首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
Masaki  Takahashi Kazuo  Saito 《Island Arc》1997,6(2):168-182
Abstract Recent paleomagnetic studies are reviewed in an effort to clarify the relationship between the intra-arc deformation of central Japan and the collision tectonics of the Izu-Bonin Arc. The cusp structure of the pre-Neogene terranes of central Japan, called the Kanto Syntaxis, suggests a collisional origin with the Izu-Bonin Arc. The paleomagnetic results and newly obtained radiometric ages of the Kanto Mountains revealed the Miocene rotational history of the east wing of the Kanto Syntaxis. More than 90° clockwise rotation of the Kanto Mountains took place after deposition of the Miocene Chichibu Basin (planktonic foraminiferal zone of N.8: 16.6–15.2 Ma). After synthesizing the paleomagnetic data of the Japanese Islands and collision tectonics of central Japan, it appears that approximately a half rotation (40–50°) probably occurred at ca 15 Ma in association with the rapid rotation of Southwest Japan. The remainder (50-40°) continued until 6 Ma, resulting in the sharp bent structure of the pre-Neogene accretionary complexes (Kanto Syntaxis). The latter rotation seems to have been caused by the collision of the Izu-Bonin Arc on the northwestward migrating Philippine Sea Plate.  相似文献   

2.
Satoru  Honda  Takeyoshi  Yoshida  Kan  Aoike 《Island Arc》2007,16(2):214-223
Abstract   Arc volcanism of the past 10 my in the northeast Honshu and Izu-Bonin Arcs shows several notable features. In the northeast Honshu Arc, the spatial distribution of volcanism exhibits several clusters elongated nearly perpendicular to the arc and the possible migration of volcanism from the back-arc side to the volcanic front side, at least, during the past 5 my. The pattern of clusters seems to have flip-flopped around 5 Ma. In the Izu-Bonin Arc, there are a series of across-arc seamount chains, in which volcanic activity occurred from ca 17 Ma to ca 3 Ma, similar to the clusters of the northeast Honshu Arc, although the recent active rifting occurs almost parallel to the arc. On the basis of studies of numerical modeling, these features might be explained, at least qualitatively, by the small-scale convection under the island arc. Several inferences can be made from our modeling results for the tectonics of the Izu-Bonin Arc. The angle of dip of subducting plate in the Izu-Bonin Arc might have increased. This can explain the disappearance of volcanism along the seamount chains and the recent along-arc volcanism with narrow rifting. The trend of seamount chains, which is oblique to the arc, might not be their intrinsic feature but rather a result of the lateral movement of the back-arc region after their formation. These inferences can be tested by the future detailed morphological and chronological studies of the Izu-Bonin Arc.  相似文献   

3.
The Paleo‐Kuril Arc in the eastern Hokkaido region of Japan, the westernmost part of the Kuril Arc in the northwestern Pacific region, shows a tectonic bent structure. This has been interpreted, using paleomagnetic data, to be the result of block rotations in the Paleo‐Kuril Arc. To understand the timing and origin of this tectonic bent structure in the Paleo‐Kuril arc‐trench system, paleomagnetic surveys and U–Pb radiometric dating were conducted in the Paleogene Urahoro Group, which is distributed in the Shiranuka‐hill region, eastern Hokkaido. The U–Pb radiometric dating indicated that the Urahoro Group was deposited at approximately 39 Ma. Paleomagnetic analysis of the Urahoro Group suggested that the Shiranuka‐hill region experienced a 28° clockwise rotation with respect to East Asia. The degree of clockwise rotation implied from the Urahoro Group is smaller than that of the underlying Lower Eocene Nemuro Group (62°) but larger than that of the overlying Onbetsu Group (?9°). It is thus suggested that the Shiranuka‐hill region experienced a clockwise rotation of approximately 34° between the deposition of the Nemuro and Urahoro Groups (50–39 Ma), and a 38° clockwise rotation between the deposition of the Urahoro and Onbetsu Groups (39–34 Ma). The origin of the curved tectonic belt of the Paleo‐Kuril Arc was previously explained by the opening of the Kuril Basin after 34 Ma. The age constraint for the rotational motion of the Shiranuka‐hill region in this study contradicts this hypothesis. Consequently, it is suggested that the process of arc–arc collision induced the bent structure of the western Paleo‐Kuril Arc.  相似文献   

