首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 541 毫秒
1.
Urnersee and Gersauersee are two adjacent basins of Vierwaldstättersee (Lake Lucerne, Switzerland), seperated by a sill of 85 m depth, with similar topography (max. depth 195 and 213 m, respectively) but remarkably different exposure to “external forces”, such as wind and river input. Urnersee is exposed to diurnal winds and to occasional strong storms from the south (Föhn) whereas the wind over Gersauersee is moderate or weak. Two rivers, both having very large discharges during storms, replace the total water volume of Urnersee about once a year; in contrast, no large river flows directly into Gersauersee. Between March and October 1986, meteorological parameters, water temperatures and currents were measured quasi-continuously with the aim to quantify hypolimnic water exchange and mixing in Urnersee and to asses the relative importance of wind mixing versus river-induced water exchange for the renewal of the deep water layers. Three periods could be identified: (1) in April, weak stratification and strong episodic storms exchange about 50% of the deep hypolimnion (DH, defined as layer below 110 m depth) leading to a mean heat flux of 36 Wm2. Because of the large wind mixing the water of the exposed Urnersee below about 20 m depth becomes lighter than in the sheltered Gersauersee. (2) In May and June, the horizontal density gradient causes about 65% renewal of the Urnersee DH by the heavier Gersauersee intermediate water but does not affect the heart content. (3) Simultaneously with these processes are the episodic river floods adding another 20% to the DH water exchange and causing a heat flux of about 6 Wm2. During the rest of the summer, water exchange remains below 10% and is mainly due to episodic flood while wind mixing has little influence. Yet, during floods water input into the DH per unit time can still be very large and heat, fluxes reach 600 Wm2 or more. The influence of lateral density currents between the two adjacent basins on hypolimnic mixing is of great ecological significance and explains the oxygen saturation found in the deep water of Urnersee compared to Gersauersee.  相似文献   

2.
Abstract

Despite their close proximity and similar dimensions (~ 200m deep × 10km long × 2km wide) the two eastern basins of Lake Lucerne, Gersauersee and Urnersee, exhibit considerable differences in their internal behaviour, particularly during late winter and spring. The two lakes are separated by a small intermediate basin (~ 120m deep × 4km long × 1km wide) with sills of approximately 90m depth at each end. We report results of a field program conducted over the period February—May, 1988, when observations were obtained from weekly CTD transects and from three thermistor string/current meter moorings deployed for two months, one near each sill and the third at the southern end of Urnersee near Fluelen. During the observation period the stratification, relative surface to bottom density difference, Δρ/ρ, was 12 × 10?6 in Gersauersee and 4 × 10?6 in Urnersee. Following wind events a large amplitude internal seiche in Gersauersee (vertical excursions of ~50m and period ~60 hours) effectively pumped the heavier Gersauersee bottom water onto the intermediate basin and eventually into the hypolimnion of Urnersee. Temperature spectra show a peak at this seiche frequency at all levels at the Gersauer sill but only near the bottom at the sill in Urnersee. Coherence estimates between the bottom temperatures at Gersauer sill and Fluelen showed a significant peak at period 60 hours suggesting transmission of energy from the Gersauersee seiching motion through the weaker stratification of Urnersee to Fluelen. The phase relationships indicate that the wave phase speed decreases as the wave propagates into the region of weaker stratification. Application of a simple two-layer Defant model which includes topographic variations confirms these observations. The estimated volume exchange due to seiche pumping is only a small fraction of the Urnersee hypolimnion. However, the dissipation of energy transferred from the Gersauersee seiche may be an important contribution to mixing in the deeper waters of Urnersee.  相似文献   

