首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
The spatial variability of each parameter affecting storm runoff must be accounted for in distributed modelling. The objective of the work reported here is to assess the effects of using distributed versus lumped hydraulic roughness coefficients in the modelling of direct surface runoff. A spatially variable data set composed of Manning roughness coefficients is used to model direct surface runoff. To assess the information content (as measured by entropy) of spatially variable data and its significance in distributed modelling, various degrees of smoothing are applied. The error resulting from smoothing the hydraulic roughness coefficients is determined by modelling overland flow using a finite element solution. The Manning roughness coefficients were taken from field measurements of the Manning roughness coefficient at 0.6 m on a 14 m hillslope. These values were then used in a numerical simulation of outflow hydrographs to investigate the dependence of error on spatial variability. Our study focuses on the characteristics of spatial data used in distributed hydrological modelling. The field sites have fractal dimensions of ≈? 1.4, which is close to a Brownian variation. The sampling interval that captures the essential spatial variability of the Manning roughness coefficient does not seem to matter due to its Brownian variation in the field sites. Hence due to the nearly uniform random distribution, measurements at 0.6 m intervals are not necessary and larger intervals would yield results that are just as acceptable provided the mean value together with a uniformly random distribution is maintained for any size of finite element or sampling resolution. Because detailed measurements of hydraulic roughness are not practically available for deterministic catchment modelling, it is important to know that larger sampling resolutions may be used than 0.6 m.  相似文献   

2.
We propose an improvement of the overland‐flow parameterization in a distributed hydrological model, which uses a constant horizontal grid resolution and employs the kinematic wave approximation for both hillslope and river channel flow. The standard parameterization lacks any channel flow characteristics for rivers, which results in reduced river flow velocities for streams narrower than the horizontal grid resolution. Moreover, the surface areas, through which these wider model rivers may exchange water with the subsurface, are larger than the real river channels potentially leading to unrealistic vertical flows. We propose an approximation of the subscale channel flow by scaling Manning's roughness in the kinematic wave formulation via a relationship between river width and grid cell size, following a simplified version of the Barré de Saint‐Venant equations (Manning–Strickler equations). The too large exchange areas between model rivers and the subsurface are compensated by a grid resolution‐dependent scaling of the infiltration/exfiltration rate across river beds. We test both scaling approaches in the integrated hydrological model ParFlow. An empirical relation is used for estimating the true river width from the mean annual discharge. Our simulations show that the scaling of the roughness coefficient and the hydraulic conductivity effectively corrects overland flow velocities calculated on the coarse grid leading to a better representation of flood waves in the river channels.  相似文献   

3.
A modelling framework for the quick estimate of flood inundation and the resultant damages is developed in this paper. The model, called the flood economic impact analysis system (FEIAS), can be applied to a river reach of any hydrogeological river basin. For the development of the integrated modelling framework, three models were employed: (1) a modelling scheme based on the Hydrological Simulation Program FORTRAN model that was developed for any geomorphological river basin, (2) a river flow/floodplain model, and (3) a flood loss estimation model. The first sub‐model of the flood economic impact analysis system simulates the hydrological processes for extended periods of time, and its output is used as input to a second component, the river/floodplain model. The hydraulic model MIKE 11 (quasi‐2D) is the river/floodplain model employed in this study. The simulated flood parameters from the hydraulic model MIKE 11 (quasi‐2D) are passed, at the end of each time step, to a third component, the flood loss model for the estimation of flood damage. In the present work, emphasis was given to the seasonal variation of Manning's coefficient (n), which is an important parameter for the determination of the flood inundation in hydraulic modelling. High values of Manning's coefficient for a channel indicate high flow resistance. The riparian vegetation can have a large impact on channel resistance. The modelling framework developed in this paper was used to investigate the role of riparian vegetation in reducing flood damage. Moreover, it was used to investigate the influence of cutting riparian vegetation scenarios on the flow characteristics. The proposed framework was applied to the downstream part of the Koiliaris River basin in Crete, Greece, and was tested and validated with historical data. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
Infiltration losses may be significant and warrant proper incorporation into mathematical models for river floods in arid and semi-arid areas, rainfall-induced surface runoffs in watersheds and swashes on beaches. Here, a depth-averaged two-dimensional hydrodynamic model is presented for such processes based on the cell-centred finite volume method on unstructured meshes, with the full Green-Ampt equation evaluating the infiltration rate. A local time stepping strategy is employed along with thread parallelization with Open Multi-processing and high-performance computing to reduce model run time and therefore facilitate applications for large-scale processes. The numerical solutions generally agree with the experimental and field-measured data for typical cases with significant infiltration losses. The case study shows that neglecting infiltration leads to an overestimated discharge hydrograph, which cannot be compensated by means of varied bed resistance as estimated by Manning roughness, and the infiltration parameters play disparate roles in modifying shallow flows compared with Manning roughness. In addition, infiltration affects bed shear stress, which in turn modifies the critical bed sediment size that could be initiated for incipient motion by the flow and therefore needs to be properly accounted for when sediment transport and morphological evolution are to be resolved.  相似文献   

