首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
The probability that an earthquake occurs when a train is running over a bridge in earthquake‐prone regions is much higher than before, for high‐speed railway lines are rapidly developed to connect major cities worldwide. This paper presents a finite element method‐based framework for dynamic analysis of coupled bridge–train systems under non‐uniform seismic ground motion, in which rail–wheel interactions and possible separations between wheels and rails are taken into consideration. The governing equations of motion of the coupled bridge–train system are established in an absolute coordinate system. Without considering the decomposition of seismic responses into pseudo‐static and inertia‐dynamic components, the equations of motion of the coupled system are formed in terms of displacement seismic ground motions. The mode superposition method is applied to the bridge structure to make the problem manageable while the Newmark‐β method with an iterative computation scheme is used to find the best solution for the problem concerned. Eight high‐speed trains running over a multi‐span steel truss‐arch bridge subject to earthquakes are taken as a case study. The results from the case study demonstrate that the spatial variation of seismic ground motion affects dynamic responses of the bridge–train system. The ignorance of pseudo‐static component when using acceleration seismic ground motions as input may underestimate seismic responses of the bridge–train system. The probability of separation between wheels and rails becomes higher with increasing train speed. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
This paper establishes a scheme for the seismic analysis of interacting vehicle–bridge systems. The focus is on (horizontally) curved continuous railway bridges and frequent earthquakes. Main features of the proposed scheme are (i) the treatment of the dynamics in all three dimensions (3D), employing an additional rotating system of reference to describe the dynamics of the vehicles and a realistic 3D bridge model; (ii) the simulation of the creep interaction forces generated by the rolling contact between the wheel and the rail; and (iii) the integration of the proposed scheme with powerful commercial finite element software, during the pre‐processing and post‐processing phases of the analysis. The study brings forward the dynamics of a realistic vehicle–bridge (interacting) system during seismic shaking. For the (vehicle–bridge) case examined, the results verify the favorable damping effect the running vehicles have on the vibration of the deck. By contrast, the study stresses the adverse influence of the earthquake‐induced bridge vibration on the riding comfort but, more importantly, on the safety of the running vehicles. In this context, the paper unveils also a vehicle–bridge–earthquake timing problem, behind the most critical vehicle response, and underlines the need for a probabilistic treatment. Among the 20 sets of historic records examined, the most crucial for the safety of the vehicles are near‐fault ground motions. Finally, the study shows that even frequent earthquakes, of moderate intensity, can threaten the safety of vehicles running on bridges during the ground motion excitation, in accordance with recorded accidents. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
This study is intended to investigate the seismic response of steel monorail bridges using three‐dimensional dynamic response analysis. We particularly consider monorail bridge–train interaction when subjected to ground motion that occurs with high probability. A monorail train car with two bogies with pneumatic tires for running, steering and stabilizing wheels is assumed to be represented sufficiently by a discrete rigid multi‐body system with 15 degrees of freedom (DOFs). Bridges are considered as an assemblage of beam elements with 6 DOFs at each node. Modal analysis is used for dynamic response analysis under moderate earthquakes. The seismic response of an advanced monorail bridge that adopts a simplified structural system and composite girders is investigated through comparison with seismic responses of a conventional bridge. The acceleration response of a monorail train is also calculated to investigate the effect of structural types of bridges on the train's dynamic response during earthquakes. Results show that the seismic responses of the advanced bridges are greater than those of the conventional monorail bridge because of the simplified structural system and increased girder weight that is attributable to composite girders of the advanced bridge. Moreover, the train on the advanced bridge shows greater dynamic response than that on the conventional bridge. Observations reveal that the dynamic monorail train system acts as a damper on the monorail bridge. That fact shows that the existing design, which considers a train as additional mass, yields a conservative result. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
A study about the running safety of trains moving over bridges subjected to earthquakes is presented. The study focuses on moderate earthquakes with relatively small return periods and high probability of occurrence. The analyses are performed using a nonlinear train‐bridge interaction method proposed by the authors, being the running safety evaluated with safety criteria existent in the literature. The influence on the train running safety of the seismic intensity levels, train running speed, and track quality is evaluated. Because no significant nonlinearity is likely to be exhibited in the columns for moderate levels of seismicity, the analyses are performed in the elastic domain. However, the reduction in the columns stiffness due to cracking is accounted, and a methodology to compute their effective stiffness is proposed. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
The paper reviews some important published papers on the effects of railway track imperfections on track dynamic behavior, and investigates the effect of unsupported sleepers on the normal load of wheel/rail in detail through a numerical simulation. The numerical simulation is based on a coupling dynamic model of vehicle–track. In the model, the vehicle is modeled as a multi-body system, and the track is considered as a 3-layer model with rails, sleepers, and ballast masses. Each rail of the track is modeled with a Timoshenko beam resting on discrete sleepers. The lateral, vertical, and torsional deformations of the beam are taken into account. The sleepers are assumed to move backward at a constant speed to simulate the vehicle running along the track at the same speed, and therefore such a track model can consider the effect of the discrete support by sleepers on the coupling dynamic behavior of the vehicle and track in the simulation. In calculating the coupled vehicle and track dynamics, Hertzian contact theory and the theory by Shen et al. are, respectively, used to calculate the normal forces and the creep forces between the wheels and the rails. The motion equations of the vehicle–track are solved by means of an explicit integration method. A nonlinear spring and a nonlinear damper are used to simulate a gap between the unsupported sleeper and the ballast mass. The numerical results obtained indicate that the gaps between the unsupported sleepers and ballast masses have a great influence on the normal load of the wheel and the rail.  相似文献   

