首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 281 毫秒
1.
极尖区是太阳风进入磁层的一个重要窗口,极尖区密度是反映这一物理过程的重要参量,通常情况下极尖区密度约为1~10 cm~(-3),但有时卫星会观测到密度大于40 cm~(-3)的极尖区,本文称之为高密度极尖区.我们分析了Cluster卫星2001—2009年的观测数据,在470个极尖区穿越中找到28个高密度极尖区穿越事件并进行了统计研究,分析了高密度极尖区事件的形成原因,进而讨论了太阳风高效地进入极尖区的外部条件.结果表明:距正午的距离(|MLT-12|)较小,太阳风的密度高,低纬有磁层顶磁重联发生以及正偶极倾角都是观测到高密度极尖区事件的有利条件,并且当同时满足上述4个条件时,高密度极尖区事件发生率为100%;而低纬磁层顶磁重联以及大的正偶极倾角被认为是太阳风高效地进入极尖区的重要条件.这些研究结果有助于我们更进一步地理解太阳风进入极尖区的物理机制.  相似文献   

2.
高纬磁层顶位形统计分析   总被引:1,自引:0,他引:1       下载免费PDF全文
本文收集了1226个来自Cluster、Geotail、GOES、IMP8、Interball、LANL、Polar、TC1、THEMIS和Wind卫星磁层顶穿越事例,并主要利用时间推移使上游行星际磁场clock angle或等离子体变化特征与磁鞘中的相吻合方法为这些数据配对上来自ACE或Wind卫星5 min平均值太阳风数据.通过对这些数据以及网上公布的1482个Hawkeye卫星磁层顶穿越点数据分析研究,发现:(1)高纬磁层顶在极隙区存在内凹结构,其内凹范围比较大;(2)磁层顶内凹位置明显受地磁偶极倾角控制,最内凹点所对应的天顶角和地磁偶极倾角大致呈线性关系,这种关系在南北半球大致呈反对称;(3)磁层顶内凹深度、内凹范围以及内凹中心不变纬度基本不受地磁偶极倾角影响.  相似文献   

3.
IMF北向时磁层顶重联的模拟研究   总被引:1,自引:0,他引:1  
本文基于自己开发的全球三维磁层模型,模拟研究了IMF(Interplanetary Magnetic Field)北向时磁层顶重联及磁尾结构.结果发现磁层顶附近存在两种典型的重联过程:一是高纬极尖区IMF与地球磁场的重联,这与空间观测证据和前人的模拟结果是一致的;二是重联后一端在太阳风中另一端与地球相连的磁力线在向磁尾运动中,会发生弯曲、拖曳,在磁尾晨昏侧低纬区域可与尾瓣开放磁力线满足重联条件而再次发生重联.我们认为前一重联会使磁尾等离子片产生与IMF时钟角方向相反的旋转;而后者可重新形成闭合磁力线,可能是LLBL(Low Latitude Boundary Layer)形成的重要原因.  相似文献   

4.
综合分析EISCAT雷达与卫星当地测量数据,并利用磁层磁场模式对磁力线进行追踪,研究了发生在极光椭圆朝极盖边界附近电离层中,一例反常的背离太阳流动的强等离子体对流事件,及相关的太阳风-磁层-电离层耦合过程.结果表明,磁暴期间IMFBz指向南时观测到这一反常高速对流,及其相应的等离子体性态特征,很可能是向阳侧磁层顶磁重联过程在电离层中的印记.  相似文献   

5.
本文应用涡旋诱发重联理论研究了地球磁层顶区发生的瞬时局部重联现象.对向阳面磁顶区通量传输事件(FTEs)的形成、结构和运动进行了理论和模拟研究,并与卫星观测结果作了比较.结果表明,涡旋诱发重联可能是产生FTEs的重要机制.利用这一理论模型能解释FTEs的一些主要观测现象.此外,对背阳面磁顶区的局部重联从理论上作了分析,指出在背阳面磁顶区可能存在类似于向阳面磁顶区的通量传输事件.  相似文献   