5.
A set of laboratory experiments on bare, rough soil surfaces was carried out to study the relationship between soil surface roughness and its hydraulic resistance. Existing models relating roughness coefficients to a measure of surface roughness did not predict the hydraulic resistance well for these surfaces. Therefore, a new model is developed to predict the hydraulic resistance of the surface, based on detailed surface roughness data. Roughness profiles perpendicular to the flow are used to calculate the wet cross‐sectional area and hydraulic radius given a certain water level. The algorithm of Savat is then applied to calculate the hydraulic resistance. The value for the equivalent roughness, which is used in the algorithm of Savat, could be predicted from the roughness profiles. Here, the tortuosity of the submerged part of the surface was used, which means that the calculated roughness depends on flow depth. The roughness increased with discharge, due to the fact that rougher parts of the surface became submerged at higher discharges. Therefore, a single measure of surface roughness (e.g. random roughness) is not sufficient to predict the hydraulic resistance. The proposed model allows the extension of the flow over the surface with increasing discharge to be taken into account, as well as the roughness within the submerged part of the surface. Therefore, the model is able to predict flow velocities reasonably well from discharge and roughness data only. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

6.
Abstract

The rating curve is the most frequently used methodology for continuous river flow measurement. However, to establish a reliable rating curve is difficult, takes time, and is often impossible when the measurement cross-section is unstable. To overcome this difficulty, the use of a modified form of the Manning equation is suggested to express flow rate as a function of hydraulic radius and longitudinal water surface slope rather than of water level alone, as is the case with the classical stage-discharge relationship. This formulation permits one to integrate the development of the river bed geometry and the hydraulic characteristics of the reach explicitly within the rating curve, in a simple way. The procedure is used and evaluated on the Leysse River in Chambéry, France. The results demonstrate the validity and potential of this approach, particularly for extrapolation, when the hydraulic and geometric characteristics are evolving.  相似文献   