6.
地震激励对高速车辆-简支箱梁桥系统动力响应的影响关系到高速铁路运营安全。基于车辆-轨道耦合动力学和列车-轨道-桥梁动力相互作用理论,运用有限元和多体动力学方法,建立高速铁路桥梁区段车辆-轨道-桥梁耦合系统动力学模型,分析在人工地震波作用下高速铁路车-线-桥耦合系统动力响应。结果表明:地震激励对轨道板、支撑层和桥梁的横向振动特性的影响大于对垂向振动特性的影响,桥梁结构对地震激励的敏感程度大于轨道结构;车辆运行速度对系统垂向振动特性的影响大于对横向振动特性的影响。研究结论可为地震荷载作用下高速铁路安全运营提供理论依据。  相似文献   

7.
The objective of this study is to investigate the effects of earthquakes on road vehicle-bridge coupling vibration systems. A two-axle highway freight vehicle is treated as a 13 degree-of-freedom system composed of several rigid bodies, which are connected by a series of springs and dampers. The framework of the earthquake-vehicle-bridge dynamic analysis system is then established using an earthquake as the external excitation. The equivalent lateral contact force serves as the judgment criteria for sideslip accidents according to reliability theory. The entire process of the vehicle crossing the bridge is considered for a very high pier continuous rigid frame bridge. The response characteristics of the vehicle and the bridge are discussed in terms of various parameters such as earthquake ground motion, PGA value of the earthquake, incident angle, pier height, vehicle speed and mass. It is found that seismic excitation is the most influential factor in the responses of the vehicle-bridge system and that the safety of vehicles crossing the bridge is seriously impacted by the dual excitations of earthquake and bridge vibration.  相似文献   