4.
The origin of active faults in the Inner zone of the western part of Southwest Japan was explained by a decrease of the minimum principal stress and reactivation of ancient geologic structures. Although the E–W maximum principal stress in Southwest Japan due to the collision of the Southwest and Northeast Japan arcs along the Itoigawa–Shizuoka Tectonic Line is assumed to decrease westward, the density of active strike‐slip faults increases in the western margin of the Southwest Japan Arc (western Chugoku and northern Kyushu) where the subducting Philippine Sea Plate dips steeply. The E–W maximum compressional stress is predominant throughout Southwest Japan, while the N–S minimum principal stress that is presumably caused by coupling between Southwest Japan arc and Philippine Sea Plate decreases due to the weak plate coupling as the plate inclination increases under the western margin of Southwest Japan. The increase of the fault density in the western margin of the arc is attributed to a decrease of the minimum principal stress and consequent increase of shear stress. Low slip rates of the active faults in this region support the view that the westward increase of fault density is not a response to increasing maximum stress. These faults of onshore and offshore lie in three distinct domains defined on the basis of fault strike. They are defined domains I, II, and III which are composed of active faults striking ENE–WSW, NW–SE, and NE–SW, respectively. Faulting in domains I, II, and III is related to Miocene rift basins, Eocene normal faults, and Mesozoic strike‐slip faults, respectively. Although these active faults are strike‐slip faults due to E–W maximum stress, it is unclear whether their fault planes are the same as those of pre‐Quaternary dip‐slip faults.  相似文献   

5.
Crustal structure and origin of the northeast Japan arc   总被引:1,自引:0,他引:1  
Abstract Northeast Japan is a typical island arc region and its topographic arrangement reflects the geophysical characteristics of the island arc system. However, the structural style of the arc is very complicated and varied due to the repeated superposing of faults and folds on to earlier structures.
Geotectonic events that involved creation of the fundamental framework of the island arc crust occurred in east Asia in the Late Jurassic to Early Cretaceous and were probably induced by accretion and collision tectonics. The fragmentation and subsequent displacement of the crust took place during the Early Neogene in response to the terrane collision and the change in oceanic plate motion, leading to the opening of the Japan Sea. Huge amounts of volcano-sedimentary rocks buried the tilted fault blocks of pre-Tertiary basement with the development of the island arc.  相似文献   

6.
Leg 2 of the French-Japanese 1984 Kaiko cruise has surveyed the trench triple junction off central Japan, where the Japan, Izu-Bonin and Sagami Trenches intersect. The Izu-Bonin Trench is deeper than the Japan Trench and filled by a thick turbiditic series. Its anomalous depth is explained by the westward retreat of the edge of the northwestward moving Philippine Sea plate. On the contrary to what happens in the Japan Trench, horst and graben structures of the Pacific plate obliquely enters the Izu-Bonin Trench, suggesting that the actual boundary between these two trenches is located to the north of the triple junction. The inner wall of the Izu-Bonin Trench is characterized in the triple junction area by a series of slope basins whose occurrence is related to the dynamics of this area. The northernmost basin is overthrust by the edge of the fore-arc area of the Northeast Japan plate. The plate boundary is hardly discernible further east, which makes it impossible to locate precisely the triple junction itself. These features suggest that large intra-plate deformation occurs there due to the interaction of the plates involved in the triple junction and the weak mechanical strength of the wedge-shaped margin of the overriding plates.  相似文献   

7.
The Kuril-Kamchatka subduction zone is the most mobile and seismically active region in Northeast Eurasia. The Kuril island arc is one of the few tectonically active regions, where until recently there had been no space geodetic network. The first GPS stations were installed on the Kamchatka Peninsula in 1997, and on the islands of the Kuril arc from Kamchatka to Hokkaido, in 2006. The collected geodetic data allowed us to reveal the geometry of the interplate coupling along the whole Kuril-Kamchatka arc, and also to estimate the source parameters and their features for a number of major earthquakes in this area.  相似文献   