7.
Resistance to flow at low to moderate stream discharge was examined in five small (12–77 km2 drainage area) tributaries of Chilliwack River, British Columbia, more than half of which exhibit planar bed morphology. The resulting data set is composed of eight to 12 individual estimates of the total resistance to flow at 61 cross sections located in 13 separate reaches of five tributaries to the main river. This new data set includes 625 individual estimates of resistance to flow at low to moderate river stage. Resistance to flow in these conditions is high, highly variable and strongly dependent on stage. The Darcy–Weisbach resistance factor (ff) varies over six orders of magnitude (0·29–12 700) and Manning's n varies over three orders of magnitude (0·047–7·95). Despite this extreme range, both power equations at the individual cross sections and Keulegan equations for reach‐averaged values describe the hydraulic relations well. Roughness is divided into grain and form (considered as all non‐grain sources) components. Form roughness is the dominant component, accounting for about 90% of the total roughness of the system (i.e., form roughness is on average 8.6 times as great as grain roughness). Of the various quantitative and qualitative form‐roughness indicators observed, only the sorting coefficient (σ = D84/D50) correlates well with form roughness. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
The general nature of bulk flow within bedrock single‐channel reaches has been considered by several studies recently. However, the flow structure of a bedrock‐constrained, large river with a multiple channel network has not been investigated previously. The multiple channel network of the Siphandone wetlands in Laos, a section of the Mekong River, was modelled using a steady one‐dimensional hydraulic model. The river network is characterized by a spatially‐varying channel‐form leading to significant changes in the bulk flow properties between and along the channels. The challenge to model the bulk flow in such a remote region was the lack of ideal boundary conditions. The flow models considered both low flow, high inbank and overbank flows and were calibrated using SPOT satellite sensor imagery and limited field data concerning water levels. The application of the model highlighted flow characteristics of a large multi‐channel network and also further indicated the field data that would be required to properly characterize the flow field empirically. Important results included the observation that adjacent channels within the network had different water surface slopes for the same moments in time; thus calibration data for modelling similar systems needs to account for these significant local differences. Further, the in‐channel hydraulic roughness coefficient strongly varied from one cross‐section to the next (Manning's ‘n’ range: 0·01 to 0·10). These differences were amplified during low flow but persisted in muted form during high discharges. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
ABSTRACT

This study examines the difference in the predictions of flood wave propagation in open channels depending on the flow resistance formulae, such as the Chézy and Manning’s equation. The celerity and diffusion coefficient are functions of the channel geometry, slope, roughness as well as the resistance formulae. The results suggest that substituting the Chézy equation with Manning’s equation results in different characteristics of flood propagation, which are consistent regardless of the cross-sectional geometry except for a circular cross-section: increasing celerity and decreasing diffusion coefficient. The celerity is more sensitive to the selection of resistance formulae than the diffusion coefficient. Geometry has a greater effect on the celerity and diffusion coefficient, and consequently on the resulting hydrographs. Manning’s equation results in a larger difference in celerity and diffusion coefficient compared to Chézy equation regardless of the water depth. Overall, this study shows that the selection of resistance formulae is important in terms of the resulting hydrographs and peak flow.
EDITOR Z.W. Kundzewicz ASSOCIATE EDITOR not assigned  相似文献   

10.
Identification, analysis and prediction of the erosion and sedimentation or the increase and decrease in river bed level are among the most complex and yet up-to-date topics of deposit hydraulics and river engineering. If cross structures in rivers and canals are also to be considered the complexity of flow pattern and deposit transfer increases. In this research using the one-dimensional mathematical model HEC-RAS 4.1 the effect of short dikes on flow hydraulic and the trend of sedimentation and erosion in the Karun River were simulated and analyzed within the boundaries of Ahwaz City. The area introduced into the model started from the Ghir dike to Khoramshahr. Moreover, the Mollathani, Farsiat and Ahwaz hydrometric stations were used as the upper limit, lower limit and calibration limit of the model, respectively. The flow was assumed to be quasi-unsteady and based on the existing knowledge of different methods and experiences with the methods in other studies the Toffaleti method was used to solve the deposit equations. The model was prepared and applied in the following four states: without dike and with dikes 0.7, 1.2 and 1.7 m above the average level in the desired areas. Finally, results of the model applied with and without short dikes revealed that the short dikes and dikes 1.2 m above the average floor level of modeled areas were significantly ineffective under hydraulic conditions and morphological changes. Moreover, the majority of changes in the river bed and all the morphological changes, in general, were the result of other factors. Dikes with heights of 1.7 m above the average floor level significantly caused sedimentation in the upstream and affected the hydraulics of flow.  相似文献   