6.
文章提出以月球科研站为平台,配置一台具有宽视场和高分辨观测能力的软X射线成像仪——月基软X射线成像仪(LSXI),以实现对地球磁层的全景成像. LSXI是一种宽视场的软X射线望远镜,可以对太阳风电荷交换过程(SWCX)产生的软X射线进行动态成像,通过软X射线图像获取地球磁层边际与结构特性.地球磁层全景观测对于理解太阳风-磁层相互作用的物理过程至关重要. LSXI将首次通过对弓激波、磁鞘区、磁层顶和极尖区等区域的同时连续观测,监测太阳风作用下的空间天气演化过程.  相似文献   

7.
不考虑磁层顶磁重联的全球三维MHD模型   总被引:2,自引:1,他引:1       下载免费PDF全文
本文介绍了一个新的磁层全球三维MHD模型,该模型可通过把IMF和地球磁场分开处理的方法“关闭”磁层顶的磁重联,从而可直观地显示不同IMF条件下磁层顶的IMF与地磁场的反平行区域,即磁重联最可能发生的地方,结果表示,IMFBx分量对磁层顶磁重联有重要影响。由于可关闭磁重联,该模型还可有效地研究有无磁重联时,太阳风对磁层位形(如晨-昏不对称性)、粒子输运等重要问题的影响,有助于揭示磁层物理现象的基本特性。  相似文献   

8.
2003年11月20日磁暴主相期间,Cluster卫星正好处在黄昏侧的磁鞘附近.在主相期间磁鞘磁场Bz分量大约为-60 nT,这和ACE卫星观测值基本一致.同时,磁鞘中的离子速度分布对磁鞘中的磁场方向有很强的依赖性.行星际电场Ey在磁鞘中大约是50 mV/m.磁鞘中这些极端的磁场,电场和离子的流动驱动了迄今23个太阳活动周期中最大的磁暴,其Dst指数是-472 nT.Cluster卫星观测发现磁鞘中离子的数密度比较低,这可能是由磁云经过地球时太阳风的低密度造成的.磁鞘中能量范围为1~10 keV的H+,He+和He2+的数密度主要是由磁鞘中太阳风的数密度决定的.同时,对磁鞘中存在大量的1~10 keV氧离子进行了讨论.在极端的南向行星际磁场条件下,磁层顶受到很强的压缩.氧离子可以利用较大的回旋半径,在强压缩的磁层顶和磁鞘对流的共同影响下进入磁鞘.这也表明了磁层对极端行星际条件的一种响应.Cluster卫星在11月20日磁暴事件中的观测研究,对进一步全面认识大磁暴事件有很重要的作用.  相似文献   

9.
地球磁层顶湍动重联的数值模拟   总被引:1,自引:1,他引:1       下载免费PDF全文
用二维磁流体力学数值模拟研究了磁层顶的磁场湍动重联.提出了一个新的磁场湍动重联模型.数值模拟表明,如果磁层顶是一个开放系统并同时存在磁场剪切和流场剪切,当雷诺数和磁雷诺数超过某临界数值时,磁场重联具有很强的湍动特性,可产生许多不同尺度的磁岛和涡旋结构.随着雷诺数和磁雷诺数的增大和减小,大尺度结构能破碎成中小尺度结构,小尺度结构也能合并成大中尺度结构.湍动重联是涡旋诱发重联在一定条件下的过渡.依据本文的模拟结果,我们预言:磁层预可发生准定常重联、瞬时局地重联和湍动重联等多种重联过程;大中小不同尺度的结构都可以存在于磁层顶;湍动重联及其所产生的中小尺度结构在太阳风-磁层的能量、动量和质量耦合过程中可起重要作用.  相似文献   