3.
The artificial tracer sulphur hexafluoride (SF6) has been used to study the density-driven deep water exchange between two sill-separated basins of Lake Lucerne, Gersauersee and Urnersee. The sources of the density gradients between the two basins are (1) salinity differences between the major inlets due to the different geology of their drainage areas, and (2) temperature differences due to spatial variation of wind forcing. Wind speeds are generally larger in Urnersee, especially in spring during the so-called Föhn events, when winds blow from the south. In contrast, Gersauersee is protected form these winds. In spring 1989, a total of 630 g of SF6 was released at 80 to 120 m depth in the small Treib Basin located between Urnersee and Gersauersee. During about 100 days the distribution of SF6 in the lake was determined by gaschromatography. Two models are used to quantify the exchange flow, (1) a one-box mass balance model for SF6 in the deep part of Treib Basin, and (2) a one-dimensional diffusion/advection model describing the temporal and vertical temperature variation in Urnersee. According to the first model, the flow into the deep hypolimnion of Urnersee, decreases from 21·106 m3·d?1 at the end of March to about 8·106 m3·d?1 in late April. The second model yields similar flow rates. The decrease of the flow rate during spring, confirmed by both approaches, is consistent (1) with the decreasing strength of the density gradient above the sill during spring and early summer, and (2) with hydrographic information collected in Lake Lucerne during other years.  相似文献   

4.
Experiments were carried out on an intermittent estuary during its closed (summer) and open (winter) states to identify the physical processes responsible for vertical mixing across the halocline, and to quantify vertical fluxes of oxygen and salt between water layers. During the blocked phase a two-layer structure was observed, with a brackish surface layer overlying old seawater. Within a deep basin the wind-driven turbulent mixing was consistent with the measured surface-layer turbulent dissipation, but the dissipation in the bottom layer appeared to be driven by internal seiching. In the shallow regions of the estuary vertical fluxes of dissolved oxygen were indicative of oxygen demand by respiration and remineralization of organic material in bottom water and sediments. During the estuary's open phase a three-layer structure was observed, having a fresh, river-derived surface layer, a middle layer of new seawater, and a bottom layer of old seawater. In the shallower regions surface-layer turbulent diffusion was consistent with the strong, gusty winds experienced at the time. The dissolved oxygen of the incoming seawater decreased to very low values by the time it reached the upstream deep basin as a result of the low cross-pycnocline oxygen flux being unable to compensate for the oxygen utilization. At least 50 % of the cross-pycnocline salt fluxes in the shallow reaches of the open estuary are suggested to be driven by Holmboe instabilities. Responsible Editor: Hans Burchard  相似文献   

5.
6.
In spring 1976 a special part of the North Sea was the subject of research by a group of international scientists in the so-called Fladenground Experiment 1976 (FLEX 76). Our team participated aboard the research shipPlanet in an attempt to study the oxygen exchange between sea and atmosphere and the mixing within the water column. The water samples were taken in a small area during a period of two weeks. The water depth did not exceed 140 m. The dissolved oxygen was extracted using a vacuum system, and stored after adsorption on a molecular sieve. In the laboratory the oxygen was burned to carbon dioxide and the18O/16O ratio was determined with a mass spectrometer. At the surface the sea water was saturated with air and showed the18O/16O ratio of atmospheric oxygen. Towards the deeper layers the oxygen was consumed, and as a result the heavier isotope18O was enriched. This enrichment can be seen in a very marked manner even in the upper 100 m of the sea. In our case the18O enrichment indicates that the mixing processes did not exchange the oxygen of the layers beneath the surface rapidly.  相似文献   