11.
Hydraulic roughness accounts for energy dissipated as heat and should exert an important control on rates of subglacial conduit enlargement by melting. Few studies, however, have quantified how subglacial conduit roughness evolves over time or how that evolution affects models of conduit enlargement. To address this knowledge gap, we calculated values for two roughness parameters, the Darcy–Weisbach friction factor (f) and the Manning roughness coefficient (n), using dye tracing data from a mapped subglacial conduit at Rieperbreen, Svalbard. Values of f and n calculated from dye traces were compared with values of f and n calculated from commonly used relationships between surface roughness heights and conduit hydraulic diameters. Roughness values calculated from dye tracing ranged from 75–0.97 for f and from 0.68–0.09 s m‐1/3 for n. Equations that calculate roughness parameters from surface roughness heights underpredicted values of f by as much as a factor of 326 and values of n by a factor of 17 relative to values obtained from the dye tracing study. We argue these large underpredictions occur because relative roughness in subglacial conduits during the early stages of conduit enlargement exceeds the 5% range of relative roughness that can be used to directly relate values of f and n to flow depth and surface roughness heights. Simple conduit hydrological models presented here show how parameterization of roughness impacts models of conduit discharge and enlargement rate. We used relationships between conduit relative roughness and values of f and n calculated from our dye tracing study to parameterize a model of conduit enlargement. Assuming a fixed hydraulic gradient of 0.01 and ignoring creep closure, it took conduits 9.25 days to enlarge from a diameter of 0.44 m to 3 m, which was 6–7‐fold longer than using common roughness parameterizations. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
Predicting the timing of overland flow in burned watersheds can help to estimate debris-flow timing and the location of debris-flow initiation. Numerical models can produce flow predictions, but they are limited by our knowledge of appropriate model parameters. Moreover, opportunities to test and calibrate model parameters in post-wildfire settings are limited by available data (measurements of debris-flow timing are rare). In this study, we use a unique data set of rainfall and flow-timing data to test the extent to which model parameters can be generalized from an individual watershed to other watersheds (0.01 km 2 to >1km 2) within a burned area. Simulations suggest that a single, low, saturated hydraulic conductivity value can be used in post-wildfire landscapes with reasonable results. By contrast, we found that watershed-scale effective Manning roughness parameter values decrease as a power-law function of basin drainage area. Thus a Manning roughness parameter calibrated for a single basin within a burned area may not provide adequate results in a different watershed. However, when flow velocity is modeled independently for hillslopes and channels, and different roughness parameters are used for those morphometric units, there is no drainage-area dependence on the roughness parameters. Moreover, we found that it was possible to use field-measured grain size data to parameterize the roughness for both hillslopes and channels. Thus our results show that, employing this generalizable approach, it is possible to use field measurements to fully parameterize a model that produces peak flow timing to within a few minutes in storms lasting several hours. Further, we demonstrate how model simulations can be leveraged to identify areas within a watershed that are most susceptible to debris flows. This modeling approach could be used for decision making in hazardous burned areas and would be especially useful in ungaged basins. © 2019 John Wiley & Sons, Ltd.  相似文献   

13.
Hosna Shafaei  Amini  Ata  Shirdeli  Azim 《Water Resources》2019,46(3):377-383
Water Resources - Roughness coefficient, also called Manning’s coefficient, is one of the most important hydraulic parameters in the rivers. This coefficient, in addition to the flow...  相似文献   

14.
This study focuses on the spatial variations in vegetative roughness associated with morphological channel adjustments due to the presence of check dams in Mediterranean torrential streams. Manning’s n values were estimated using methods established by previous studies of submerged and non-submerged vegetation in laboratory flume experiments and field work. The results showed a linear decrease in shrub density and rate of variation of the roughness coefficient versus degree of submergence with increasing distance upstream from the check dam, while downstream, the filling of the check dam and the bed incision had the most influence. A regression analysis was applied by fitting the data to different models: relationships between Manning’s n and the flow velocity were found to be of the power type for shrubs in all upstream sections, while relationships of flow velocity versus hydraulic radius in the sections closest to check dams showed a good fit to second-order polynomial equations.  相似文献   