10.
主要分析了WIND飞船2004年11月9日探测的磁云边界层引起的大尺度地球磁层活动.磁层响应主要包括以下3个方面:(1)磁云边界层内本身持续较强南向磁场驱动了一个强磁暴的主相.(2)由于磁云边界层内部较强南向磁场持续一段时间后发生向北偏转触发了一个典型磁层亚暴.文中详细分析了亚暴膨胀相发生时夜侧磁层各区域的观测现象,包括极光观测、高纬地磁湾扰、地球同步轨道无色散粒子注入现荆、Pi2脉动突然增强以及等离子体片偶极化现象等.(3)磁云边界层和前面鞘区组成一个动压增强区,此动压增强区强烈压缩磁层,致使磁层顶进入地球同步轨道以内;当磁云边界层扫过磁层时,位于向阳侧地球同步轨道上的两颗GOES卫星大部分时间位于磁层磁鞘中,以致很长时间内直接暴露在太阳风中.利用Shue(1998)模型计算得到当磁云边界层扫过磁层时磁层顶日下点的位置被压缩至距地心最近距离为5.1RE,磁云边界层的强动压结构以及强间断面决定了磁云边界层对磁层的强压缩效应.强动压结构、多个强间断结构以及持续较长时间的强南向磁场是许多磁云边界层的共性,这里以此磁云边界层事件为例分析了磁云边界层的地球磁层响应.  相似文献   

11.
This paper gives an overview of Cluster observations in the high-altitude cusp region of the magnetosphere. The low and mid-altitude cusps have been extensively studied previously with a number of low-altitude satellites, but only little is known about the distant part of the magnetospheric cusps. During the spring-time, the trajectory of the Cluster fleet is well placed for dayside, high-altitude magnetosphere investigations due to its highly eccentric polar orbit. Wide coverage of the region has resulted and, depending on the magnetic dipole tilt and the solar wind conditions, the spacecraft are susceptible to encounter: the plasma mantle, the high-altitude cusp, the dayside magnetosphere (i.e. dayside plasma sheet) and the distant exterior cusp diamagnetic cavity. The spacecraft either exit into the magnetosheath through the dayside magnetopause or through the exterior cusp–magnetosheath interface. This paper is based on Cluster observations made during three high-altitude passes. These were chosen because they occurred during different solar wind conditions and different inter-spacecraft separations. In addition, the dynamic nature of the cusp allowed all the aforementioned regions to be sampled with different order, duration and characteristics. The analysis deals with observations of: (1) both spatial and temporal structures at high-altitudes in the cusp and plasma mantle, (2) signatures of possible steady reconnection, flux transfer events (FTE) and plasma transfer events (PTE), (3) intermittent cold (<100 eV) plasma acceleration associated with both plasma penetration and boundary motions, (4) energetic ions (5–40 keV) in the exterior cusp diamagnetic cavity and (5) the global structure of the exterior cusp and its direct interface with the magnetosheath. The analysis is primarily focused on ion and magnetic field measurements. By use of these recent multi-spacecraft Cluster observations we illustrate the current topics under debate pertaining to the solar wind–magnetosphere interaction, for which this region is known to be of major importance.  相似文献   

12.
Downward precipitating ions in the cusp regularly exhibit sudden changes in ion energy distributions, forming distinctive structures that can be used to study the temporal/spatial nature of reconnection at the magnetopause. When observed simultaneously with the Polar, FAST, and Interball satellites, such cusp structures revealed remarkably similar features. These similar features could be observed for up to several hours during stable solar wind conditions. Their similarities led to the conclusion that large-scale cusp structures are spatial structures related to global ionospheric convection patterns created by magnetic merging and not the result of temporal variations in reconnection parameters. The launch of the Cluster fleet allows cusp structures to be studied in great detail and during changing solar wind conditions using three spacecraft with identical plasma and field instrumentation. In addition, Cluster cusp measurements are linked with ionospheric convection cells by combining the satellite observations with SuperDARN radar observations that are used to derive the convection patterns in the ionosphere. The combination of satellite observations with ground-based observations during variable solar wind conditions shows that large-scale cusp structures can be either spatial or temporal. Cusp structures can be described as spatial features observed by satellites crossing into spatially separated flux tubes. Cusp structures can also be observed as poleward-traveling (temporal) features within the same convection cell, most probably caused by variations in the reconnection rate at the magnetopause.  相似文献   