8.
Presence of vehicles on a bridge has been observed many times during past earthquakes. Although in practice, the engineers may or may not include the live load contribution to seismic weight in design, current bridge design codes do not specify a certain guideline. A very limited research has been conducted to address this issue from design point of view. The focus of this research is to experimentally assess the effect of a vehicle on the seismic response of a bridge through a large‐scale model. In this scope, a 12‐meter long bridge, having a one lane deck with concrete slab on steel girders, has been shaken under five different ground motions obtained from recent earthquakes that occurred in Turkey, in its transverse direction, both with and without a vehicle on top of the deck. The measured results have indicated that top slab transverse acceleration and bearing displacements can reduce up to 18.7% in presence of a vehicle during seismic tests, which is an indication of reduction in substructure forces. The main reason for the reduction in seismic response of the bridge in the presence of live load can be ascribed to the increase in damping of the system due to mass damper‐like action induced by the vehicle. This beneficial effect cannot be observed in vertical seismic response. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
The dynamic responses of the Tsing Ma suspension bridge and the running behaviors of trains on the bridge under turbulent wind actions are analyzed by a three-dimensional wind-train-bridge interaction model. This model consists of a spatial finite element bridge model, a train model composed of eight 4-axle identical coaches of 27 degrees-of-freedom, and a turbulent wind model. The fluctuating wind forces, including the buffeting forces and the self-excited forces, act on the bridge only, since the train runs inside the bridge deck. The dynamic responses of the bridge are calculated and some results are compared with data measured from Typhoon York. The runnability of the train passing through the Tsing Ma suspension bridge at different speeds is researched under turbulent winds with different wind velocities. Then, the threshold curve of wind velocity for ensuring the running safety of the train in the bridge deck is proposed, from which the allowable train speed at different wind velocities can be determined. The numerical results show that rail traffic on the Tsing Ma suspension bridge should be closed as the mean wind velocity reaches 30 m/s.  相似文献   

10.
Major earthquakes in the past indicated that pounding between bridge decks may result in significant structural damage or even girder unseating. With conventional expansion joints, it is impossible to completely avoid seismic pounding between bridge decks, because the gap size at expansion joints is usually not big enough in order to ensure smooth traffic flow. With a new development of modular expansion joint (MEJ), which allows a large joint movement and at the same time without impeding the smoothness of traffic flow, completely precluding pounding between adjacent bridge decks becomes possible. This paper investigates the minimum total gap that a MEJ must have to avoid pounding at the abutments and between bridge decks. The considered spatial ground excitations are modelled by a filtered Tajimi‐Kanai power spectral density function and an empirical coherency loss function. Site amplification effect is included by a transfer function derived from the one‐dimensional wave propagation theory. Stochastic response equations of the adjacent bridge decks are formulated. The effects of ground motion spatial variations, dynamic characteristics of the bridge and the depth and stiffness of local soil on the required separation distance are analysed. Soil–structure interaction effect is not included in this study. The bridge response behaviour is assumed to be linear elastic. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
This study focuses on understanding and evaluating the effect of vehicle bridge interaction (VBI) on the response and fragility of bridges subjected to earthquakes. A comprehensive study on the effect of VBI on bridge seismic performance is conducted, providing metamodels for seismic response and fragility estimates for bridges in the presence of various types of vehicles. For this purpose, the performance of multispan simply supported concrete girder bridges with varying design and geometric parameters is assessed with 3 different types of stationary trucks placed atop them. To delineate the effects of VBI and additional truck mass, the trucks are modeled in 2 different ways—with additional masses and suspension springs (ie, with VBI) and using additional masses only (without VBI). The results provide insight on VBI effects, such as the fact that when bridge and vehicle mode shapes are in‐phase, the component responses increase and vice versa; additionally, the presence of a heavy axle near a bent increases component responses. Sensitivity analyses are also performed to determine the bridge parameters that significantly alter the component responses in the presence of vehicles. Furthermore, differences in component responses and fragilities highlight that modeling vehicles with additional masses alone is not sufficient to model the effect of truck presence on the seismic response of bridges. Finally, this study concludes that depending on the characteristics of the bridge and the vehicle, presence of a vehicle atop the bridge during an earthquake may be either beneficial or detrimental to bridge performance.  相似文献   

12.
天兴洲公铁两用斜拉桥主梁纵向列车制动振动反应分析   总被引:1,自引:0,他引:1  
本文对天兴洲公铁两用斜拉桥主梁纵向列车制动的振动反应进行了研究。天兴洲大桥是目前在建的世界上跨度最大的公铁两用斜拉桥,由于具有四线铁路,其主梁在列车制动及行车移动荷载作用下会沿纵向产生大幅振动,因此对其列车制动及行车移动荷载反应进行研究尤为必要。文中,首先根据车辆动力学的原理建立了列车制动动力学模型,获得了列车制动力纵向荷载及在制动过程中列车行走所产生的竖向荷载,并建立制动力传递有限元模型,应用有限元分析软件来获取钢轨上制动力及列车行走时引起的桥梁结构节点上的作用力时程。最后对天兴洲公铁两用斜拉桥主梁纵向列车制动及行车移动荷载的振动反应进行了仿真分析,发现了其主梁纵向列车制动反应具有位移大且速度极小的特点。  相似文献   