7.
This study presents the distribution of dissolved inorganic carbon (DIC) along the Strait of Gibraltar, its tidal-induced variability, as well as the inorganic carbon exchange between the Atlantic Ocean and Mediterranean Sea. During November 2003, water column samples were collected at nine stations to measure total alkalinity (TA), pH, and dissolved oxygen (DO) for the spatial characterization of the carbonate system. At the same time, anchored samplings were carried out, above the Camarinal Sill and in the Eastern Section of the Strait, in order to assess the tidal mixing effects for oxygen and DIC distribution on the water column. Three distinct water masses can be discerned in this area: the Surface Atlantic Water (SAW), the Mediterranean Water (MW), and the less abundant North Atlantic Central Water (NACW). The observations show an increase in the DIC and a decrease in oxygen concentration with depth, related to the different physico-chemical features of each water mass. The results show the high time-dependence of the vertical distribution of DIC with the interface oscillation, affected by the intense mixing processes taking place in the Strait. Intense mixing episodes over the Camarinal Sill are responsible for an increase in the DIC concentrations in the upper layer of the Eastern Section of the Strait. Higher DIC concentrations in the Mediterranean than in the Atlantic waters are responsible for a net DIC transport of 1.47×1012 mol C yr−1 to the Atlantic Ocean. Nevertheless, the net exchange is highly sensitive to the interface definition, as well as to the estimate of water volume transport used.  相似文献   

8.
Long-term stratification of the deep hypolimnetic waters of the northern basin of Lake Lugano (Lago di Lugano) has resulted in a lack of deep-water renewal which has persisted for decades. Tritium-helium age measurements reveal that deep water has not been in contact with the atmosphere since the 1960s. Higher primary production associated with the significant increase in phosphorus concentration which occurred at this time resulted in greater autochthonous gross sedimentation rates, increasing the rate of mineralization and, consequently, the rate of release of dissolved solids (mainly HCO 3 - and Ca2+) into the deep hypolimnion. This gave rise to an intensification of the stratification and to a consequent reduction in the vertical exchange of hypolimnetic water layers. Today, the density stabilizing effect of ion release due to mineralization in the deep water is four to five times greater than the destabilizing effect of the geothermal heat flux from the earth's interior. It is known from laboratory experiments that such small density gradient ratios are likely to give rise to double-diffusive instabilities. However, even rudimentary mass balance calculations of biogeochemical components indicate that shear-induced turbulence, most likely generated by bottom currents, mixes far more efficiently than double diffusion. In the future, the biogenic density stratification is likely to persist in the deep water, unless the upward ion flux, driven by primary production, decreases by a factor of four to five.  相似文献   

9.
Two interdisciplinary cruises aimed at relating the ecology of marine fish populations to oceanographic conditions were fielded during the late summer and late winter seasons near Palmyra Atoll (5.9°N, 162.1°W) in the Line Islands. Ocean current and hydrographic measurements revealed interaction of the flow with the steep topography. During the first cruise (August/September 1990) satellite-tracked surface drifters and acoustic Doppler current profiler (ADCP) measurements showed a strong eastward setting North Equatorial Counter Current (NECC) with maximum speeds exceeding 1 m s–1 at 80 m depth approximately. This current turned southeastward on closer approach to Palmyra. The drifter paths exhibited excursions with zonal wavelength of approximately 250 km, meridional amplitude of 25 km and period of approximately 5 days. During the second cruise (February/March 1992), the ADCP-derived speeds of the NECC were weaker (maxima approximately 33 cm s–1) while the relative geostrophic flow component was of magnitude similar to 1990 and the signal of zonal geostrophic currents reached much deeper to approximately 650 m depth (150 m in 1990). Doming isopycnals beneath the surface mixed layer as well as thick (10–25 m) internal mixed layers were found near Palmyra during both cruises, with slightly different positions relative to the island. The discontinuous vertical temperature profiles may have been a result of strong boundary mixing due to breaking internal waves on Palmyras steep slopes. In the immediate vicinity of the island variations in flow speed, stratification and mixing in both the alongshore and cross-isobath directions were observed. Overall, the current speeds were reduced during February/March 1992, the peak time of the 1991–1993 warm event in the tropical Pacific. While parameters of turbulent two-dimensional wake theory are suggestive of formation and shedding of eddies in the lee of the island, no direct observations of circular motions were made in either expedition.Responsible Editor: Hans Burchard  相似文献   