13.
行星际扰动和地磁活动对GEO相对论电子影响   总被引:1,自引:0,他引:1       下载免费PDF全文
利用1988—2010年小时平均的GOES卫星数据,对地球同步轨道(GEO)相对论电子变化进行了统计分析,研究了相对论电子通量(Fe)增强事件的发展过程,探讨了利于相对论电子通量增强的太阳风和地磁活动条件.主要结论如下:(1)GEO相对论电子通量即使是峰值,也具有明显的地方时特性,最大电子通量出现在磁正午时.午/夜电子通量比率随着太阳风速度(Vsw)增加而增大;在Dst-50nT时相对论电子具有规则的地方时变化.在太阳活动下降相,电子通量与各参数的相关性较好,与其相关性最好的Vsw、Kp指数以及三次根号下的太阳风密度(N)分别出现在电子通量前39~57h、57~80h和12~24h.(2)强(日平均电子通量峰值Femax≥104 pfu)相对论电子事件,在距离太阳活动谷年前两年左右和春秋分期间发生率最高,较弱(104Femax≥103 pfu)事件无此特点;大部分强相对论电子事件中,电子通量在磁暴主相开始增加,较弱事件中则在恢复相开始回升.(3)太阳风密度变化对相对论电子事件的发展具有重要指示作用.电子通量在太阳风密度极大值后0~1天达到极小值,太阳风密度极小值后0~2天达到极大值.(4)90%以上相对论电子事件是在磁暴及高速太阳风的条件下发生的,与其伴随的行星际参数和地磁活动指数极值满足以下条件:Vswmax516km/s,Dstmin-31nT,Nmin2.8cm-3,Nmax14.1cm-3,Bzmin-2.9nT,AEmax698nT.(5)磁暴过程中,Dstmin后日平均电子通量大于103 pfu的发生概率为53%左右,强/弱相对论电子事件占总数比例分别为36%/64%左右,磁暴强度对其无影响.磁暴过程中的Vsw、N和AE指数大小对于能否引起相对论电子增强起着指示作用.  相似文献   

14.
The antiparallel merging hypothesis states that reconnection takes place on the dayside magnetopause where the solar and geomagnetic fields are oppositely directed. With this criterion, we have mapped the predicted merging regions to the ionosphere using the Tsyganenko 96 magnetic field model, distinguishing between regions of sub-Alfvénic and super-Alfvénic magnetosheath flow, and identifying the day-night terminator. We present the resulting shape, width and latitude of the ionospheric dayside merging regions in both hemispheres, showing their dependence on the Earths dipole tilt. The resulting seasonal variation of the longitudinal width is consistent with the conjugate electric fields in the northern and southern cusps, as measured by the SuperDARN HF radars, for example. We also find a seasonal shift in latitude similar to that observed in satellite cusp data.  相似文献   

15.
Observations of a flux transfer event (FTE) have been made simultaneously by the Equator-S spacecraft near the dayside magnetopause whilst corresponding transient plasma flows were seen in the near-conjugate polar ionosphere by the CUTLASS Finland HF radar. Prior to the occurrence of the FTE, the magnetometer on the WIND spacecraft ≈226 RE upstream of the Earth in the solar wind detected a southward turning of the interplanetary magnetic field (IMF) which is estimated to have reached the subsolar magnetopause ≈77 min later. Shortly afterwards the Equator-S magnetometer observed a typical bipolar FTE signature in the magnetic field component normal to the magnetopause, just inside the magnetosphere. Almost simultaneously the CUTLASS Finland radar observed a strong transient flow in the F region plasma between 78° and 83° magnetic latitude, near the ionospheric region predicted to map along geomagnetic field lines to the spacecraft. The flow signature (and the data set as a whole) is found to be fully consistent with the view that the FTE was formed by a burst of magnetopause reconnection.  相似文献   

