并行直接求解器,实现了三维大地电磁问题的高精度求解.最后,基于国际标准3D-1模型和六棱柱模型,通过与其他方法结果的对比分析,验证了本文方法的正确性、处理高电导率对比度的能力(1000:1)和处理复杂模型的能力.  相似文献   

6.
为提高大地电磁正演计算速度,开展了基于多重网格有限元法的大地电磁二维正演模拟计算研究.将稳定双共轭梯度算法作为多重网格法的细网格松弛迭代算法,插值算子采用完全加权算子,限制算子设计基于网格单元面积率,使多重网格法更适于求解大型复系数方程组.二维均匀半空间模型、低阻体模型和高阻体模型的大地电磁正演模拟结果表明:当计算量较小时(网格剖分数量少),多重网格法在计算效率方面并未有优势,网格剖分数量较大时,多重网格有限元算法在收敛速度方面的优势明显,多重网格有限元法的大地电磁正演精度优于一般数值算法.这为三维多重网格有限元的大地电磁正演研究奠定了基础.  相似文献   

7.
基于MNS技术的三维大地电磁场正演模拟方法研究   总被引:2,自引:0,他引:2       下载免费PDF全文
张罗磊  于鹏  王家林  陈晓  李洋 《地球物理学报》2010,53(11):2715-2723
目前大地电磁三维正演模拟的主要问题是计算效率偏低.Pankratov等提出了一种精确的、稳定的和宽频的三维电磁场正演计算方法,并成功应用于大地电磁场正演模拟中.该方法使用体积积分方程法,利用改进的Neumann序列(MNS)技术来求解Maxwell方程,成功地避免了解大型的线性方程组.在本文中针对这一主要问题尝试引入了广义双共轭梯度法来迭代求改进的Neumann序列中的解,与传统的迭代方法相比可以提高迭代的效率.同时使用了将格林函数分解为两部分在波数域求解,这样比常规的利用快速汉克尔变换求解效率更高.最后试验了两个模型,并与三维交错网格有限差分法计算结果相比较,证明该方法的正确与有效,并且通过具体计算表明该方法在精度保证的条件下计算速度上具有明显的优势.  相似文献   

8.
海洋可控源电磁法(MCSEM)三维正反演理论现如今已经成为地球物理学研究的热点和难点之一,准确、高效、稳定的正演计算是实现快速反演计算的基础.三维正演数值模拟技术的发展已相对成熟,一些学者已将研究如何提高正演计算效率的目光转移到研究如何提高线性方场组的计算速度.为了提高MCSEM的三维正演问题的计算效率,本文首先从频域三维海洋电磁控制方程出发,然后利用Yee氏交错网格有限体积法在三维空间离散方程组,并施以第一类Dirichlet边界条件获得大型稀疏复系数线性方程组,最后引入3种不同几何多重网格迭代算法求解该线性方程组.为了检验GMG算法的正确性,通过建立一维层状油气模型,将3种GMG算法计算结果与Kerry Key等开发的二维开源程序MARE2DEM计算结果进行对比,两种程序求解电场分布的曲线能够很好的吻合,表明GMG算法能正确求解海洋电磁正演问题,且两种程序求解的相对误差数量级在1以下,表明GMG算法具有较高的求解精度.为分析GMG算法的计算效率,我们首先想要模拟出一个更加真实的海洋地下环境,将沉积(背景)层电阻率设计为三轴各向异性,然后在此环境中建立三维海洋油气油气模型,实现MCSEM三维正演计算.通过改变网格数,实施3种GMG迭代算法与GCROT迭代算法求解,结果表明:GMG算法求解三维海洋可控源电磁正演问题算法稳定,计算效率高.GMG算法作为Krylov子空间迭代算法的预条件器求解三维海洋可控源电磁正演问题,不仅能加快求解速度,而且能提高算法的稳定性.  相似文献   

9.
基于有限差分正演的带地形三维大地电磁反演方法   总被引:4,自引:4,他引:0       下载免费PDF全文
本研究实现了一套基于有限差分(FD)方法的大地电磁测深数据带地形三维反演算法及代码.其中,在大地电磁场正演数值模拟方面,开发了起伏地形条件下基于交错网格剖分、有限差分方法的大地电磁测深三维正演代码;在满足平面波场假设的前提下,使用长方体网格剖分模拟三维起伏地形,实现了带地形三维正演计算;并设计理论模型进行试算,经试算结果与前人的有限元法计算结果对比,验证了所研发的带地形三维正演计算的正确性与可靠性.在反演方面,本研究基于非线性共轭梯度方法编写了大地电磁测深带地形三维反演代码,试验了不同的共轭梯度搜索因子β,避免了目标函数对海森矩阵(参数二次导数矩阵)的显式计算和存储,初步实现了大地电磁资料的带地形三维反演.最后,对一系列理论模型进行正演计算,利用其生成的合成数据模拟实测数据进行反演,并与现有的不带地形大地电磁测深三维反演结果比较,检验了所研发的带地形三维反演计算的可靠性与稳定性.  相似文献   

10.
球坐标系下三维大地电磁正演研究   总被引:1,自引:0,他引:1       下载免费PDF全文
大地电磁正演理论研究热点一直以来主要集中在如何提高计算效率和精度,但在剖面足够长、探测深度足够大的情况下,传统的笛卡尔坐标系数值模拟方式难以准确拟合地球曲率形态.本文研究了基于球坐标系的三维大地电磁正演,推导了交错网格有限差分三维正演公式,与一维解析解和三维标准模型测试对比,验证了正演算法的正确性.通过理论模型计算,对比分析球坐标和笛卡尔坐标系正演结果表明:球坐标系模拟更合理,避免了传统笛卡尔坐标拉伸投影所引入的误差,可代替目前的笛卡尔坐标模拟方法.基于球坐标和笛卡尔坐标系的三维大地电磁正演响应值随着频率变低差异越明显.球坐标和笛卡尔坐标计算结果差异度与频率、模型结构和电阻率有关.本文模型计算结果在数万秒周期处已出现接近10%的差异,对于较大尺度的长周期大地电磁,地球曲率的影响不能忽略.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号