10.
热分层对水库水质的季节性影响——以西安黑河水库为例   总被引:3,自引:1,他引:2  
卢金锁  李志龙 《湖泊科学》2014,26(5):698-706
深水水库作为城市的重要供水水源,通常由于热量在垂向水体上的不均匀分配形成热分层.热分层会阻碍垂向上水体交换引发水质分层现象,在冬季水库发生“翻库”之后,水体混合导致水库的整体水质下降.结合热分层指数可以客观、直接地表达水库热分层的稳定程度.综合水库的气温、水体更新率和水质参数(溶解氧、pH、总磷、氨氮)的年度变化,对陕西黑河水库2008-2010年的热分层状况进行研究.研究表明:水库的热分层形成会直接恶化底部水质尤其会加速底部水体中溶解氧的消耗;热分层的年度变化主要受气温控制,但在特定时期较大的水体更新率可以在一定程度上弱化水体热分层,减缓底部水质恶化.该结果可使水库管理者在水库分层最稳定、水质恶化最严重时期以人工调节水体更新率的方式弱化热分层,为保证水质安全提供参考.  相似文献   

11.
Abstract

The aim of this study was to understand seasonal variations in the vertical structure of the water column, and to quantify the importance of the physical forces (solar radiation, wind and hydraulic retention time) that control mixing processes in a reservoir bordering the Pantanal floodplain. Samples were taken every three months in the reservoir centre, at four depths, for the measurement of nine physical and chemical water quality parameters. The reservoir presented a long stratification period with complete mixing in winter. The vertical structure showed that, during the stratification period, the upper layers of the reservoir are homogeneous and the physical and chemical composition only changes at greater depths. The wind acting over an extended period is the only factor that significantly influences the vertical structure in the reservoir, giving rise to mixing processes. Moreover, the position of the draw-off point in the upper layer of the reservoir, together with the reservoir depth, enhances vertical stability.  相似文献   

12.
13.
Yuji Ito  Kazuro Momii 《水文研究》2015,29(9):2232-2242
Although few reports have described long‐term continuous anoxia in aquatic systems, Lake Ikeda in Japan experienced such conditions in the hypolimnion from 1990 to 2010. The present study aimed to assess temporal fluctuations in the lake's thermal stability from 1978 to 2011 to understand the influence of regional climate change on hypolimnetic anoxia in this lake. Because complete vertical mixing, which supplies dissolved oxygen (DO) to the hypolimnion, potentially occurs on February, we calculated the Schmidt stability index (S) in February and compared it with hypolimnetic DO dynamics. Vertical water temperature profiles were calculated using a one‐dimensional model, and calculated temperatures and meteorological data were used to analyse annual fluctuations in water temperatures, thermocline depth, meteorological variables and S. We estimated that mean annual air and volume‐weighted water temperatures increased by 0.028 and 0.033 °C year?1, respectively, from 1978 to 2011. Between 1986 and 1990, S and water temperature increased abruptly, probably due to a large upwards trend in air temperature (+0.239 °C year?1). We hypothesize that a mixing regime that lacked overturn took effect at this time and that this regime lasted until 2011, when S was particularly small. These results demonstrate that abrupt climate warming in the late 1980s likely triggered the termination of complete mixing and caused the 21‐year period of successive anoxia in Lake Ikeda. We conclude that the lake response to a rapid shift in regional climate conditions was a key factor in changing the hypolimnetic water environment and that thermal stability in winter is a critical environmental factor controlling the mixing regime and anoxic conditions in deep lakes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
Tidal mixing plays an important role in the modification of dense water masses around the Antarctic continent. In addition to the vertical (diapycnal) mixing in the near-bottom layers, lateral mixing can also be of relevance in some areas. A numerical tide simulation shows that lateral tidal mixing is not uniformly distributed along the shelf break. In particular, strong mixing occurs all along the Ross Sea and Southern Weddell Sea shelf breaks, while other regions (e.g., the western Weddell Sea) are relatively quiet. The latter regions correspond surprisingly well to areas where indications for cross-shelf exchange of dense water masses have been found. The results suggest that lateral tidal mixing may account for the relatively small contribution of Ross Sea dense water masses to Antarctic Bottom Water.  相似文献   