13.
Previous comparison studies on seismic isolation have demonstrated its beneficial and detrimental effects on the structural performance of high‐speed rail bridges during earthquakes. Striking a balance between these 2 competing effects requires proper tuning of the controlling design parameters in the design of the seismic isolation system. This results in a challenging problem for practical design in performance‐based engineering, particularly when the uncertainty in seismic loading needs to be explicitly accounted for. This problem can be tackled using a novel probabilistic performance‐based optimum seismic design (PPBOSD) framework, which has been previously proposed as an extension of the performance‐based earthquake engineering methodology. For this purpose, a parametric probabilistic demand hazard analysis is performed over a grid in the seismic isolator parameter space, using high‐throughput cloud‐computing resources, for a California high‐speed rail (CHSR) prototype bridge. The derived probabilistic structural demand hazard results conditional on a seismic hazard level and unconditional, i.e., accounting for all seismic hazard levels, are used to define 2 families of risk features, respectively. Various risk features are explored as functions of the key isolator parameters and are used to construct probabilistic objective and constraint functions in defining well‐posed optimization problems. These optimization problems are solved using a grid‐based, brute‐force approach as an application of the PPBOSD framework, seeking optimum seismic isolator parameters for the CHSR prototype bridge. This research shows the promising use of seismic isolation for CHSR bridges, as well as the potential of the versatile PPBOSD framework in solving probabilistic performance‐based real‐world design problems.  相似文献   

14.
The effects of soil‐structure interaction on the seismic response of multi‐span bridges are investigated by means of a modelling strategy based on the domain decomposition technique. First, the analysis methodology is presented: kinematic interaction analysis is performed in the frequency domain by means of a procedure accounting for radiation damping, soil–pile and pile‐to‐pile interaction; the seismic response of the superstructure is evaluated in the time domain by means of user‐friendly finite element programs introducing suitable lumped parameter models take into account the frequency‐dependent impedances of the soil–foundation system. Second, a real multi‐span railway bridge longitudinally restrained at one abutment is analyzed. The input motion is represented by two sets of real accelerograms: one consistent with the Italian seismic code and the other constituted by five records characterized by different frequency contents. The seismic response of the compliant‐base model is compared with that obtained from a fixed‐base model. Pile stress resultants due to kinematic and inertial interactions are also evaluated. The application demonstrates the importance of performing a comprehensive analysis of the soil–foundation–structure system in the design process, in order to capture the effects of soil‐structure interaction in each structural element that may be beneficial or detrimental. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
With the launch of the high‐speed train project in California, the seismic risk is a crucial concern to the stakeholders. To investigate the seismic behavior of future California High‐Speed Rail (CHSR) bridge structures, a 3D nonlinear finite‐element model of a CHSR prototype bridge is developed. Soil‐structure and track‐structure interactions are accounted for in this comprehensive numerical model used to simulate the seismic response of the bridge and track system. This paper focuses on examining potential benefits and possible drawbacks of the a priori promising application of seismic isolation in CHSR bridges. Nonlinear time history analyses are performed for this prototype bridge subjected to two bidirectional horizontal historical earthquake ground motions each scaled to two different seismic hazard levels. The effect of seismic isolation on the seismic performance of the bridge is investigated through a detailed comparison of the seismic response of the bridge with and without seismic isolation. It is found that seismic isolation significantly reduces the deck acceleration and the force demand in the bridge substructure (i.e., piers and foundations), especially for high‐intensity earthquakes. However, seismic isolation increases the deck displacement (relative to the pile cap) and the stresses in the rails. These findings imply that seismic isolation can be promisingly applied to CHSR bridges with due consideration of balancing its beneficial and detrimental effects through using appropriate isolators design. The optimum seismic isolator properties can be sought by solving a performance‐based optimum seismic design problem using the nonlinear finite‐element model presented herein. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
In this study the inelastic behavior of steel arch bridges subjected to strong ground motions from major earthquakes is investigated by dynamic analyses of a typical steel arch bridge using a three‐dimensional (3D) analytical model, since checking seismic performance against severe earthquakes is not usually performed when designing such kinds of bridge. The bridge considered is an upper‐deck steel arch bridge having a reinforced concrete (RC) deck, steel I‐section girders and steel arch ribs. The input ground motions are accelerograms which are modified ground motions based on the records from the 1995 Hyogoken‐Nanbu earthquake. Both the longitudinal and transverse dynamic characteristics of the bridge are studied by investigation of time‐history responses of the main parameters. It is found that seismic responses are small when subjected to the longitudinal excitation, but significantly large under the transverse ground motion due to plasticization formed in some segments such as arch rib ends and side pier bases where axial force levels are very high. Finally, a seismic performance evaluation method based on the response strain index is proposed for such steel bridge structures. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