15.
Hydrodynamic characteristics of rill flow on steep slopes   总被引:4,自引:0,他引:4       下载免费PDF全文
Rill erosion is a dominant sediment source on sloping lands. However, the amount of soil loss from rills on steep slopes is vastly more than that on gentle slopes because of differences in rill shape and hydraulic patterns. The aims of this paper are to determine the hydrodynamic characteristics of rills and the friction coefficients in steep slope conditions and to propose modifications of some hydraulic parameters used in soil loss prediction models. A series of inflow experiments was conducted on loess slopes. The results show that the geometric and hydraulic properties of rill on the steep loess slopes, which are characterized by the mean width of cross sections, mean velocity and mean depth of flow, are related to discharge and slope gradient in power functions. However, the related exponents to discharge are 0.26, 0.48 and 0.26, respectively, which are different from the exponents derived in previous studies, which were conducted on gentle slopes. The Manning roughness coefficient ranged from 0.035 to 0.071, with an average of 0.0536, and the Darcy–Weisbach friction coefficients varied from 0.4 to 1.9. The roughness coefficients are closely related to the Reynolds numbers and flow volumes; however, the correlations vary with slope gradient. The roughness coefficients are directly proportional to the Reynolds number and the flow volume on steep slopes, in contrast with the roughness coefficients found on gentle slopes, which decrease as the Reynolds number and flow volume increase. This difference is caused by the interactions among the hydraulics of the flow, the shape of the rills and the sediment concentrations on steep slopes. The results indicate that parameters used in models to predict rill erosion have to be modified according to slope gradient. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
Traditionally, approaches to account for the effect of the boundary roughness of a gravel‐bed river have used a grain‐size index of the bed surface as a surrogate for hydraulic resistance. The use of a single grain‐size does not take into account the spatial heterogeneity in the bed surface and how this heterogeneity imparts resistance on the flow, nor the way in which this relationship changes with variables such as flow stage. A new technique to remotely quantify hydraulic resistance is proposed. It is based on measuring the dynamics of a river's water surface and relating this to the actual hydraulic resistance created by a rough sediment boundary. The water surface dynamics are measured using a new acoustic technique, grazing angle sound propagation (GRASP). This proposed method to measure hydraulic resistance is based on a greater degree of physical reasoning, and this is discussed in the letter. By measuring acoustically the temporal dynamics of turbulent water surfaces over a water‐worked gravel bed in a laboratory flume, a dependency is demonstrated between the temporal variation in the reflected acoustic pressure and measured hydraulic resistance. It is shown that the standard deviation in acoustic pressure decreases with increasing hydraulic resistance. This is shown to apply for a range of relative submergences and bed slopes that are typical of gravel‐bed rivers. This remote sensing technique is both rapid and inexpensive, and has the potential to be applied to natural river channels and to other environmental turbulent flows, such as overland flows. A whole new class of low‐cost, remote and non‐intrusive instruments could be developed as a result and used in a wide range of hydraulic and hydrological applications. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
Non-uniform sediment deposited in a confined, steep mountain channel can alter the bed surface composition. This study evaluates the contribution of geometric and resistance parameters to bed sta-bilization and the reduction in sediment transport. Flume experiments were done under various hydraulic conditions with non-uniform bed material and no sediment supply from upstream. Results indicate that flume channels respond in a sequence of coarsening and with the formation of bedform-roughness features such as rapids, cascades, and steps. A bedform development coefficient is introduced and is shown to increase (i.e. vertical sinuosity develops) in response to increasing shear stress during the organization process. The bedform development coefficient also is positively correlated with the critical Shields number and Manning's roughness coefficient, suggesting the evolution of flow resistance with increasing bedform development. The sediment transport rate decreases with increasing bed shear stress and bedform development, further illustrating the effect of bed stabilization. An empirical sedi-ment transport model for an equilibrium condition is proposed that uses the bedform development coefficient, relative particle submergence (i.e. the ratio of mean water depth and maximum sediment diameter), modified bed slope, and discharge. The model suggests bedform development can play a primary role in reducing sediment transport (increasing bed stabilization). The model is an extension of Lane's (1955) relation specifically adapted for mountain streams. These results explain the significance of bedform development in heightening flow resistance, stabilizing the bed, and reducing sediment transport in coarse, steep channels.  相似文献   