15.
Mixed layer depth (MLD) variability from seasonal to decadal time scales in the Bay of Biscay is studied in this work. A hydrographic time series running since 1991 in the study area, a climatology of the upper layer vertical structure based on the topology of this temperature profile time series and a one-dimensional water column model have been used for this purpose. The prevailing factors driving MLD variability have been determined with detail, and agreement with observations is achieved. Tests carried out to investigate climatological profile skill to reproduce the upper layer temporal evolution have demonstrated its ability to simulate variability at seasonal time scales and reproduce the most conspicuous events observed. This has enabled us to carry out a reconstruction of the MLD variability for the last 60 years in the study area. Favourable sequence of intense mixing events explains interannual differences and cases of extraordinary deepening of winter mixed layer. The negative phase of the Eastern Atlantic pattern seems to determine important interannual variability through intense episodes of cooling and mixing as in winter 2005 in the Bay of Biscay. Low-frequency variability is also observed. A very striking and unexpected shallower winter MLD during the 1970s and 1980s than those observed from 1995 has been found. Simulation results support this counter-intuitive outcome of shallower winter mixed layers concurrent with generalized upper water warming trends reported on several occasions for the area. The long-term trends in MLD seem related with decadal variability in the North Atlantic Oscillation, being in phase and opposition with other deepening-shallowing cycles found from subtropical-to-subpolar areas in the North Atlantic.  相似文献   

16.
To investigate how salinity changes with abrupt increases and decreases in river discharge, three surveys were conducted along six sections around the Yellow River mouth before, during and after a water regulation event during which the river discharge was increased from ∼200 to >3000 m3 s−1 for the first 3 days, was maintained at >3000 m3 s−1 for the next 9 days and was decreased to <1000 m3 s−1 for the final 4 days. The mean salinity in the Yellow River estuary area during the event varied ∼1.21, which is much larger than its seasonal variation (∼0.50) and interannual variation (∼0.05). Before the event, a small plume was observed near the river mouth. During the event, the plume extended over 24 km offshore in the surface layer in the direction of river water outflow. After the event, the plume diminished in size but remained larger than before the event. The downstream propagation of the plume (as in a Kelvin wave sense) was apparent in the bottom layer during the second survey and in both the surface and bottom layers during the third survey. The plume sizes predicted by the formulas from theoretical studies are larger than those we observed, indicating that factors neglected by theoretical studies such as the temporal variation in river discharge and vertical mixing in the sea could be very important for plume evolution. In addition to the horizontal variation of the plume, we also observed the penetration of freshwater from the surface layer into the bottom layer. A comparison of two vertical processes, wind mixing and tidal mixing, suggests that the impact of wind mixing may be comparable with that of tidal mixing in the area close to the river mouth and may be dominant over offshore areas. The change in Kelvin number indicates an alteration of plume dynamics due to the abrupt change in river discharge during the water regulation event.  相似文献   

17.
水库或湖泊的热分层结构是其动力与环境过程的重要研究方面,虽然很多学者针对水体分层结构和演变机理开展了大量研究,但水体通过水-气界面与大气进行热交换的过程,各气象因子的贡献机理等研究成果还很缺乏。本文基于三峡水库香溪河库湾2019年3月-2020年2月期间的水温、水位及气象等监测数据,针对水-气界面热交换过程如何影响水温垂向结构及表层水体湍流混合作用开展研究。结果表明,(1)香溪河水体年内呈高温期分层、低温期混合的基本特征,高温期混合层深度小于8 m,低温期混合层深度超过30 m。(2)太阳短波辐射是香溪河水体的主要热源,潜热通量和长波辐射是香溪河水体的主要冷源,感热通量贡献极小。(3)香溪河平均风速较弱,约为1.6 m/s,主要通过增强潜热和感热通量的方式影响水体垂向稳定性结构特征,其机械扰动作用较弱。(4)表层水体湍能通量在高温期较低(10-7m3/s3量级),此时水体处于分层状态,风应力大概率主导表层水体湍流发育;低温期表层水体湍能通量较高(10-6 m3/s3<...  相似文献   