8.
Volcanic history and tectonics of the Southwest Japan Arc   总被引:1,自引:0,他引:1  
Abstract Remarkable changes in volcanism and tectonism have occurred in a synchronous manner since 1.5–2 Ma at the junction of the Southwest Japan Arc and the Ryukyu Arc. Although extensive volcanism occurred in Kyushu before 2 Ma, the subduction-related volcanism started at ca 1.5 Ma, forming a NE–SW trend volcanic front, preceded by significant changes in whole-rock chemistry and mode of eruptions at ca 2 Ma. The Median Tectonic Line has intensified dextral motion since 2 Ma, with a northward shift of its active trace of as much as 10 km, accompanied by the formation of rhomboidal basins in Central Kyushu. Crustal rotation and incipient rifting has also occurred in South Kyushu and the northern Okinawa Trough over the past 2 million years. We emphasize that the commencement age of these events coincides with that of the transition to the westward convergence of the Philippine Sea plate, which we interpret as a primary cause of these synchronous episodes. We assume that the shift in subduction direction led to an increase of fluid component contamination from subducted oceanic slab, which then produced island-arc type volcanism along the volcanic front. Accelerated trench retreat along the Ryukyu Trench may have caused rifting and crustal rotation in the northern Ryukyu Arc.  相似文献   

9.
Cretaceous episodic growth of the Japanese Islands   总被引:1,自引:0,他引:1  
G. Kimura 《Island Arc》1997,6(1):52-68
Abstract The Japanese Islands formed rapidly in situ along the eastern Asian continental margin in the Cretaceous due to both tectonic and magmatic processes. In the Early Cretaceous, huge oceanic plateaus created by the mid-Panthalassa super plume accreted with the continental margin. This tectonic interaction of oceanic plateau with continental crust is one of the significant tectonic processes responsible for continental growth in subduction zones. In the Japanese Islands, Late Cretaceous-Early Paleogene continental growth is much more episodic and drastic. At this time the continental margin uplifted regionally, and intra-continent collision tectonics took place in the northern part of the Asian continent. The uplifting event appears to have been caused by the subduction of very young oceanic crust (i.e. the Izanagi-Kula Plate) along the continental margin. Magmatism was also very active, and melting of the young oceanic slab appears to have resulted in ubiquitous plutons in the continental margin. Regional uplift of the continental margin and intra-continent collision tectonics promoted erosion of the uplifted area, and a large amount of terrigenous sediment was abruptly supplied to the trench. As a result of the rapid supply of terrigenous detritus, the accretionary complexes (the Hidaka Belt in Hokkaido and the Shimanto Belt in Southwest Japan) grew rapidly in the subduction zone. The rapid growth of the accretionary complexes and the subduction of very young, buoyant oceanic crust caused the extrusion of a high-P/T metamorphic wedge from the deep levels of the subduction zone. Episodic growth of the Late Cretaceous Japanese Islands suggests that subduction of very young oceanic crust and/or ridge subduction are very significant for the formation of new continental crust in subduction zones.  相似文献   

10.
Off the southern coast of Hokkaido the Hidaka-oki (offshore Hidaka) basin has developed on the western flank of a collision suture under the influence of long-standing compressional plate motion and provoked tectonic stresses around the northwestern Pacific rim throughout the late Cenozoic. The basin forming history of the Japan arc and Kuril arc collision zone is described on the basis of seismic reflection data interpretation. We identify two stages of basin formation: the older (late Oligocene-Miocene) faulted en echelon graben (pull-apart basin) and younger (Plio-Pleistocene) regional downwarping. Paleoenvironmental changes recorded within the fore-arc sediments indicate that the older basin filled up by the late Miocene. We inferred the volumes of the distinctive basins from the depth-conversion of seismic data, which suggest episodic uplifts and massive erosion of the Hidaka Mountains in the middle-late Miocene and the Plio-Pleistocene. Estimated sediment supply rates into the basins have a similar level for the both stages. Cause of an episodic uplift in the older stage is attributed to the delayed opening of the Japan Sea. The eastern Eurasian margin underwent N-S right-lateral faulting at 25 Ma as a result of rifting of the Kuril back-arc basin. Formation of the Japan Sea back-arc basin since the early Miocene (ca. 20 Ma) caused eastward motion of the western Hokkaido block and transpressive regime along the pre-existing N-S shear deformation zone.  相似文献   