16.
17.
Cluster measurements of the cusp and high latitude magnetopause boundary on 26 January, 2001 confirm that the cusp is a dynamic region full of energetic charged particles and turbulence. An energetic ion layer at high-latitudes beyond and adjacent to the duskside magnetopause exists when the Interplanetary Magnetic Field (IMF) has a southward orientation. Multiple energetic ion flux bursts were observed in the energetic ion layer. Each energetic ion flux burst was closely related to a magnetic flux rope. The axes of the flux ropes lie in the direction pointing duskward/tailward and somewhat upward. An intense axis-aligned current flows inside the ropes, with the current density reaching ∼10−8 A/m2. The main components of the energetic ions are protons, helium and CNO ions, which originate from the magnetosphere, flowing out into the magnetosheath along the axis of the flux ropes. The velocity of the magnetosheath thermal plasma relative to the deHoffman-Teller (DHT) frame is found to be basically along the axis of the flux ropes also, but towards the magnetosphere. These flux ropes seem to be produced somewhere away via magnetic reconnection and move at similar DHT velocities passing over the spacecraft. These observations further confirm that the high-latitude magnetopause boundary region plays an important role in the solar wind-magnetopause coupling.  相似文献   

18.
Magnetic field measurements, taken by the magnetometer experiment (MAM) on board the German Equator-S spacecraft, have been used to identify and categorise 131 crossings of the dawn-side magnetopause at low latitude, providing unusual, long duration coverage of the adjacent magnetospheric regions and near magnetosheath. The crossings occurred on 31 orbits, providing unbiased coverage over the full range of local magnetic shear from 06:00 to 10:40 LT. Apogee extent places the spacecraft in conditions associated with intermediate, rather than low, solar wind dynamic pressure, as it processes into the flank region. The apogee of the spacecraft remains close to the magnetopause for mean solar wind pressure. The occurrence of the magnetopause encounters are summarised and are found to compare well with predicted boundary location, where solar wind conditions are known. Most scale with solar wind pressure. Magnetopause shape is also documented and we find that the magnetopause orientation is consistently sunward of a model boundary and is not accounted for by IMF or local magnetic shear conditions. A number of well-established crossings, particularly those at high magnetic shear, or exhibiting unusually high-pressure states, were observed and have been analysed for their boundary characteristics and some details of their boundary and near magnetosheath properties are discussed. Of particular note are the occurrence of mirror-like signatures in the adjacent magnetosheath during a significant fraction of the encounters and a high number of multiple crossings over a long time period. The latter is facilitated by the spacecraft orbit which is designed to remain in the near magnetosheath for average solar wind pressure. For most encounters, a well-ordered, tangential (draped) magnetosheath field is observed and there is little evidence of large deviations in local boundary orientations. Two passes corresponding to close conjunctions of the Geotail spacecraft are analysed to confirm boundary orientation and motion. These further show evidence of an anti-sunward moving depression on the magnetopause (which is much smaller at Equator-S). The Tsyganenko model field is used routinely to assist in categorising the crossings and some comparison of models is carried out. We note that typically the T87 model fits the data better than the T89 model during conditions of low to intermediate Kp index near the magnetopause and also near the dawn-side tail current sheet in the dawnside region.  相似文献   

19.
This paper reviews quantitative analysis results of the energy transfer and dissipation processes in the GUMICS-4 global MHD simulation. Reconnection power dissipating magnetic energy, dynamo power transferring energy from plasma to the field, and energy flux transport across the magnetopause surface are all examined separately and shown to yield consistent results. This is used to argue that magnetic reconnection is the process controlling the energy transfer, even though it is not localized near the reconnection line. The most important factors controlling the reconnection efficiency are the interplanetary magnetic field (IMF) orientation and the solar wind speed, while the IMF magnitude and solar wind density play a lesser role. During northward IMF, the reconnection efficiency is larger for high speed and low IMF than for low speed and high IMF magnitude, even though the solar wind electric field in both cases is the same. Moreover, increasing pressure by increasing density has a different effect from equal increase of pressure by increasing the solar wind speed. Comparison with statistical observational results shows that the simulation results are in qualitative agreement with the observations, which significantly increases our confidence in interpreting the simulation results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号