18.
Hydrological interaction between surface and subsurface water systems has a significant impact on water quality, ecosystems and biogeochemistry cycling of both systems. Distributed models have been developed to simulate this function, but they require detailed spatial inputs and extensive computation time. The soil and water assessment tool (SWAT) model is a semi‐distributed model that has been successfully applied around the world. However, it has not been able to simulate the two‐way exchanges between surface water and groundwater. In this study, the SWAT‐landscape unit (LU) model – based on a catena method that routes flow across three LUs (the divide, the hillslope and the valley) – was modified and applied in the floodplain of the Garonne River. The modified model was called SWAT‐LUD. Darcy's equation was applied to simulate groundwater flow. The algorithm for surface water‐level simulation during flooding periods was modified, and the influence of flooding on groundwater levels was added to the model. Chloride was chosen as a conservative tracer to test simulated water exchanges. The simulated water exchange quantity from SWAT‐LUD was compared with the output of a two‐dimensional distributed model, surface–subsurface water exchange model. The results showed that simulated groundwater levels in the LU adjoining the river matched the observed data very well. Additionally, SWAT‐LUD model was able to reflect the actual water exchange between the river and the aquifer. It showed that river water discharge has a significant influence on the surface–groundwater exchanges. The main water flow direction in the river/groundwater interface was from groundwater to river; water that flowed in this direction accounted for 65% of the total exchanged water volume. The water mixing occurs mainly during high hydraulic periods. Flooded water was important for the surface–subsurface water exchange process; it accounted for 69% of total water that flowed from the river to the aquifer. The new module also provides the option of simulating pollution transfer occurring at the river/groundwater interface at the catchment scale. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
A physical, chemical and biological characterization of river systems is needed to evaluate their ecological quality and support restoration programs. Herein, we describe an approach using water chemistry, physical structure and land use for identification of a disturbance gradient existing in the Karun River Basin. For this purpose, at each site, physical structure and physico-chemical data were collected once in each season for a total of 4 samples during the period (October 2018 - September 2019). Principal components analysis (PCA) of 17 variables identified five variables that were influential across all seasons: conductivity, total habitat score, stream morphology, clay & silt, and sand. Of the 54 sites, 14, 26 and 14 sites were classified as least, moderate and most disturbed sites, respectively. The metric Ephemeroptera, Plecoptera and Trichoptera (EPT) taxa was used for validation of the classification. Results in different seasons showed that all the least disturbed sites (n = 14) were significantly different from moderate and most disturbed sites (p < 0.01). In this study the validation process presented good confirmation of a priori reference sites selection, showing that the proposed criteria could be considered as appropriate tools for characterization of the existent disturbance gradient in the Karun River Basin.  相似文献   

20.
This article presents results from an investigation of the hydraulic characteristics of overbank flows on topographically‐complex natural river floodplains. A two‐dimensional hydraulic model that solves the depth‐averaged shallow water form of the Navier–Stokes equations is used to simulate an overbank flow event within a multiple channel reach of the River Culm, Devon, UK. Parameterization of channel and floodplain roughness by the model is evaluated using monitored records of main channel water level and point measurements of floodplain flow depth and unit discharge. Modelled inundation extents and sequences are assessed using maps of actual inundation patterns obtained using a Global Positioning System, observational evidence and ground photographs. Simulation results suggest a two‐phase model of flooding at the site, which seems likely to be representative of natural floodplains in general. Comparison of these results with previous research demonstrates the complexity of overbank flows on natural river floodplains and highlights the limitations of laboratory flumes as an analogue for these environments. Despite this complexity, frequency distributions of simulated depth, velocity and unit discharge data closely follow a simple gamma distribution model, and are described by a shape parameter (α) that exhibits clear systematic trends with changing discharge and floodplain roughness. Such statistical approaches have the potential to provide the basis for computationally efficient flood routing and overbank sedimentation models. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号