11.
Yo-Ichiro  Otofuji 《Island Arc》1996,5(3):229-249
Abstract Paleomagnetic studies facilitate an understanding of the evolution of the Japan Arc in Cenozoic times from the perspective of tectonic movement. The Japan Arc rifted from the Asian continent in the middle Miocene, while East Asia, including the Japan Arc, moved northward at the same time. The rifting phenomenon of the Japan Arc is described by differential rotation of Southwest and Northeast Japan. Southwest Japan was rotated clockwise through about 45° and Northeast Japan was rotated counter-clockwise through about 40°. This differential rotation occurred concurrently at about 15 Ma. Eighty percent of the rotation was completed during a period of 1.8 million years. These factors lead us to propose a'double door'opening mode with a fast spreading rate of 21 cm/yr for the evolution of the Japan Sea, suggesting that the asthenosphere with a low viscosity was injected beneath the Japan Sea area. The large northward motion of East Asia in relation to Europe is expected from the apparent polar wander path constructed from the paleomagnetic data of the Japan Arc. East Asia may have moved northward by more than 1700 km between 20 Ma and 10 Ma accompanied by a slightly clockwise rotation of 10°. The eastern part of the Eurasian plate was subjected to extreme geodynamic conditions in late Cenozoic times.  相似文献   

12.
WONN  SOH  KAZUO  NAKAYAMA & TAKU  KIMURA 《Island Arc》1998,7(3):330-341
The Pleistocene Ashigara Basin and adjacent Tanzawa Mountains, Izu collision zone, central Japan, are examined to better understand the development of an arc–arc orogeny, where the Izu–Bonin – Mariana (IBM) arc collides with the Honshu Arc. Three tectonic phases were identified based on the geohistory of the Ashigara Basin and the denudation history of the Tanzawa Mountains. In phase I, the IBM arc collided with the Honshu Arc along the Kannawa Fault. The Ashigara Basin formed as a trench basin, filled mainly by thin-bedded turbidites derived from the Tanzawa Mountains together with pyroclastics. The Ashigara Basin subsided at a rate of 1.7 mm/year, and the denudation rate of the Tanzawa Mountains was 1.1 mm/year. The onset of Ashigara Basin Formation is likely to be older than 2.2 Ma, interpreted as the onset of collision along the Kannawa Fault. Significant tectonic disruption due to the arc–arc collision took place in phase II, ranging from 1.1 to 0.7 Ma in age. The Ashigara Basin subsided abruptly (4.6 mm/year) and the accumulation rate increased to approximately 10 times that of phase I. Simultaneously, the Tanzawa Mountains were abruptly uplifted. A tremendous volume of coarse-grained detritus was provided from the Tanzawa Mountains and deposited in the Ashigara Basin as a slope-type fan delta. In phase III, 0.7–0.5 Ma, the entire Ashigara Basin was uplifted at a rate of 3.6 mm/year. This uplift was most likely caused by isostatic rebound resulting from stacking of IBM arc crust along the Kannawa Fault which is not active as the decollement fault by this time. The evolution of the Ashigara Basin and adjacent Tanzawa Mountains shows a series of the development of the arc–arc collision; from the subduction of the IBM arc beneath the Honshu Arc to the accretion of IBM arc crust onto Honshu. Arc–arc collision is not the collision between the hard crusts (massif) like a continent–continent collision, but crustal stacking of the subducting IBM arc beneath the Honshu Arc intercalated with very thick trench fill deposits.  相似文献   