17.
In soil‐structure interaction modeling of systems subjected to earthquake motions, it is classically assumed that the incoming wave field, produced by an earthquake, is unidimensional and vertically propagating. This work explores the validity of this assumption by performing earthquake soil‐structure interaction modeling, including explicit modeling of sources, seismic wave propagation, site, and structure. The domain reduction method is used to couple seismic (near‐field) simulations with local soil‐structure interaction response. The response of a generic nuclear power plant model computed using full earthquake soil‐structure interaction simulations is compared with the current state‐of‐the‐art method of deconvolving in depth the (simulated) free‐field motions, recorded at the site of interest, and assuming that the earthquake wave field is spatially unidimensional. Results show that the 1‐D wave‐field assumption does not hold in general. It is shown that the way in which full 3‐D analysis results differ from those which assume a 1‐D wave field is dependent on fault‐to‐site geometry and motion frequency content. It is argued that this is especially important for certain classes of soil‐structure systems of which nuclear power plants subjected to near‐field earthquakes are an example.  相似文献   

18.
This paper explores dynamic soil–bridge interaction in high speed railway lines. The analysis was conducted using a general and fully three-dimensional multi-body finite element–boundary element model formulated in the time domain to predict vibrations caused by trains passing over the bridge. The vehicle was modelled as a multi-body system, the track and the bridge were modelled using finite elements and the soil was considered as a half-space by the boundary element method. The dynamic response of bridges to vehicle passage is usually studied using moving force and moving mass models. However, the multi-body system allows to consider the quasi-static and dynamic excitation mechanisms. Soil–structure interaction was taken into account by coupling finite elements and boundary elements. The paper presents the results obtained for a simply supported short span bridge in a resonant regime under different soil stiffness conditions.  相似文献   

19.
薛富春  张建民 《地震工程学报》2015,37(2):310-316,323
高速铁路中的桥梁常采用灌注桩基础以控制沉降,地震作用是桩基础的设计工况之一。建立桥梁-桥墩-桩基础-地基为一体的耦合系统非线性三维数值分析模型,以典型地震波为输入,考虑上部结构和基础的共同工作、土-结构动力相互作用、材料非线性和土层对桩的侧阻及端阻作用,开展三向地震作用下的动力有限元计算,并对地基主要土层压缩模量、桩体材料弹性模量、桩径和桩长进行参数敏感性分析。计算结果表明:现行的桩基础设计方案能有效控制地震荷载作用下桥梁的变形;地震过程中的不同时刻,桩侧阻发挥程度不同且不可忽略,以单纯的梁单元模拟桩的动力学行为的适用性值得商榷;桩长和地基主要土层压缩模量对桥梁地震反应影响最大,桩体材料弹性模量的影响次之,桩径的影响最小。  相似文献   

20.
In this paper, the response of a visco-elastic half-space subjected to moving loads with static and dynamic components is investigated. Four types of vehicle loads are considered, including the moving point load, uniformly distributed wheel load, elastically distributed wheel load, and a train load simulated as a sequence of elastically distributed wheel loads. In each case, the influence of the moving loads traveling in the subsonic, transonic and supersonic ranges on the dynamic responses of the half-space is studied. The parametric study conducted herein enables us to grasp insight into the mechanism of wave propagation for a visco-elastic half-space under moving loads.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号