18.
The dynamics of a semidiurnal internal tidal wave at a narrow Mexican Pacific shelf is discussed using the data of temperature obtained by an anchored instrument and data of field surveys. The internal tide on the shelf is dominated by an inclined wave, which propagates upward and onshore along a continental slope. Despite its reflection from the bottom and from the surface of the ocean, they remain inclined and totally destroyed over the course of one wavelength. Due to wave reflection from the inclined bottom, the horizontal and vertical wave number increase threefold when the wave goes into shallow waters. The wave undergoes nonlinear transformation and overturns forming several homogeneous temperature layers up to 20 m thick. The most intense disturbances of water layers are observed near the bottom, where the slope angle approaches its critical value. Because of nonlinear effects, the wave carries cool deep water out to the shallow depth and causes coastal upwelling. Intense solar warming together with vertical mixing results in a rapid rise of temperature in the 130-m water column that was observed.  相似文献   

19.
High‐elevation mountain catchments are often subject to large climatic and topographic gradients. Therefore, high‐density hydrogeochemical observations are needed to understand water sources to streamflow and the temporal and spatial behaviour of flow paths. These sources and flow paths vary seasonally, which dictates short‐term storage and the flux of water in the critical zone (CZ) and affect long‐term CZ evolution. This study utilizes multiyear observations of chemical compositions and water residence times from the Santa Catalina Mountains Critical Zone Observatory, Tucson, Arizona to develop and evaluate competing conceptual models of seasonal streamflow generation. These models were tested using endmember mixing analysis, baseflow recession analysis, and tritium model “ages” of various catchment water sources. A conceptual model involving four endmembers (precipitation, soil water, shallow, and deep groundwater) provided the best match to observations. On average, precipitation contributes 39–69% (55 ± 16%), soil water contributes 25–56% (41 ± 16%), shallow groundwater contributes 1–5% (3 ± 2%), and deep groundwater contributes ~0–3% (1 ± 1%) towards annual streamflow. The mixing space comprised two principal planes formed by (a) precipitation‐soil water‐deep groundwater (dry and summer monsoon season samples) and (b) precipitation‐soil water‐shallow groundwater (winter season samples). Groundwater contribution was most important during the wet winter season. During periods of high dynamic groundwater storage and increased hydrologic connectivity (i.e., spring snowmelt), stream water was more geochemically heterogeneous, that is, geochemical heterogeneity of stream water is storage‐dependent. Endmember mixing analysis and 3H model age results indicate that only 1.4 ± 0.3% of the long‐term annual precipitation becomes deep CZ groundwater flux that influences long‐term deep CZ development through both intercatchment and intracatchment deep groundwater flows.  相似文献   

20.
Hypoxic conditions (dissolved oxygen (DO)<2 mg l−1) have been documented in the nearshore coastal waters of Long Bay, South Carolina, United States of America, during summer months over the past several years. Hypoxia was documented in August 2009 in the nearshore (<500 m offshore) for ten consecutive days and four days in September 2009 corresponding with spring tides. This study measured radon activities of shallow beachface groundwater and nearshore bottom waters to estimate mixing rates and submarine groundwater discharge (SGD) in the nearshore waters of central Long Bay. Statistical analyses demonstrate significant correlations between high bottom water radon activities, low DO, and cooler bottom water temperatures during hypoxic conditions. Elevated radon activities during hypoxia were significantly influenced by upwelling favorable conditions which severely limited cross-shelf mixing. Model results indicate mixing of nearshore and offshore waters was limited by up to 93% (range: 43-100%) relative to non-hypoxic conditions. Data suggests previously overlooked natural phenomena including limited cross-shelf mixing and SGD can significantly influence nearshore water quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号