13.
Miocene intra‐arc rifting associated with the opening of the Japan Sea formed grabens in several areas in Southwest (SW) Japan, but the extensional tectonics of the arc are still not well understood. In this study, we first document the tectonostratigraphy of the Hokutan Group in the northwestern part of the Kinki district, and demonstrate the termination of extensional tectonics at ca 16.5 Ma, as inferred from grabens in the lower part of the group being unconformably overlain by sediments of the upper part. Second, we review early Miocene grabens in SW Japan to suggest that intra‐arc rifting was abandoned at ca 16 Ma, essentially simultaneously with the end of rotation of the SW Japan arc as evidenced by paleomagnetic studies. The lesser numbers of grabens and reduced thicknesses of graben fills suggest that extensional deformation of the SW Japan arc was significantly weaker than that of the Northeast (NE) Japan arc, which was broken into blocks, indicating various degrees of paleomagnetic rotation within NE Japan. The weak deformation has allowed paleomagnetic studies to infer the coherent rotation of the SW Japan arc.  相似文献   

14.
Mafic and ultramafic xenoliths, in the Holocene calc-alkali andesite of Ichinomegata(1) crater in Oga peninsula and those in the Plio-Pleistocene alkali-olivine basalts of Oki-Dōgo island in the Japan Sea, have been studied in detail. Based on geothermometry and geobarometry, and relative abundance of the rock types of the xenoliths, petrologic models of the crust and upper mantle beneath these two areas were constructed. The crust and upper mantle beneath Ichinomegata crater are characterized by hydrous and relatively low temperature conditions. On the other hand, the crust and upper mantle beneath Oki-Dōgo island are characterized by nearly anhydrous and high temperature conditions, and presence of thick lavers of peridotite and pvroxenite cumulates in the uppermost mantle. The crust and upper mantle of the western part of the Northeast Honshū Arc can be considered as similar to those beneath Ichinomegata crater, because of the common occurrence of similar mafic xenoliths from many andesite volcanoes in this area. The crust and upper mantle of the northern part of the Southwest Honshū Arc, in the same way, can be regarded as similar to those beneath Oki-Dōgo island. Differences in amount of hydrous minerals of deep-seated rocks between the two areas can be interpreted as due to the presence of migrating water derived from the subducting Pacific plate in the Northeast Honshū Arc. Difference in slope of the geotherm may be due to the difference in temperature of the partial melt zones beneath these two areas. Bulk chemical compositions of the lower crustal materials of the Japanese island arcs, 85 mafic inclusions from 15 volcanoes, are listed, and it is concluded that they are cumulates or metamorphosed cumulates in the lower crust.  相似文献   

15.
日本俯冲带与IBM俯冲带位于太平洋板块、菲律宾海板块和欧亚板块三者的交汇地带,是典型的"俯冲工厂"地区,具有重要的研究意义.本文利用震源分布资料与卫星重力数据对日本俯冲带与IBM俯冲带进行了研究.通过空间重力异常反映了俯冲带地区的区域构造形态,在此基础上基于艾利模式计算了均衡异常以反映地壳均衡特征.利用震源分布资料,分别从垂直俯冲带走向与沿俯冲带走向划定了横截剖面(cross-sections)进行了地震提取,讨论了俯冲带地区的Wadati-Benioff带形态特征,并借助于俯冲带地震等深线图直观描述了俯冲带的俯冲形态.在日本俯冲带与伊豆—小笠原俯冲带各选取了一条典型剖面进行了重力2.5D反演,研究了俯冲带地区的壳幔结构特征.研究结果表明,九州—帕劳海脊与IBM岛弧在均衡异常上存在差异,前者已逐渐趋向于地壳均衡.IBM的Wadati-Benioff带存在明显的南北差异,反映出伊豆—小笠原俯冲板片停留在了660km转换带中,而马里亚纳俯冲板片很可能垂直穿过了这一转换带,造成这种南北差异的原因与板块相对运动、岩石圈黏性和年龄差异以及俯冲板片的重力效应等因素有关.在IBM的中部和南部存在板片撕裂现象.日本俯冲带的俯冲洋壳密度随俯冲深度变化较小,洋幔存在一定程度的蛇纹岩化,地幔楔蛇纹岩化作用不典型,海沟处有一范围较小的含水畸变带;伊豆—小笠原俯冲带俯冲洋壳密度随深度增大而明显增大,洋幔蛇纹岩化程度较日本俯冲带低,地幔楔蛇纹岩化作用强烈,板块交汇处存在明显的蛇纹岩底辟.日本俯冲带与IBM俯冲带一线自北向南板片俯冲变陡,两侧板块耦合度降低,与俯冲带两侧的板块运动速率差异有关.  相似文献   

16.
Physical volcanology of the submarine Mariana and Volcano Arcs   总被引:17,自引:0,他引:17  
Narrow-beam maps, selected dredge samplings, and surveys of the Mariana and Volcano Arcs identify 42 submarine volcanos. Observed activity and sample characteristics indicate 22 of these to be active or dormant. Edifices in the Volcano Arc are larger than most of the Mariana Arc edifices, more irregularly shaped with numerous subsidiary cones, and regularly spaced at 50–70 km. Volcanos in the Mariana Arc tend to be simple cones. Sets of individual cones and volcanic ridges are elongate parallel to the trend of the arc or at 110° counterclockwise from that trend, suggesting a strong fault control on the distribution of arc magmas. Volcanos in the Mariana Arc are generally developed west of the frontal arc ridge, on rifted frontal arc crust or new back-arc basin crust. Volcanos in the central Mariana Arc are usually subaerial, large (> 500 km3), and spaced about 50–70 km apart. Those in the northern and southern Marianas are largely submarine, closer together, and generally less than 500 km3 in volume. There is a shoaling of the arc basement around Iwo Jima, accompanied by the appearance of incompatible-element enriched lavas with alkalic affinities. The larger volcanic edifices must reflect either a higher magma supply rate or a greater age for the larger volcanos. If the magma supply (estimated at 10–20 km3/km of arc per million years at 18° N) has been relatively constant along the Mariana Arc, we can infer a possible evolutionary sequence for arc volcanos from small, irregularly spaced edifices to large (over 1000 km3) edifices spaced at 50–70 km. The volcano distribution and basal depths are consistent with the hypothesis of back-arc propagation into the Volcano Arc.  相似文献   

17.
In the Northeast Japan arc, a number of Quaternary volcanoes form a long, narrow belt, parallel to the Japan Trench. 87Sr/86Sr ratios were determined in 52 specimens of volcanic rocks from 27 volcanoes in the Northeast Japan arc area. The results reveal that the ratios change systematically in space. Decreasing 87Sr/86Sr ratios across the arc were confirmed over a wide area of Northeast Japan. In the same direction, increases in both Rb and Sr contents were also found. The regular trends are considered to be a strong constraint for elucidation of subduction-originated magma genesis at the Eurasia plate vs. Pacific plate boundary. In the northern region of the Northeast Japan arc, 87Sr/86Sr ratios in volcanic rocks along the volcanic front were almost constant (0.7038–0.7045) and slightly higher than those from the Izu-Ogasawara arc (0.7032–0.7038). This suggests that “interactions” between the Eurasia plate and the Pacific plate, and those between the Philippine Sea plate and the Pacific plate are slightly different. The southern region of the Northeast Japan arc, where the direction of the volcanic front bends from southward to westward, showed anomalously high 87Sr/86Sr ratios, reaching to 0.7077. This region coincides with the triple junction of the Eurasia, Pacific and Philippine Sea plates, suggesting “anomalous interaction” at the triple junction.  相似文献   

18.
We study earthquakes in and near the TTT type triple junction off Boso peninsula, central Honshu, to elucidate the plate interaction in this area. The Pacific, North America (northeast Japan) and Philippine Sea plates meet at the junction of the Japan and Izu-Bonin Trenches, and the Sagami Trough. We determine focal mechanisms using WWSSN data. We also determine accurate focal depths by modeling body-waves. There is no serious trade-off between focal depth and source time function for the events treated in this study.The earthquake mechanisms and their focal depths show two major modes of deformation of the Pacific slab at the junction. One mode is represented by nearly vertical normal faults with strikes perpendicular to the Bonin Trench. This mode of faulting is dominant in regions south of the junction and characteristically the southwest block is downthrown. The other mode is represented by nearly vertical normal faults that strike parallel to the Japan Trench and indicate the northwest block is downthrown. This latter mode is dominant in regions north of the junction. The former mode may represent the accommodation of the slab geometry to the change in dip angle between the northeast Japan and Izu-Bonin arcs; the Izu-Bonin slab has a larger dip than that of the northeast Japan slab. The latter mode shows that normal faults parallel to the trench strike, usually seen in trench axis-outer rise regions, continue to occur further landward of the trench axis in the area just north of the junction. This might be caused by the loading of the Philippine Sea slab which penetrates between northeast Japan and the Pacific slab north of the Sagami Trough.Further north of these normal faults north of the junction, we find earthquakes which represent the relative motion between the Pacific and North American plates. This means that the Philippine Sea slab does not exist there. With the aid of earthquakes which represent the Philippine Sea-Pacific and Philippine Sea-North America motions located northwest of the normal faults, we can depict a possible area where the Philippine Sea slab exists north of the Sagami Trough.  相似文献   

19.
In order to better understand seismic structure and seismotectonics of the entire arc of Tohoku and Hokkaido in Japan, we combined arrival time data from earthquakes beneath Tohoku and Hokkaido land areas, and beneath the Pacific Ocean to determine the three-dimensional (3D) velocity structures (Vp and Vs) under the entire Northeast (NE) Japan-Kuril arc. We adopted 176,431 P-wave and 110,953 S-wave arrival times, from 5123 local earthquakes, and 2843 sP depth-phase data from 385 events that occurred beneath the Pacific Ocean. The 385 suboceanic events were accurately relocated by using P-wave, S-wave and sP depth-phase arrival time data jointly. The obtained results confirmed the major features delineated by previous studies and revealed some new features of the structural heterogeneity beneath NE Japan and the Kuril forearcs. High-velocity anomalies of the cold subducting Pacific slab and low-velocity anomalies in the hot mantle wedge were imaged clearly. Strong lateral heterogeneities were revealed on the upper boundary of the Pacific slab under the forearc region, which showed a good correlation with the spatial distribution of large interplate earthquakes. These results indicated that strong coupling sections (or asperities) and weak-coupled or decoupled patches might exist along the upper boundary of the Pacific slab. Widespread low-velocity anomalies were visible in the forearc mantle above the subducting Pacific slab, which might reflect serpentinization of the forearc mantle associated with the dehydration process of the subducting slab. Our results also showed a general tendency for seismic coupling in the asperities to be located around low-velocity areas on the slab boundary under the suboceanic region.  相似文献   

20.
对黄海—东海研究区深部结构的一些新认识   总被引:16,自引:7,他引:16       下载免费PDF全文
综合地震层析成像与重磁数据的处理结果,选择26°N~36°N,120°E~130°E的范围作为研究区,讨论了黄、东海研究区的深部结构特点及其与周边各地质单元的相互关系,完成了研究区两条剖面的密度结构反演,认为东海陆架地区地壳厚度变化与大陆地区相比并不明显,显著减薄开始于冲绳海槽地区,中地壳消失;琉球岛弧处地壳厚度明显再度增加,特别是上地壳的厚度增加最大,推断其原因应与俯冲作用及俯冲带附近板块与地幔的运动速率之差有关.地球物理场“东西分带”是黄海—东海地区壳内结构从西向东变化的反映,但随着深度的增加,研究区的岩石层结构出现以近EW向为优势的构造格局.因此推断深部近EW向的异常是三叠纪时期南北板块碰撞、挤压所致,浅部的NE向条带异常是后期构造运动在岩石层较浅部位构造效应的反映.黄海—东海地区岩石层结构存在浅部与深部优势构造方向不协调的现象.层析成像结果证实了南黄海东缘断层的存在,还勾绘出绍兴—十万大山碰撞带为以40°左右的倾角向NW方向倾斜的高速带,另一条倾向基本相同的高速带则是南、北扬子块体结合带在深部的反映.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号